Dynamic Generation of Spin-Orbit Coupling

Total Page:16

File Type:pdf, Size:1020Kb

Dynamic Generation of Spin-Orbit Coupling PHYSICAL REVIEW LETTERS week ending VOLUME 93, NUMBER 3 16 JULY 2004 Dynamic Generation of Spin-Orbit Coupling Congjun Wu and Shou-Cheng Zhang Department of Physics, McCullough Building, Stanford University, Stanford California 94305-4045, USA (Received 24 December 2003; published 15 July 2004) Spin-orbit coupling plays an important role in determining the properties of solids, and is crucial for spintronics device applications. Conventional spin-orbit coupling arises microscopically from relativ- istic effects described by the Dirac equation, and is described as a single particle band effect. In this work, we propose a new mechanism in which spin-orbit coupling can be generated dynamically in strongly correlated, nonrelativistic systems as the result of Fermi surface instabilities in higher angular momentum channels. Various spin-orbit couplings can emerge in these new phases, and their magni- tudes can be continuously tuned by temperature or other quantum parameters. DOI: 10.1103/PhysRevLett.93.036403 PACS numbers: 71.10.Ay, 71.10.Ca, 71.10.Hf Most microscopic interactions in condensed matter model do not break rotational symmetry, and some of physics can be accurately described by nonrelativistic them preserve time-reversal and parity symmetries as physics. However, spin-orbit (SO) coupling is a notable well. Most correlated phases in condensed matter physics exception, which arises from the relativistic Dirac equa- are characterized by their broken symmetries [16]. Solids tion of the electrons [1]. The emerging science of break translational symmetry, liquid crystals break rota- spintronics makes crucial use of the SO coupling to tional symmetry, superfluids and superconductors break manipulate electron spins by purely electric means. The gauge symmetry, and ferromagnets break time-reversal proposed Datta-Das device [2] modulates the current flow symmetry and rotational symmetry. As far as we are through the spin procession caused by the SO coupling. aware, the new phase reported in this Letter is the only More recently, Murakami, Nagaosa, and Zhang [3,4] one besides the Fermi liquid which does not break any of proposed a method of generating the dissipationless the above symmetries. It is distinguished from the Fermi spin current by applying an electric field in the p-doped liquid by only breaking the ‘‘relative spin-orbit symme- semiconductors. This effect and the similar proposal for try,’’ a concept first introduced in the context of the 3He the n-doped semiconductors [5] both make crucial use liquid [17]. of the SO coupling. In contrast to the generation of the We first discuss the dynamic generation of SO coupling spin current by coupling to the ferromagnetic moment, from the LP instability within the Landau-Fermi liquid a purely electric manipulation has an intrinsic advantage. theory triggered by the negative Landau parameter F1 , However, unlike the ferromagnetic moment, which can be and then present its exact definition. This instability lies spontaneously generated through the strong correlation of in particle-hole channel with total spin one and relative spins, the conventional wisdom states that the SO cou- orbital angular momentum one. Operators in matrix a y ^ a pling is a noninteracting one-body effect, whose micro- forms are defined as Q r r ÿir r, scopic magnitude is fixed by the underlying relativistic where Greek indices denote the direction in the spin physics. space, Latin indices denote the direction in the orbital On the other hand, recent interest has been revived in space, and the operation of r^ a on the plane wave is the Landau-Pomeranchuk (LP) [6] Fermi surface insta- defined as r^ aeik~r~ ra=jrjeik~r~ k^aeik~r~. Qa r is bilities, largely in connection with electronic liquid crys- essentially the spin-current operator up to a constant tal states with spontaneously broken rotational symmetry factor. We use a Hamiltonian similar to that of Ref. [8], [7–12], and in connection with hidden orders in heavy a but in the F1 channel: Fermion systems [13–15]. Varma’s recent work showed Z 3 y ~ a that the LP instability could lead to the opening of an H d r~ r~ rr ÿ r~haQ r~ anisotropic gap at the Fermi surface [13]. In this Letter, Z 1 3 3 0 a 0 a a 0 we show that the SO coupling can be generated dynami- d rrd~ r~ f1 r~ ÿ r~ Q r~Q r~ ; (1) cally in a nonrelativistic system through strong correla- 2 tion effects as the LP instability in the spin channel with where is the