Mars Molniya Orbit Atmospheric Resource Mining

Total Page:16

File Type:pdf, Size:1020Kb

Mars Molniya Orbit Atmospheric Resource Mining NIAC FY16: Mars Molniya Orbit Atmospheric Resource Mining Final Phase I Report: NASA Innovative Advanced Concepts (NIAC) Mars Molniya Orbit Atmospheric Resource Mining FY 16 NIAC Phase I Project Robert P. Mueller, Principal Investigator NASA Swamp Works Laboratory Mail Code: UB-R1 Kennedy Space Center, Florida 32899 E-mail: [email protected] Brandon Sforzo, PhD, Co-Investigator Space Systems Design Laboratory Georgia Institute of Technology 270 Ferst Drive, Atlanta, GA 30331 E-mail: [email protected] Robert D. Braun, PhD, Co-Investigator Space Systems Design Laboratory Georgia Institute of Technology 270 Ferst Drive, Atlanta, GA 30331 E-mail: [email protected] Laurent Sibille, PhD, PMP, Co-Investigator Swamp Works Laboratory Kennedy Space Center, FL 32899 E-mail: [email protected] FEBRUARY 2017 Public Release Is Authorized 1 NIAC FY16: Mars Molniya Orbit Atmospheric Resource Mining EXECUTIVE SUMMARY This NASA Innovative Advanced Concepts (NIAC) Phase I study examined the revolutionary concept of performing resource collection and utilization during Mars orbital operations in order to enable the landing of large payloads. An exploration architecture was developed, out of which several mission alternatives were developed. Concepts of operations were then developed for each mission alternative, followed by concepts for spacecraft systems, which were traded to assess their feasibility. NIAC Mars Atmospheric Gas Resources Collector Vehicle (RCV) stack during an aerobraking CO2 collection pass in the upper atmosphere. The vehicle produces O2 to fuel a Mars Descent and Ascent Vehicle (MDAV), for descent to the surface and subsequent launch to high Mars orbit. A novel architecture using Mars Molniya Orbit Atmospheric Resource Mining is feasible to enable an Earth-independent and pioneering, permanent human presence on Mars by providing a reusable, single-stage-to-orbit transportation system. This will allow cargo and crew to be routinely delivered to and from Mars without transporting propellants from Earth. In Phase I, our study explored how electrical energy could be harnessed from the kinetic energy of the incoming spacecraft and then be used to produce the oxygen necessary for landing. This concept of operations is revolutionary in that its focus is on using in situ resources in complementary and varied forms: the upper atmosphere of Mars is used for aerocapture, which is followed by aerobraking, the kinetic energy of the spacecraft is transformed into usable electrical energy during aerobraking, and the atmospheric composition is the source of oxidizer for a landing under supersonic retropropulsion. 2 NIAC FY16: Mars Molniya Orbit Atmospheric Resource Mining This NASA Innovative Advanced Concepts (NIAC) Phase I study explores a novel mission architecture to establish routine, Earth-independent transfer of large mass payloads between Earth and the Mars surface and back to Mars orbit. The first stage of routine mission operations involves an atmospheric resource mining aerobraking campaign following aerocapture into a highly elliptical Mars orbit. During each pass through the atmosphere, the vehicle ingests the atmospheric oxidizer and stores it onboard, using solid oxide electrolysis to convert the primarily CO2 atmosphere into usable O2 for propellant. Power is made available through the use of magnetohydrodynamic energy generation, which converts the motion of the plasma in the shock later into usable electrical energy. Upon termination of the aerobraking sequence, the descent vehicle detaches from the orbit stack, deorbits, and executes the entry, descent, and landing sequence. Hypersonic deceleration is achieved via a deployable heat shield to lower the vehicle ballistic coefficient, and supersonic and subsonic deceleration are achieved via retropropulsion. Mars surface operations involve resource mining of the Martian regolith to produce CH4 and O2 propellant to be used for the subsequent MDAV ascent back to high Mars orbit (HMO) providing an apoapsis raise maneuver to initialize the aerobraking sequence, in addition to providing fuel from the Mars surface for EDL propulsive descent. The Resource Collector Vehicle (RCV), which is used for the orbital mining operations, is raised back to HMO via onboard deployable augmented solar electric propulsion. Concepts of operations were developed for each mission alternative, to evaluate between them and assess feasibility. In Phase I, we showed that for a human-class mission, with 81 orbital scooping passes at 79 km altitude, with each atmospheric scoop varying in duration from 5.3 minutes to 7.1 minutes, at speeds ranging from 3.57 km/s to 4.5 km/s, approximately 431 kg of CO2 can be ingested per scooping pass at periapsis and compressed by a Resource Collector Vehicle (RCV) with a hypersonic ram-compression system. The total amount of CO2 captured and stored is approximately 34,939 kg. Because of the SOE chemical conversion process and other efficiency losses, this O2 product amounts to an estimated 20% of the captured CO2 mass—resulting in 6,986 kg of O2 for EDL propulsion to provide thrust for deorbit, reorientation for entry, supersonic retropropulsion (SRP), and propulsive precision landing. A concept was developed, and the scooping analysis indicates that it would be feasible, but more detailed analysis is required in Phase II to optimize this concept and work out details of the aerodynamics and compression thermodynamics This NASA Swamp Works/Georgia Tech team has established a first-order feasibility confirmation of the revolutionary concept of performing resource collection and utilization during orbital operations and enabling the landing of large payloads. 