Understanding Nuclear Binding Energy with Nucleon Mass Difference Via Strong Coupling Constant and Strong Nuclear Gravity

Total Page:16

File Type:pdf, Size:1020Kb

Understanding Nuclear Binding Energy with Nucleon Mass Difference Via Strong Coupling Constant and Strong Nuclear Gravity Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 29 December 2018 doi:10.20944/preprints201812.0355.v1 Understanding nuclear binding energy with nucleon mass difference via strong coupling constant and strong nuclear gravity U. V. S. Seshavatharam1 & S. Lakshminarayana2 1Honorary Faculty, I-SERVE, Survey no-42, Hitech city, Hyderabad-84, Telangana, India. 2Department of Nuclear Physics, Andhra University, Visakhapatnam-03, AP, India Emails: [email protected] (and) [email protected] Orcid numbers : 0000-0002-1695-6037 (and) 0000-0002-8923-772X Abstract: With reference to electromagnetic interaction and Abdus Salam’s strong (nuclear) gravity, 1) Square root of ‘reciprocal’ of the strong coupling constant can be considered as the strength of nuclear elementary charge. 2) ‘Reciprocal’ of the strong coupling constant can be considered as the maximum strength of nuclear binding energy. 3) In deuteron, strength of nuclear binding energy is around unity and there exists no strong 28 3 -1 -2 interaction in between neutron and proton. Gs 3.32688 10 m kg sec being the nuclear gravitational 2G m Gm2 constant, nuclear charge radius can be shown to be, R s p 1.24 fm. es p e 4.716785 1019 C 0 2 s c c being the nuclear elementary charge, proton magnetic moment can be shown to be, 2 e eGs m p c s 1.48694 1026 J.T -1 . 0.1153795 being the strong coupling constant, p 2m 2 c s Gm2 p s p 1 strong interaction range can be shown to be proportional to exp . Interesting points to be noted are: An 2 s increase in the value of s helps in decreasing the interaction range indicating a more strongly bound nuclear system. A decrease in the value of s helps in increasing the interaction range indicating a more weakly bound nuclear system. From Z 30 onwards, close to stable mass numbers, nuclear binding energy can be addressed 1 2 with, BZ 1 30 31 mmcZn p 19.66 MeV. With further study, magnitude of the As s Newtonian gravitational constant can be estimated with nuclear elementary physical constants. One sample 10 G 1 m G N e F relation is, where GN represents the Newtonian gravitational constant and GF G2 m c mc s p e 10 2 represents the Fermi’s weak coupling constant. Two interesting coincidences are, mpe m exp 1 s and 2Gmc2 G c . se F Keywords: strong (nuclear) gravity, nuclear elementary charge, strong coupling constant, nuclear charge radius, beta stability line, nuclear binding energy, nucleon mass difference, Fermi’s weak coupling constant, Newtonian gravitational constant, deuteron, interaction range, super heavy elements. 1. Introduction the form of ‘residual nuclear force’. At this juncture, one important question to be answered and reviewed Low energy nuclear scientists assume ‘strong at the basic level is: How to understand nuclear interaction’ as a strange nuclear interaction interactions in terms of sub nuclear interactions? associated with binding of protons and neutrons. Unfortunately, the famous nuclear models like, High-energy nuclear scientists consider nucleons as Liquid drop model and Fermi's gas model [2-5] are composite states of quarks and try to understand the lagging in answering this question. To find a way, we nature and strength of strong interaction [1] at sub would like to suggest that, by considering ‘square nuclear level. Very unfortunate thing is that, strong root’ of reciprocal of the strong coupling constant’ interaction is mostly hidden at low energy scales in 1 © 2018 by the author(s). Distributed under a Creative Commons CC BY license. Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 29 December 2018 doi:10.20944/preprints201812.0355.v1 is well established that, strength of strong force s 0.1186 , as an index of strength of nuclear depends on the energy through the interaction or the elementary charge, nuclear binding energy and distance between particles. At lower energies or nuclear stability can be understood. In this direction, longer distances: a) color charge strength increases; we have developed interesting concepts and produced b) strong force becomes ‘stronger’; c) nucleons can many semi empirical relations [6-12]. Even though it be considered as fundamental nuclear particles and is in its budding stage, our model seems to be simple quarks seem to be strongly bound within the nucleons and realistic compared to the new integrated model leading to ‘Quark confinement’. At high energies or proposed by N. Ghahramany et al [13,14]. It