chemical potential and the small ha higher orbital angular momentum. It emerges collectively is dubbed as the ‘‘spin-orbit field,’’ which plays a after a phase transition, which is continuously tunable role similar to the external magnetic field. For later either by temperature or by a quantum parameter at zero convenience [8], we keep both the linear and the cubic temperature. Unlike the ferromagnet, our ordered phase terms in the expansion of the single particle dispersion ~ keeps time-reversal symmetry. Also in contrast to the LP relation around the Fermi wave vector kf, k 2 instabilities considered by the majority of previous theo- vfk1 b k=kf , with k k ÿ kf. We assume a ries, most translationally invariant liquid phases in our that the Fourier components of f1 r~ take the form 036403-1 0031-9007=04=93(3)=036403(4)$22.50 2004 The American Physical Society 036403-1 PHYSICAL REVIEW LETTERS week ending VOLUME 93, NUMBER 3 16 JULY 2004 R a iq~ r~ a a a 2 f1 q drre~ f1 rf1 = 1 jf1 jq and define the and orbital space, respectively, Da is any SO(3) rotation a a dimensionless Landau parameter F1 Nff1 , where Nf matrix, and n is a real number. In other words, the is the density of states at Fermi energy. The symmetry of correlation functions of operators Qa acquire a long the Hamiltonian (1) is a direct product SO 3L SO 3S range part in the ordered states in the orbital and spin channels. n2 ^ We define the spin-orbit susceptibility as a;b a b 0 de^a phase; hQ r~Q r~ i ! ab a 2 (6) hQai=hb in the limit hb ! 0, which is diagonal, i.e., jf1 j Da phase; , in the normal Fermi liquid phase. The a;b a b 0 Fermi liquid correction to is given by as jr~ ÿ r~ j!1. This correlation function gives the rig- orous definition for the new phases, independent of the m 1 approximate Fermi liquid theory used here. FL 0 a ; (2) m 1 F1 =3 The phase is a straightforward generalization of the nematic Fermi liquid [8] to the triplet channel as shown in with m =m the ratio between the effective and bare Fig. 1, where the spin and orbital degrees of freedom masses. The spin-orbital susceptibility is enhanced for a a remain decoupled, and the rotational symmetry is broken. F < 0 and divergent as the critical point F ÿ3 is a 1 1 Taking a special case n nn zaz, the dispersion re- reached. A lations for spin up and down branches are k1;2 In the mean-field (MF) analysis, the p-h channelR triplet kÿ n a a cos , respectively, where is the angle order parameter is defined as n r~ÿ drrf~ 1 r ÿ k z 0 a 0 between and axis. The Fermi surfaces for the two r hQ r i, and the external spin-orbit field ha is a a spin components are distorted in an opposite way as set to zero. Using the uniform ansatzR n rn , k =k x cos 1 ÿ bx2cos2ÿ1=3x2, with 3 y ~ f1;2 f Eq. (1) is decoupled into HMF d r~ r~ rr ÿ the dimensionless parameter x nn= v k . The chemi- a ^ a a a a f f n ÿir ÿ r~Vn n = 2jf1 j, with V the cal potential is shifted to ensure the particle number space volume. The self-consistent equation for the order conservation as = v k ÿx2=3. The remaining parameters reads f f symmetry is SO 2L SO 2S with the Goldstone mani- Z fold S2 S2. Two Goldstone modes are the oscillations of d3k~ L S na jfaj h y kk^a ki; (3) the distorted Fermi surfaces, and the other two are the 1 23 p oscillations of the spin directions. a In the phase, the rotational symmetry is preserved which is valid when the interaction range r0 jf1 j is much larger than the distance between particles 1=k ; i.e., with the dynamic generation of spin-orbit coupling as p f a a shown in Fig. 1. For example, with the ansatz n the dimensionless parameter kf jf1 j 1. The phase structures can be determined from the nn a, the MF Hamiltonian is reduced to X Ginzburg-Landau (GL) free energy, which is similar to H y k kÿ ÿ nn~ k^ k: (7) the triplet pairing order parameter in the 3He system MF k [17,18]. Under the independent SO(3) rotations in the a orbital and spin spaces RL and RS, n transforms as The single particle states can be classified according a ;b ÿ1 a n ! RL;n RS;ba. Furthermore, n is even under to the eigenvalues 1 of the helicity operator ~ k^, B the time-reversal but odd under the parity transformation. with dispersion relations k1;2 kÿ n.The With these symmetry requirements, the GL free energy Fermi surface distortions of two helicity bands are can be constructed up to the quartic order as T T T δk δ F nA trn nB trn n2 B trn n2: (4) f1 kf1 1 2 s Compared with the complex order parameter in the super- δkf2 3 fluid He case, the reality of the na restricts the free energy to contain only two quartic terms.