3 NIAC FY16: Mars Molniya Orbit Atmospheric Resource Mining CONTENTS 1. INTRODUCTION AND BACKGROUND ....................................................... 11 2. DESCRIPTION AND BENEFITS OF THE CONCEPT .................................. 14 2.1 Description of Orbital Resource Mining and Resource Utilization ................. 14 2.2 Architectural Advantages of Orbital Resource Mining and Resource Utilization ..................................................................................................... 14 3. STUDY APPROACH .................................................................................... 17 3.1 Phase I Study Work Plan ............................................................................. 17 3.2 Study Objectives .......................................................................................... 18 3.2.1 Objective 1: Examine Architecture Concepts ................................................ 18 3.2.2 Objective 2: Establish Feasibility of Mars Molniya Atmospheric Resource Mining .......................................................................................... 18 3.2.3 Objective 3: Develop Systems Models and Apply Iterative Design ............... 19 3.2.4 Objective 4: Develop a Technology Roadmap .............................................. 20 4. MISSION ARCHITECTURE AND CONCEPTS OF OPERATION................. 20 4.1 Ground Rules and Assumptions ................................................................... 20 4.1.1 Mission Design/ConOps ............................................................................... 21 4.1.2 ConOps ........................................................................................................ 23 4.1.2.1 Mission Architecture Elements ..................................................................... 23 4.1.2.2 Sample Return Mission ................................................................................ 25 4.1.2.3 Human-Crewed Mission to Mars .................................................................. 27 5. ANALYSIS METHODS AND MODELING..................................................... 30 5.1 Astrodynamics Model ................................................................................... 30 5.2 Mars Atmospheric Resource Mining Model .................................................. 35 5.2.1 Aerobraking and Atmospheric Resource Mining Simulation Algorithm ......... 35 5.2.2 Mars Sample Return Mission RCV Modeling Parameters ............................ 37 5.2.3 Human Mars Mission RCV Modeling Parameters ......................................... 37 5.2.4 Assumptions ................................................................................................ 38 5.2.5 Algorithm Characteristics ............................................................................. 38 5.2.6 Discussion .................................................................................................... 38 5.2.7 Mars Atmospheric Orbital ISRU Model ......................................................... 41 5.2.7.1 Solid-Oxide Electrolysis (SOE) ..................................................................... 42 5.2.7.1.1 MSR Reference Case – On-Orbit O2 Production .......................................... 44 5.2.7.1.2 Human Mission Reference Case – On-Orbit O2 Production .......................... 46 5.3 Magneto-Hydrodynamic (MHD) Model ......................................................... 46 5.3.1 General MHD Energy Generation, Faraday Type Flow Through .................. 47 5.3.2 Determining the Power Available for MHD Energy Generation During Aerobraking .................................................................................................. 47 5.4 Electrical Energy Storage Systems .............................................................
Recommended publications
  • Onboard Determination of Vehicle Glide Capability for Shuttle Abort Flight Managment (Safm)
    Source of Acquisition NASA Johnson Space Center ONBOARD DETERMINATION OF VEHICLE GLIDE CAPABILITY FOR SHUTTLE ABORT FLIGHT MANAGMENT (SAFM) Mark Jackson, Timothy Straube, Thomas Fill, Scott Nemeth, When one or more main engines fail during ascent, the flight crew of the Space Shuttle must make several critical decisions and accurately perform a series of abort procedures. One of the most important decisions for many aborts is the selection ofa landing site. Several factors influence the ability to reach a landing site, including the spacecraft point of atmospheric entry, the energy state at atmospheric entry, the vehicle glide capability from that energy state, and whether one or more suitable landing sites are within the glide capability. Energy assessment is further complicated by the fact that phugoid oscillations in total energy influence glide capability. Once the glide capability is known, the crew must select the "best" site option based upon glide capability and landing site conditions and facilities. Since most of these factors cannot currently be assessed by the crew in flight, extensive planning is required prior to each mission to script a variety of procedures based upon spacecraft velocity at the point of engine failure (or failures). The results of this pre­ flight planning are expressed in tables and diagrams on mission-specific cockpit checklists. Crew checklist procedures involve leafing through several pages of instructions and navigating a decision tree for site selection and flight procedures - all during a time critical abort situation. With the advent of the Cockpit Avionics Upgrade (CAU), the Shuttle will have increased on-board computational power to help alleviate crew workload during aborts and provide valuable situational awareness during nominal operations.