needs short distances: a) color charge strength decreases; b) further study at a fundamental level. strong force gets ‘weaker’; 3) colliding protons 2. About Strong (nuclear) gravity generate ‘scattered free quarks leading to ‘Quark Asymptotic freedom’. Based on these points, low Microscopic physics point of view, one very energy nuclear scientists assume ‘strong interaction’ interesting concept is that- elementary particles can as a strange nuclear interaction associated with be considered as ‘micro black holes’. ‘Strong binding of nucleons. High-energy nuclear scientists (nuclear) gravity’ concept proposed by Abdus Salam, consider nucleons as composite states of quarks and C. Sivaram, K.P. Sinha, K. Tennakone, Roberto try to understand the nature and strength of strong Onofrio, O. F. Akinto and Farida Tahir [15-20], interaction at sub nuclear level. seems to be very attractive. The main object of unification is to understand the origin of elementary With reference to the picture of ‘Strong (nuclear) 38 particles mass, (Dirac) magnetic moments and their gravity’[15-20], if Gf 10 G N , forces. Right now and till today ‘string theory’ with 10 dimensions is not in a position to explain the 1) Schwarzschild radius of nucleon mass can be unification of gravitational and non-gravitational 2Gf m p forces. More clearly speaking it is not in a position to addressed with, R0 1.2 fm . c2 bring down the Planck scale to the nuclear size. The 2) Strong coupling constant can be expressed with most desirable cases of any unified description are: 2 c 0.115 a) To implement gravity in microscopic physics and s 2 to estimate the magnitude of the Newtonian Gf m p gravitational constant GN . 3) Characteristic temperature associated with b) To develop a model of microscopic quantum nucleon can be expressed with, gravity. 3 c 12 c) To simplify the complicated issues of known Tproton 10 K physics. 8kGmB f p d) To predict new effects, arising from a combination of the fields inherent in the unified Note: Considering the relativistic mass of proton, it is description. 4 2 1 v possible to show that, 1 where v s 3. About quantum chromo dynamics (QCD) mp c can be considered as the speed of proton. The modern theory of strong interaction is quantum Qualitatively, at higher energies, strength of strong chromo dynamics (QCD) [21]. It explores baryons interaction seems to decrease with speed of proton. and mesons in broad view with 6 quarks and 8 gluons. According to QCD, the four important 4. About the semi empirical mass formula properties of strong interaction are: 1) color charge; Let A be the total number of nucleons, Z the 2) confinement; 3) asymptotic freedom [22]; 4) short- -15 number of protons and N the number of neutrons. range nature (<10 m). Color charge is assumed to According to the semi-empirical mass formula be responsible for the strong force to act on quarks [2,3,4], nuclear binding energy: via the force carrying agent, gluon. Experimentally it 2 Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 29 December 2018 doi:10.20944/preprints201812.0355.v1 2 2/3 ZZ( 1) ( AZ 2 ) ap 2Gs m p B av A a s A a c a a 1 R 1.24 fm (3) A1/3 A 0 2 A c Based on this relation, Here av = volume energy coefficient, as is the surface energy coefficient, a is the coulomb energy R c2 c G 0 3.32688 1028 m 3 kg -1 sec -2 (4) s 2m coefficient, aa is the asymmetry energy coefficient p and a is the pairing energy coefficient. If we 2 p c consider the sum of the volume energy, surface s 0.1153795 (5) G m2 energy, coulomb energy, asymmetry energy and s p 2 pairing energy, then the picture of a nucleus as a drop e G m es p e 4.716785 1019 C (6) of incompressible liquid roughly accounts for the s s c observed variation of binding energy of the nucleus. By maximizing B AZ, with respect to Z , one can 7. New concepts and semi empirical relations find the number of protons Z of the stable nucleus of atomic weight A as, We would like to suggest that, A0.4 A2 Z2/3 and AZ 2 2 1) Fine structure ratio can be addressed with, 2 ac 2 aA a A 200 e2 c s 7.297348 103 2 2 4 Gm Gm By substituting the above value of Z back into B 0 s p s p one obtains the binding energy as a function of the 2) Proton magnetic moment can be addressed with e eG m atomic weight, B A. Maximizing BA / A with s s p 1.48694 1026 J.T -1 p 2m 2 c respect to A gives the nucleus which is most strongly p bound or most stable. 3) Neutron magnetic moment can be addressed with e e s 9.805 1027 J.T -1 . 5. Three simple assumptions n 2m n With reference to our recent paper publications and 4) Nuclear unit radius can be expressed as, conference proceedings [6-12], [23-33], we propose 2Gm e s p s R 0 2 the following three assumptions.