Recommended publications
  • 3.4 V-A Coupling of Leptons and Quarks 3.5 CKM Matrix to Describe the Quark Mixing
    Advanced Particle Physics: VI. Probing the weak interaction 3.4 V-A coupling of leptons and quarks Reminder u γ µ (1− γ 5 )u = u γ µu L = (u L + u R )γ µu L = u Lγ µu L l ν l ν l l ν l ν In V-A theory the weak interaction couples left-handed lepton/quark currents (right-handed anti-lepton/quark currents) with an universal coupling strength: 2 GF gw = 2 2 8MW Weak transition appear only inside weak-isospin doublets: Not equal to the mass eigenstate Lepton currents: Quark currents: ⎛ν ⎞ ⎛ u ⎞ 1. ⎜ e ⎟ j µ = u γ µ (1− γ 5 )u 1. ⎜ ⎟ j µ = u γ µ (1− γ 5 )u ⎜ − ⎟ eν e ν ⎜ ⎟ du d u ⎝e ⎠ ⎝d′⎠ ⎛ν ⎞ ⎛ c ⎞ 5 2. ⎜ µ ⎟ j µ = u γ µ (1− γ 5 )u 2. ⎜ ⎟ j µ = u γ µ (1− γ )u ⎜ − ⎟ µν µ ν ⎜ ⎟ sc s c ⎝ µ ⎠ ⎝s′⎠ ⎛ν ⎞ ⎛ t ⎞ µ µ 5 3. ⎜ τ ⎟ j µ = u γ µ (1− γ 5 )u 3. ⎜ ⎟ j = u γ (1− γ )u ⎜ − ⎟ τν τ ν ⎜ ⎟ bt b t ⎝τ ⎠ ⎝b′⎠ 3.5 CKM matrix to describe the quark mixing One finds that the weak eigenstates of the down type quarks entering the weak isospin doublets are not equal to the their mass/flavor eigenstates: ⎛d′⎞ ⎛V V V ⎞ ⎛d ⎞ d V u ⎜ ⎟ ⎜ ud us ub ⎟ ⎜ ⎟ ud ⎜ s′⎟ = ⎜Vcd Vcs Vcb ⎟ ⋅ ⎜ s ⎟ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟ W ⎝b′⎠ ⎝Vtd Vts Vtb ⎠ ⎝b⎠ Cabibbo-Kobayashi-Maskawa mixing matrix The quark mixing is the origin of the flavor number violation of the weak interaction.