Recommended publications
  • Probing Pulse Structure at the Spallation Neutron Source Via Polarimetry Measurements
    University of Tennessee, Knoxville TRACE: Tennessee Research and Creative Exchange Masters Theses Graduate School 5-2017 Probing Pulse Structure at the Spallation Neutron Source via Polarimetry Measurements Connor Miller Gautam University of Tennessee, Knoxville, [email protected] Follow this and additional works at: https://trace.tennessee.edu/utk_gradthes Part of the Nuclear Commons Recommended Citation Gautam, Connor Miller, "Probing Pulse Structure at the Spallation Neutron Source via Polarimetry Measurements. " Master's Thesis, University of Tennessee, 2017. https://trace.tennessee.edu/utk_gradthes/4741 This Thesis is brought to you for free and open access by the Graduate School at TRACE: Tennessee Research and Creative Exchange. It has been accepted for inclusion in Masters Theses by an authorized administrator of TRACE: Tennessee Research and Creative Exchange. For more information, please contact [email protected]. To the Graduate Council: I am submitting herewith a thesis written by Connor Miller Gautam entitled "Probing Pulse Structure at the Spallation Neutron Source via Polarimetry Measurements." I have examined the final electronic copy of this thesis for form and content and recommend that it be accepted in partial fulfillment of the equirr ements for the degree of Master of Science, with a major in Physics. Geoffrey Greene, Major Professor We have read this thesis and recommend its acceptance: Marianne Breinig, Nadia Fomin Accepted for the Council: Dixie L. Thompson Vice Provost and Dean of the Graduate School (Original signatures are on file with official studentecor r ds.) Probing Pulse Structure at the Spallation Neutron Source via Polarimetry Measurements A Thesis Presented for the Master of Science Degree The University of Tennessee, Knoxville Connor Miller Gautam May 2017 c by Connor Miller Gautam, 2017 All Rights Reserved.
    [Show full text]
  • 3.4 V-A Coupling of Leptons and Quarks 3.5 CKM Matrix to Describe the Quark Mixing
    Advanced Particle Physics: VI. Probing the weak interaction 3.4 V-A coupling of leptons and quarks Reminder u γ µ (1− γ 5 )u = u γ µu L = (u L + u R )γ µu L = u Lγ µu L l ν l ν l l ν l ν In V-A theory the weak interaction couples left-handed lepton/quark currents (right-handed anti-lepton/quark currents) with an universal coupling strength: 2 GF gw = 2 2 8MW Weak transition appear only inside weak-isospin doublets: Not equal to the mass eigenstate Lepton currents: Quark currents: ⎛ν ⎞ ⎛ u ⎞ 1. ⎜ e ⎟ j µ = u γ µ (1− γ 5 )u 1. ⎜ ⎟ j µ = u γ µ (1− γ 5 )u ⎜ − ⎟ eν e ν ⎜ ⎟ du d u ⎝e ⎠ ⎝d′⎠ ⎛ν ⎞ ⎛ c ⎞ 5 2. ⎜ µ ⎟ j µ = u γ µ (1− γ 5 )u 2. ⎜ ⎟ j µ = u γ µ (1− γ )u ⎜ − ⎟ µν µ ν ⎜ ⎟ sc s c ⎝ µ ⎠ ⎝s′⎠ ⎛ν ⎞ ⎛ t ⎞ µ µ 5 3. ⎜ τ ⎟ j µ = u γ µ (1− γ 5 )u 3. ⎜ ⎟ j = u γ (1− γ )u ⎜ − ⎟ τν τ ν ⎜ ⎟ bt b t ⎝τ ⎠ ⎝b′⎠ 3.5 CKM matrix to describe the quark mixing One finds that the weak eigenstates of the down type quarks entering the weak isospin doublets are not equal to the their mass/flavor eigenstates: ⎛d′⎞ ⎛V V V ⎞ ⎛d ⎞ d V u ⎜ ⎟ ⎜ ud us ub ⎟ ⎜ ⎟ ud ⎜ s′⎟ = ⎜Vcd Vcs Vcb ⎟ ⋅ ⎜ s ⎟ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟ W ⎝b′⎠ ⎝Vtd Vts Vtb ⎠ ⎝b⎠ Cabibbo-Kobayashi-Maskawa mixing matrix The quark mixing is the origin of the flavor number violation of the weak interaction.
    [Show full text]
  • Nuclear Models: Shell Model
    LectureLecture 33 NuclearNuclear models:models: ShellShell modelmodel WS2012/13 : ‚Introduction to Nuclear and Particle Physics ‘, Part I 1 NuclearNuclear modelsmodels Nuclear models Models with strong interaction between Models of non-interacting the nucleons nucleons Liquid drop model Fermi gas model ααα-particle model Optical model Shell model … … Nucleons interact with the nearest Nucleons move freely inside the nucleus: neighbors and practically don‘t move: mean free path λ ~ R A nuclear radius mean free path λ << R A nuclear radius 2 III.III. ShellShell modelmodel 3 ShellShell modelmodel Magic numbers: Nuclides with certain proton and/or neutron numbers are found to be exceptionally stable. These so-called magic numbers are 2, 8, 20, 28, 50, 82, 126 — The doubly magic nuclei: — Nuclei with magic proton or neutron number have an unusually large number of stable or long lived nuclides . — A nucleus with a magic neutron (proton) number requires a lot of energy to separate a neutron (proton) from it. — A nucleus with one more neutron (proton) than a magic number is very easy to separate. — The first exitation level is very high : a lot of energy is needed to excite such nuclei — The doubly magic nuclei have a spherical form Nucleons are arranged into complete shells within the atomic nucleus 4 ExcitationExcitation energyenergy forfor magicm nuclei 5 NuclearNuclear potentialpotential The energy spectrum is defined by the nuclear potential solution of Schrödinger equation for a realistic potential The nuclear force is very short-ranged => the form of the potential follows the density distribution of the nucleons within the nucleus: for very light nuclei (A < 7), the nucleon distribution has Gaussian form (corresponding to a harmonic oscillator potential ) for heavier nuclei it can be parameterised by a Fermi distribution.
    [Show full text]
  • Gabriele Veneziano
    Strings 2021, June 21 Discussion Session High-Energy Limit of String Theory Gabriele Veneziano Very early days (1967…) • Birth of string theory very much based on the high-energy (Regge) limit: Im A(Regge) ≠ 0! •Duality bootstrap (except for the Pomeron!) => DRM (emphasis shifted on res/res duality, xing) •Need for infinite number of resonances of unlimited mass and spin (linear traj.s => strings?) • Exponential suppression @ high E & fixed θ => colliding objects are extended, soft (=> strings?) •One reason why the NG string lost to QCD. •Q: What’s the Regge limit of (large-N) QCD? 20 years later (1987…) •After 1984, attention in string theory shifted from hadronic physics to Q-gravity. • Thought experiments conceived and efforts made to construct an S-matrix for gravitational scattering @ E >> MP, b < R => “large”-BH formation (RD-3 ~ GE). Questions: • Is quantum information preserved, and how? • What’s the form and role of the short-distance stringy modifications? •N.B. Computations made in flat spacetime: an emergent effective geometry. What about AdS? High-energy vs short-distance Not the same even in QFT ! With gravity it’s even more the case! High-energy, large-distance (b >> R, ls) •Typical grav.al defl. angle is θ ~ R/b = GE/b (D=4) •Scattering at high energy & fixed small θ probes b ~ R/θ > R & growing with energy! •Contradiction w/ exchange of huge Q = θ E? No! • Large classical Q due to exchange of O(Gs/h) soft (q ~ h/b) gravitons: t-channel “fractionation” • Much used in amplitude approach to BH binaries • θ known since ACV90 up to O((R/b)3), universal.