    [Show full text]
  • Strong Coupling and Quantum Molecular Plasmonics
    Strong coupling and molecular plasmonics Javier Aizpurua http://cfm.ehu.es/nanophotonics Center for Materials Physics, CSIC-UPV/EHU and Donostia International Physics Center - DIPC Donostia-San Sebastián, Basque Country AMOLF Nanophotonics School June 17-21, 2019, Science Park, Amsterdam, The Netherlands Organic molecules & light Excited molecule (=exciton on molecule) Photon Photon Adding mirrors to this interaction The photon can come back! Optical cavities to enhance light-matter interaction Optical mirrors Dielectric resonator Veff Q ∼ 1/κ Photonic crystals Plasmonic cavity Veff Q∼1/κ Coupling of plasmons and molecular excitations Plasmon-Exciton Coupling Plasmon-Vibration Coupling Absorption, Scattering, IR Absorption, Fluorescence Veff Raman Scattering Extreme plasmonic cavities Top-down Bottom-up STM ultra high-vacuum Wet Chemistry Low temperature Self-assembled monolayers (Hefei, China) (Cambridge, UK) “More interacting system” One cannot distinguish whether we have a photon or an excited molecule. The eigenstates are “hybrid” states, part molecule and part photon: “polaritons” Strong coupling! Experiments: organic molecules Organic molecules: Microcavity: D. G. Lidzey et al., Nature 395, 53 (1998) • Large dipole moments • High densities collective enhancement • Rabi splitting can be >1 eV (~30% of transition energy) • Room temperature! Surface plasmons: J. Bellessa et al., Single molecule with gap plasmon: Phys. Rev. Lett. 93, 036404 (2004) Chikkaraddy et al., Nature 535, 127 (2016) from lecture by V. Shalaev Plasmonic cavities
    [Show full text]
  • The Electron-Phonon Coupling Constant 
    The electron-phonon coupling constant Philip B. Allen Department of Physics and Astronomy, State University of New York, Stony Brook, NY 11794-3800 March 17, 2000 Tables of values of the electron-phonon coupling constants and are given for selected tr elements and comp ounds. A brief summary of the theory is also given. I. THEORETICAL INTRODUCTION Grimvall [1] has written a review of electron-phonon e ects in metals. Prominent among these e ects is sup ercon- ductivity. The BCS theory gives a relation T exp1=N 0V for the sup erconducting transition temp erature c D T in terms of the Debye temp erature .Values of T are tabulated in various places, the most complete prior to c D c the high T era b eing ref. [2]. The electron-electron interaction V consists of the attractive electron-phonon-induced c interaction minus the repulsive Coulombinteraction. The notation is used = N 0V 1 eph and the Coulomb repulsion N 0V is called , so that N 0V = , where is a \renormalized" Coulomb c repulsion, reduced in value from to =[1 + ln! =! ]. This suppression of the Coulomb repulsion is a result P D of the fact that the electron-phonon attraction is retarded in time by an amountt 1=! whereas the repulsive D screened Coulombinteraction is retarded byamuch smaller time, t 1=! where ! is the electronic plasma P P frequency. Therefore, is b ounded ab oveby1= ln! =! which for conventional metals should b e 0:2. P D Values of are known to range from 0:10 to 2:0.
    [Show full text]
  • How the Electron-Phonon Coupling Mechanism Work in Metal Superconductor
    How the electron-phonon coupling mechanism work in metal superconductor Qiankai Yao1,2 1College of Science, Henan University of Technology, Zhengzhou450001, China 2School of physics and Engineering, Zhengzhou University, Zhengzhou450001, China Abstract Superconductivity in some metals at low temperature is known to arise from an electron-phonon coupling mechanism. Such the mechanism enables an effective attraction to bind two mobile electrons together, and even form a kind of pairing system(called Cooper pair) to be physically responsible for superconductivity. But, is it possible by an analogy with the electrodynamics to describe the electron-phonon coupling as a resistivity-dependent attraction? Actually so, it will help us to explore a more operational quantum model for the formation of Cooper pair. In particularly, by the calculation of quantum state of Cooper pair, the explored model can provide a more explicit explanation for the fundamental properties of metal superconductor, and answer: 1) How the transition temperature of metal superconductor is determined? 2) Which metals can realize the superconducting transition at low temperature? PACS numbers: 74.20.Fg; 74.20.-z; 74.25.-q; 74.20.De ne is the mobile electron density, η the damping coefficient 1. Introduction that is determined by the collision time τ . In the BCS theory[1], superconductivity is attributed to a In metal environment, mobile electrons are usually phonon-mediated attraction between mobile electrons near modeled to be a kind of classical particles like gas molecules, Fermi surface(called Fermi electrons). The attraction is each of which performs a Brown-like motion and satisfies the sometimes referred to as a residual Coulomb interaction[2] that Langevin equation can glue Cooper pair together to cause superconductivity.
    [Show full text]
  • Lattice-QCD Determinations of Quark Masses and the Strong Coupling Αs
    Lattice-QCD Determinations of Quark Masses and the Strong Coupling αs Fermilab Lattice, MILC, and TUMQCD Collaborations September 1, 2020 EF Topical Groups: (check all that apply /) (EF01) EW Physics: Higgs Boson Properties and Couplings (EF02) EW Physics: Higgs Boson as a Portal to New Physics (EF03) EW Physics: Heavy Flavor and Top-quark Physics (EF04) EW Physics: Electroweak Precision Physics and Constraining New Physics (EF05) QCD and Strong Interactions: Precision QCD (EF06) QCD and Strong Interactions: Hadronic Structure and Forward QCD (EF07) QCD and Strong Interactions: Heavy Ions (EF08) BSM: Model-specific Explorations (EF09) BSM: More General Explorations (EF10) BSM: Dark Matter at Colliders Other Topical Groups: (RF01) Weak Decays of b and c Quarks (TF02) Effective Field Theory Techniques (TF05) Lattice Gauge Theory (CompF2) Theoretical Calculations and Simulation Contact Information: Andreas S. Kronfeld (Theoretical Physics Department, Fermilab) [email]: [email protected] on behalf of the Fermilab Lattice, MILC, and TUMQCD Collaborations Fermilab Lattice, MILC, and TUMQCD Collaborations: A. Bazavov, C. Bernard, N. Brambilla, C. DeTar, A.X. El-Khadra, E. Gamiz,´ Steven Gottlieb, U.M. Heller, W.I. Jay, J. Komijani, A.S. Kronfeld, J. Laiho, P.B. Mackenzie, E.T. Neil, P. Petreczky, J.N. Simone, R.L. Sugar, D. Toussaint, A. Vairo, A. Vaquero Aviles-Casco,´ J.H. Weber, R.S. Van de Water Lattice-QCD Determinations of Quark Masses and the Strong Coupling αs Quantum chromdynamics (QCD) as a stand-alone theory has 1 + nf + 1 free parameters that must be set from experimental measurements, complemented with theoretical calculations connecting the measurements to the QCD Lagrangian.
    [Show full text]
  • Feynman Diagrams Particle and Nuclear Physics
    5. Feynman Diagrams Particle and Nuclear Physics Dr. Tina Potter Dr. Tina Potter 5. Feynman Diagrams 1 In this section... Introduction to Feynman diagrams. Anatomy of Feynman diagrams. Allowed vertices. General rules Dr. Tina Potter 5. Feynman Diagrams 2 Feynman Diagrams The results of calculations based on a single process in Time-Ordered Perturbation Theory (sometimes called old-fashioned, OFPT) depend on the reference frame. Richard Feynman 1965 Nobel Prize The sum of all time orderings is frame independent and provides the basis for our relativistic theory of Quantum Mechanics. A Feynman diagram represents the sum of all time orderings + = −−!time −−!time −−!time Dr. Tina Potter 5. Feynman Diagrams 3 Feynman Diagrams Each Feynman diagram represents a term in the perturbation theory expansion of the matrix element for an interaction. Normally, a full matrix element contains an infinite number of Feynman diagrams. Total amplitude Mfi = M1 + M2 + M3 + ::: 2 Total rateΓ fi = 2πjM1 + M2 + M3 + :::j ρ(E) Fermi's Golden Rule But each vertex gives a factor of g, so if g is small (i.e. the perturbation is small) only need the first few. (Lowest order = fewest vertices possible) 2 4 g g g 6 p e2 1 Example: QED g = e = 4πα ∼ 0:30, α = 4π ∼ 137 Dr. Tina Potter 5. Feynman Diagrams 4 Feynman Diagrams Perturbation Theory Calculating Matrix Elements from Perturbation Theory from first principles is cumbersome { so we dont usually use it. Need to do time-ordered sums of (on mass shell) particles whose production and decay does not conserve energy and momentum. Feynman Diagrams Represent the maths of Perturbation Theory with Feynman Diagrams in a very simple way (to arbitrary order, if couplings are small enough).