    [Show full text]
  • Strong Coupling and Quantum Molecular Plasmonics
    Strong coupling and molecular plasmonics Javier Aizpurua http://cfm.ehu.es/nanophotonics Center for Materials Physics, CSIC-UPV/EHU and Donostia International Physics Center - DIPC Donostia-San Sebastián, Basque Country AMOLF Nanophotonics School June 17-21, 2019, Science Park, Amsterdam, The Netherlands Organic molecules & light Excited molecule (=exciton on molecule) Photon Photon Adding mirrors to this interaction The photon can come back! Optical cavities to enhance light-matter interaction Optical mirrors Dielectric resonator Veff Q ∼ 1/κ Photonic crystals Plasmonic cavity Veff Q∼1/κ Coupling of plasmons and molecular excitations Plasmon-Exciton Coupling Plasmon-Vibration Coupling Absorption, Scattering, IR Absorption, Fluorescence Veff Raman Scattering Extreme plasmonic cavities Top-down Bottom-up STM ultra high-vacuum Wet Chemistry Low temperature Self-assembled monolayers (Hefei, China) (Cambridge, UK) “More interacting system” One cannot distinguish whether we have a photon or an excited molecule. The eigenstates are “hybrid” states, part molecule and part photon: “polaritons” Strong coupling! Experiments: organic molecules Organic molecules: Microcavity: D. G. Lidzey et al., Nature 395, 53 (1998) • Large dipole moments • High densities collective enhancement • Rabi splitting can be >1 eV (~30% of transition energy) • Room temperature! Surface plasmons: J. Bellessa et al., Single molecule with gap plasmon: Phys. Rev. Lett. 93, 036404 (2004) Chikkaraddy et al., Nature 535, 127 (2016) from lecture by V. Shalaev Plasmonic cavities
    [Show full text]
  • Extreme Gravity and Fundamental Physics
    Extreme Gravity and Fundamental Physics Astro2020 Science White Paper EXTREME GRAVITY AND FUNDAMENTAL PHYSICS Thematic Areas: • Cosmology and Fundamental Physics • Multi-Messenger Astronomy and Astrophysics Principal Author: Name: B.S. Sathyaprakash Institution: The Pennsylvania State University Email: [email protected] Phone: +1-814-865-3062 Lead Co-authors: Alessandra Buonanno (Max Planck Institute for Gravitational Physics, Potsdam and University of Maryland), Luis Lehner (Perimeter Institute), Chris Van Den Broeck (NIKHEF) P. Ajith (International Centre for Theoretical Sciences), Archisman Ghosh (NIKHEF), Katerina Chatziioannou (Flatiron Institute), Paolo Pani (Sapienza University of Rome), Michael Pürrer (Max Planck Institute for Gravitational Physics, Potsdam), Thomas Sotiriou (The University of Notting- ham), Salvatore Vitale (MIT), Nicolas Yunes (Montana State University), K.G. Arun (Chennai Mathematical Institute), Enrico Barausse (Institut d’Astrophysique de Paris), Masha Baryakhtar (Perimeter Institute), Richard Brito (Max Planck Institute for Gravitational Physics, Potsdam), Andrea Maselli (Sapienza University of Rome), Tim Dietrich (NIKHEF), William East (Perimeter Institute), Ian Harry (Max Planck Institute for Gravitational Physics, Potsdam and University of Portsmouth), Tanja Hinderer (University of Amsterdam), Geraint Pratten (University of Balearic Islands and University of Birmingham), Lijing Shao (Kavli Institute for Astronomy and Astro- physics, Peking University), Maaretn van de Meent (Max Planck Institute for Gravitational
    [Show full text]
  • Interaction of Neutrons with Matter
    Interaction of Neutrons With Matter § Neutrons interactions depends on energies: from > 100 MeV to < 1 eV § Neutrons are uncharged particles: Þ No interaction with atomic electrons of material Þ interaction with the nuclei of these atoms § The nuclear force, leading to these interactions, is very short ranged Þ neutrons have to pass close to a nucleus to be able to interact ≈ 10-13 cm (nucleus radius) § Because of small size of the nucleus in relation to the atom, neutrons have low probability of interaction Þ long travelling distances in matter See Krane, Segre’, … While bound neutrons in stable nuclei are stable, FREE neutrons are unstable; they undergo beta decay with a lifetime of just under 15 minutes n ® p + e- +n tn = 885.7 ± 0.8 s ≈ 14.76 min Long life times Þ before decaying possibility to interact Þ n physics … x Free neutrons are produced in nuclear fission and fusion x Dedicated neutron sources like research reactors and spallation sources produce free neutrons for the use in irradiation neutron scattering exp. 33 N.B. Vita media del protone: tp > 1.6*10 anni età dell’universo: (13.72 ± 0,12) × 109 anni. beta decay can only occur with bound protons The neutron lifetime puzzle From 2016 Istitut Laue-Langevin (ILL, Grenoble) Annual Report A. Serebrov et al., Phys. Lett. B 605 (2005) 72 A.T. Yue et al., Phys. Rev. Lett. 111 (2013) 222501 Z. Berezhiani and L. Bento, Phys. Rev. Lett. 96 (2006) 081801 G.L. Greene and P. Geltenbort, Sci. Am. 314 (2016) 36 A discrepancy of more than 8 seconds !!!! https://www.scientificamerican.com/article/neutro
    [Show full text]
  • 14. Structure of Nuclei Particle and Nuclear Physics
    14. Structure of Nuclei Particle and Nuclear Physics Dr. Tina Potter Dr. Tina Potter 14. Structure of Nuclei 1 In this section... Magic Numbers The Nuclear Shell Model Excited States Dr. Tina Potter 14. Structure of Nuclei 2 Magic Numbers Magic Numbers = 2; 8; 20; 28; 50; 82; 126... Nuclei with a magic number of Z and/or N are particularly stable, e.g. Binding energy per nucleon is large for magic numbers Doubly magic nuclei are especially stable. Dr. Tina Potter 14. Structure of Nuclei 3 Magic Numbers Other notable behaviour includes Greater abundance of isotopes and isotones for magic numbers e.g. Z = 20 has6 stable isotopes (average=2) Z = 50 has 10 stable isotopes (average=4) Odd A nuclei have small quadrupole moments when magic First excited states for magic nuclei higher than neighbours Large energy release in α, β decay when the daughter nucleus is magic Spontaneous neutron emitters have N = magic + 1 Nuclear radius shows only small change with Z, N at magic numbers. etc... etc... Dr. Tina Potter 14. Structure of Nuclei 4 Magic Numbers Analogy with atomic behaviour as electron shells fill. Atomic case - reminder Electrons move independently in central potential V (r) ∼ 1=r (Coulomb field of nucleus). Shells filled progressively according to Pauli exclusion principle. Chemical properties of an atom defined by valence (unpaired) electrons. Energy levels can be obtained (to first order) by solving Schr¨odinger equation for central potential. 1 E = n = principle quantum number n n2 Shell closure gives noble gas atoms. Are magic nuclei analogous to the noble gas atoms? Dr.
    [Show full text]
  • The Electron-Phonon Coupling Constant 
    The electron-phonon coupling constant Philip B. Allen Department of Physics and Astronomy, State University of New York, Stony Brook, NY 11794-3800 March 17, 2000 Tables of values of the electron-phonon coupling constants and are given for selected tr elements and comp ounds. A brief summary of the theory is also given. I. THEORETICAL INTRODUCTION Grimvall [1] has written a review of electron-phonon e ects in metals. Prominent among these e ects is sup ercon- ductivity. The BCS theory gives a relation T exp1=N 0V for the sup erconducting transition temp erature c D T in terms of the Debye temp erature .Values of T are tabulated in various places, the most complete prior to c D c the high T era b eing ref. [2]. The electron-electron interaction V consists of the attractive electron-phonon-induced c interaction minus the repulsive Coulombinteraction. The notation is used = N 0V 1 eph and the Coulomb repulsion N 0V is called , so that N 0V = , where is a \renormalized" Coulomb c repulsion, reduced in value from to =[1 + ln! =! ]. This suppression of the Coulomb repulsion is a result P D of the fact that the electron-phonon attraction is retarded in time by an amountt 1=! whereas the repulsive D screened Coulombinteraction is retarded byamuch smaller time, t 1=! where ! is the electronic plasma P P frequency. Therefore, is b ounded ab oveby1= ln! =! which for conventional metals should b e 0:2. P D Values of are known to range from 0:10 to 2:0.