    [Show full text]
  • Waves & Normal Modes
    Waves & Normal Modes Matt Jarvis February 2, 2016 Contents 1 Oscillations 2 1.0.1 Simple Harmonic Motion - revision . 2 2 Normal Modes 5 2.1 Thecoupledpendulum.............................. 6 2.1.1 TheDecouplingMethod......................... 7 2.1.2 The Matrix Method . 10 2.1.3 Initial conditions and examples . 13 2.1.4 Energy of a coupled pendulum . 15 2.2 Unequal Coupled Pendula . 18 2.3 The Horizontal Spring-Mass system . 22 2.3.1 Decouplingmethod............................ 22 2.3.2 The Matrix Method . 23 2.3.3 Energy of the horizontal spring-mass system . 25 2.3.4 Initial Condition . 26 2.4 Vertical spring-mass system . 26 2.4.1 The matrix method . 27 2.5 Interlude: Solving inhomogeneous 2nd order di↵erential equations . 28 2.6 Horizontal spring-mass system with a driving term . 31 2.7 The Forced Coupled Pendulum with a Damping Factor . 33 3 Normal modes II - towards the continuous limit 39 3.1 N-coupled oscillators . 39 3.1.1 Special cases . 40 3.1.2 General case . 42 3.1.3 N verylarge ............................... 44 3.1.4 Longitudinal Oscillations . 47 4WavesI 48 4.1 Thewaveequation ................................ 48 4.1.1 TheStretchedString........................... 48 4.2 d’Alambert’s solution to the wave equation . 50 4.2.1 Interpretation of d’Alambert’s solution . 51 4.2.2 d’Alambert’s solution with boundary conditions . 52 4.3 Solving the wave equation by separation of variables . 54 4.3.1 Negative C . 55 i 1 4.3.2 Positive C . 56 4.3.3 C=0.................................... 56 4.4 Sinusoidalwaves ................................
    [Show full text]
  • Lecture #2: Review of Spin Physics
    Lecture #2: Review of Spin Physics • Topics – Spin – The Nuclear Spin Hamiltonian – Coherences • References – Levitt, Spin Dynamics 1 Nuclear Spins • Protons (as well as electrons and neutrons) possess intrinsic angular momentum called “spin”, which gives rise to a magnetic dipole moment. Plank’s constant 1 µ = γ! 2 spin gyromagnetic ratio • In a magnetic field, the spin precesses around the applied field. z Precession frequency θ µ ω 0 ≡ γB0 B = B0zˆ Note: Some texts use ω0 = -gB0. y ! ! Energy = −µ ⋅ B = − µ Bcosθ x How does the concept of energy differ between classical and quantum physics • Question: What magnetic (and electric?)€ fields influence nuclear spins? 2 The Nuclear Spin Hamiltonian • Hˆ is the sum of different terms representing different physical interactions. ˆ ˆ ˆ ˆ H = H1 + H 2 + H 3 +! Examples: 1) interaction of spin with B0 2) interactions with dipole fields of other nuclei 3) nuclear-electron couplings • In general,€ we can think of an atomic€ nucleus as a lumpy magnet with a (possibly non-uniform) positive electric charge • The spin Hamiltonian contains terms which describe the orientation dependence of the nuclear energy The nuclear magnetic moment interacts with magnetic fields Hˆ = Hˆ elec + Hˆ mag The nuclear electric charge interacts with electric fields 3 € Electromagnetic Interactions • Magnetic interactions magnetic moment ! ! ! ! Hˆ mag ˆ B Iˆ B = −µ ⋅ = −γ" ⋅ local magnetic field quadrapole • Electric interactions monopole dipole Nuclear€ electric charge distributions can be expressed as a sum of multipole components. ! (0) ! (1) ! (2) ! C (r ) = C (r ) + C (r ) + C (r ) +" Symmetry properties: C(n)=0 for n>2I and odd interaction terms disappear Hence, for spin-½ nuclei there are no electrical ˆ elec H = 0 (for spin I€= 1/2) energy terms that depend on orientation or internal nuclear structure, and they behaves exactly like ˆ elec H ≠ 0 (for spin I >1/2) point charges! Nuclei with spin > ½ have electrical quadrupolar moments.
    [Show full text]
  • 11. the Top Quark and the Higgs Mechanism Particle and Nuclear Physics
    11. The Top Quark and the Higgs Mechanism Particle and Nuclear Physics Dr. Tina Potter Dr. Tina Potter 11. The Top Quark and the Higgs Mechanism 1 In this section... Focus on the most recent discoveries of fundamental particles The top quark { prediction & discovery The Higgs mechanism The Higgs discovery Dr. Tina Potter 11. The Top Quark and the Higgs Mechanism 2 Third Generation Quark Weak CC Decays 173 GeV t Cabibbo Allowed |Vtb|~1, log(mass) |Vcs|~|Vud|~0.975 Top quarks are special. Cabibbo Suppressed m(t) m(b)(> m(W )) |Vcd|~|Vus|~0.22 |V |~|V |~0.05 −25 cb ts τt ∼ 10 s ) decays b 4.8GeV before hadronisation Vtb ∼ 1 ) 1.3GeV c BR(t ! W + b)=100% s 95 MeV 2.3MeV u d 4.8 MeV Bottom quarks are also special. b quarks can only decay via the Cabbibo suppressed Wcb vertex. Vcb is very small { weak coupling! Interaction b-jet point ) τ(b) τ(u; c; d; s) b Jet initiated by b quarks look different to other jets. b quarks travel further from interaction point before decaying. b-jet traces back to a secondary vertex {\ b-tagging". Dr. Tina Potter 11. The Top Quark and the Higgs Mechanism 3 The Top Quark The Standard Model predicted the existence of the top quark 2 +3e u c t 1 −3e d s b which is required to explain a number of observations. d µ− Example: Non-observation of the decay W − 0 + − 0 + − −9 K ! µ µ B(K ! µ µ ) < 10 u=c=t νµ The top quark cancels the contributions W + from the u and c quarks.
    [Show full text]
  • Modified Gravity Theories with Non-Minimal Coupling Between Curvature and Matter Engenharia Fısica Tecnol ´Ogica
    Modified Gravity Theories with non-minimal coupling between curvature and matter Energy Conditions and Dolgov-Kawasaki Criterion Miguel Pereira Carvalho Alves de Sequeira Dissertac¸ao˜ para a Obtenc¸ao˜ do Grau de Mestre em Engenharia F´ısicaTecnologica´ J ´uri Presidente: Prof. Joao˜ Carlos Carvalho de Sa´ Seixas Orientador: Prof. Orfeu Bertolami Vogais: Prof. Alfredo Barbosa Henriques e Doutor Jorge Paramos´ May, 2009 ii Acknowledgements I would like to thank: • my supervisor, Orfeu Bertolami, not only for the guidance and support, but also for providing the opportunity to work at the edge of a compelling field such as General Relativity; • my parents for lecturing me to look ahead and for the support along these 17 years of school; • my friends for making the decompressing valve work properly. iii iv Resumo Nesta tese ´eabordado uma extens~ao`asteorias f(R) da gravita¸c~aoonde, para al´emda modifica¸c~ao no sector grav´ıticoda ac¸c~aode Einstein-Hilbert, ´eintroduzido um acoplamento n~aom´ınimo entre a curvatura e a mat´eria. Este modelo cont´emuma fenomenologia nova e interessante, principalmente no que diz respeito `atroca de energia entre os campos de mat´eria e o escalar de curvatura. Contudo, como todas as teorias de gravita¸c~aomodificada, estas s~aopass´ıveis de certas anomalias que podem, eventualmente, tornar a teoria inv´alidaou desprovida de significado f´ısico.Neste contexto, apresenta-se um estudo acerca das condi¸c~oesde energia, fundamentais para restringir os poss´ıveis tensores energia- momento, e do crit´eriode Dolgov-Kawasaki, fundamental para assegurar a estabilidade da teoria.