    [Show full text]
  • 1663-29-Othernuclearreaction.Pdf
    it’s not fission or fusion. It’s not alpha, beta, or gamma dosimeter around his neck to track his exposure to radiation decay, nor any other nuclear reaction normally discussed in in the lab. And when he’s not in the lab, he can keep tabs on his an introductory physics textbook. Yet it is responsible for various experiments simultaneously from his office computer the existence of more than two thirds of the elements on the with not one or two but five widescreen monitors—displaying periodic table and is virtually ubiquitous anywhere nuclear graphs and computer codes without a single pixel of unused reactions are taking place—in nuclear reactors, nuclear bombs, space. Data printouts pinned to the wall on the left side of the stellar cores, and supernova explosions. office and techno-scribble densely covering the whiteboard It’s neutron capture, in which a neutron merges with an on the right side testify to a man on a mission: developing, or atomic nucleus. And at first blush, it may even sound deserving at least contributing to, a detailed understanding of complex of its relative obscurity, since neutrons are electrically neutral. atomic nuclei. For that, he’ll need to collect and tabulate a lot For example, add a neutron to carbon’s most common isotope, of cold, hard data. carbon-12, and you just get carbon-13. It’s slightly heavier than Mosby’s primary experimental apparatus for doing this carbon-12, but in terms of how it looks and behaves, the two is the Detector for Advanced Neutron Capture Experiments are essentially identical.
    [Show full text]
  • Nuclear Physics: the ISOLDE Facility
    Nuclear physics: the ISOLDE facility Lecture 1: Nuclear physics Magdalena Kowalska CERN, EP-Dept. [email protected] on behalf of the CERN ISOLDE team www.cern.ch/isolde Outline Aimed at both physics and non-physics students This lecture: Introduction to nuclear physics Key dates and terms Forces inside atomic nuclei Nuclear landscape Nuclear decay General properties of nuclei Nuclear models Open questions in nuclear physics Lecture 2: CERN-ISOLDE facility Elements of a Radioactive Ion Beam Facility Lecture 3: Physics of ISOLDE Examples of experimental setups and results 2 Small quiz 1 What is Hulk’s connection to the topic of these lectures? Replies should be sent to [email protected] Prize: part of ISOLDE facility 3 Nuclear scale Matter Crystal Atom Atomic nucleus Macroscopic Nucleon Quark Angstrom Nuclear physics: femtometer studies the properties of nuclei and the interactions inside and between them 4 and with a matching theoretical effort theoretical a matching with and facilities experimental dedicated many with better and better it know to getting are we but Today Becquerel, discovery of radioactivity Skłodowska-Curie and Curie, isolation of radium : the exact form of the nuclear interaction is still not known, known, not still is interaction of nuclearthe form exact the : Known nuclides Known Chadwick, neutron discovered History 5 Goeppert-Meyer, Jensen, Haxel, Suess, nuclear shell model first studies on short-lived nuclei Discovery of 1-proton decay Discovery of halo nuclei Discovery of 2-proton decay Calculations with
    [Show full text]
  • How the Electron-Phonon Coupling Mechanism Work in Metal Superconductor
    How the electron-phonon coupling mechanism work in metal superconductor Qiankai Yao1,2 1College of Science, Henan University of Technology, Zhengzhou450001, China 2School of physics and Engineering, Zhengzhou University, Zhengzhou450001, China Abstract Superconductivity in some metals at low temperature is known to arise from an electron-phonon coupling mechanism. Such the mechanism enables an effective attraction to bind two mobile electrons together, and even form a kind of pairing system(called Cooper pair) to be physically responsible for superconductivity. But, is it possible by an analogy with the electrodynamics to describe the electron-phonon coupling as a resistivity-dependent attraction? Actually so, it will help us to explore a more operational quantum model for the formation of Cooper pair. In particularly, by the calculation of quantum state of Cooper pair, the explored model can provide a more explicit explanation for the fundamental properties of metal superconductor, and answer: 1) How the transition temperature of metal superconductor is determined? 2) Which metals can realize the superconducting transition at low temperature? PACS numbers: 74.20.Fg; 74.20.-z; 74.25.-q; 74.20.De ne is the mobile electron density, η the damping coefficient 1. Introduction that is determined by the collision time τ . In the BCS theory[1], superconductivity is attributed to a In metal environment, mobile electrons are usually phonon-mediated attraction between mobile electrons near modeled to be a kind of classical particles like gas molecules, Fermi surface(called Fermi electrons). The attraction is each of which performs a Brown-like motion and satisfies the sometimes referred to as a residual Coulomb interaction[2] that Langevin equation can glue Cooper pair together to cause superconductivity.
    [Show full text]