    [Show full text]
  • Coupling of Angular Momenta Isospin Nucleon-Nucleon Interaction
    LectureLecture 55 CouplingCoupling ofof AngularAngular MomentaMomenta IsospinIsospin NucleonNucleon --NucleonNucleon InteractionInteraction WS2012/13 : ‚Introduction to Nuclear and Particle Physics ‘, Part I I.I. AngularAngular MomentumMomentum OperatorOperator Rotation R( θθθ): in polar coordinates the point r = (r, φφφ) Polar coordinates: is transformed to r' = (r,φφφ + θθθ) by a rotation through the angle θθθ around the z-axis Define the rotated wave function as: Its value at r is determined by the value of φφφ at that point, which is transformed to r by the rotation: The shift in φφφ can also be expressed by a Taylor expansion Rotation (in exponential representation): where the operator Jz for infinitesimal rotations is the angular-momentum operator: AngularAngular MomentaMomenta Cartesian coordinates (x,y,z) Finite rotations about any of these axes may be written in the exponential representation as The cartesian form of the angular-momentum operator Jk reads ∂ℜ∂ℜ∂ℜ (θθθ ) Jˆ === −−−ih k k θθθk ===0 ∂∂∂θθθk With commutation relations (SU(2) algebra): 2 [Jk ,J ] === 0 Consider representation using the basis |jm> diagonal in both with eigenvalue ΛΛΛj =j(j+1) . CouplingCoupling ofof AngularAngular MomentaMomenta A system of two particles with angular momenta has the total angular momentum ˆ ˆ Eigenfunctions of (and J z1 and J z2 ) are: |j 1,m 1> and |j 2,m 2 > (1) A basis for the system of two particles may then be built out of the products of these states, forming the so-called uncoupled basis states (2) Such a state is an eigenstate
    [Show full text]
  • 15.8 Magnetic Interactions and Magnetic Couplings
    8. Magnetic Interactions and Magnetic Couplings. Transitions between the magnetic energy levels discussed in the previous section can be visualized as occuring through the result of magnetic torques exerted on the magnetic moment vectors of an electron spin, or equivalently, as the result of coupling of spin angular momentum to another angular momentum. We shall discuss the magnetic torques as arising from two fundamental magnetic interactions: a dipolar interaction between magnetic moments and a contact interaction between magnetic moments. These arise from some specific source of magnetic moments resulting from the motion of charged particles or spins. The coupling may occur through either a dipolar or contact interaction. In the literature the terms interaction and coupling are used more or less interchangeably. However, we use the term coupling to describe the source of the magnetic moment that causes the spin transition. The vector model allows the dipolar and contact interactions to be visualized in an analogous manner, irrespective of the source of the coupling. In addition, the vector model allows the transitions resulting from the coupling of an electron spin to any magnetic moment to be visualized in an analogous form. These features of the vector model provide a powerful and simplifying tool for discussing magnetic resonance spectroscopy and intersystem crossing through a common conceptual framework. Couplings of a magnetic field along the z axis. For example, let us consider the specific example of the intersystem crossing of a T0 state to a degernate S state or vice-versa (Figure 18, top). On the left and right of the figure the two spins are represented as "tightly" coupled to each other by electron exchange by showing their precessional cones in contactat a common point.
    [Show full text]