    [Show full text]
  • Notes on Earth Atmospheric Entry for Mars Sample Return Missions
    NASA/TP–2006-213486 Notes on Earth Atmospheric Entry for Mars Sample Return Missions Thomas Rivell Ames Research Center, Moffett Field, California September 2006 The NASA STI Program Office . in Profile Since its founding, NASA has been dedicated to the • CONFERENCE PUBLICATION. Collected advancement of aeronautics and space science. The papers from scientific and technical confer- NASA Scientific and Technical Information (STI) ences, symposia, seminars, or other meetings Program Office plays a key part in helping NASA sponsored or cosponsored by NASA. maintain this important role. • SPECIAL PUBLICATION. Scientific, technical, The NASA STI Program Office is operated by or historical information from NASA programs, Langley Research Center, the Lead Center for projects, and missions, often concerned with NASA’s scientific and technical information. The subjects having substantial public interest. NASA STI Program Office provides access to the NASA STI Database, the largest collection of • TECHNICAL TRANSLATION. English- aeronautical and space science STI in the world. language translations of foreign scientific and The Program Office is also NASA’s institutional technical material pertinent to NASA’s mission. mechanism for disseminating the results of its research and development activities. These results Specialized services that complement the STI are published by NASA in the NASA STI Report Program Office’s diverse offerings include creating Series, which includes the following report types: custom thesauri, building customized databases, organizing and publishing research results . even • TECHNICAL PUBLICATION. Reports of providing videos. completed research or a major significant phase of research that present the results of NASA For more information about the NASA STI programs and include extensive data or theoreti- Program Office, see the following: cal analysis.
    [Show full text]
  • FCC-20-54A1.Pdf
    Federal Communications Commission FCC 20-54 Before the Federal Communications Commission Washington, D.C. 20554 In the Matter of ) ) Mitigation of Orbital Debris in the New Space Age ) IB Docket No. 18-313 ) REPORT AND ORDER AND FURTHER NOTICE OF PROPOSED RULEMAKING Adopted: April 23, 2020 Released: April 24, 2020 By the Commission: Chairman Pai and Commissioners O’Rielly, Carr, and Starks issuing separate statements; Commissioner Rosenworcel concurring and issuing a statement. Comment Date: (45 days after date of publication in the Federal Register). Reply Comment Date: (75 days after date of publication in the Federal Register). TABLE OF CONTENTS Heading Paragraph # I. INTRODUCTION .................................................................................................................................. 1 II. BACKGROUND .................................................................................................................................... 3 III. DISCUSSION ...................................................................................................................................... 14 A. Regulatory Approach to Mitigation of Orbital Debris ................................................................... 15 1. FCC Statutory Authority Regarding Orbital Debris ................................................................ 15 2. Relationship with Other U.S. Government Activities ............................................................. 20 3. Economic Considerations .......................................................................................................
    [Show full text]
  • Electric Propulsion System Scaling for Asteroid Capture-And-Return Missions
    Electric propulsion system scaling for asteroid capture-and-return missions Justin M. Little⇤ and Edgar Y. Choueiri† Electric Propulsion and Plasma Dynamics Laboratory, Princeton University, Princeton, NJ, 08544 The requirements for an electric propulsion system needed to maximize the return mass of asteroid capture-and-return (ACR) missions are investigated in detail. An analytical model is presented for the mission time and mass balance of an ACR mission based on the propellant requirements of each mission phase. Edelbaum’s approximation is used for the Earth-escape phase. The asteroid rendezvous and return phases of the mission are modeled as a low-thrust optimal control problem with a lunar assist. The numerical solution to this problem is used to derive scaling laws for the propellant requirements based on the maneuver time, asteroid orbit, and propulsion system parameters. Constraining the rendezvous and return phases by the synodic period of the target asteroid, a semi- empirical equation is obtained for the optimum specific impulse and power supply. It was found analytically that the optimum power supply is one such that the mass of the propulsion system and power supply are approximately equal to the total mass of propellant used during the entire mission. Finally, it is shown that ACR missions, in general, are optimized using propulsion systems capable of processing 100 kW – 1 MW of power with specific impulses in the range 5,000 – 10,000 s, and have the potential to return asteroids on the order of 103 104 tons. − Nomenclature
    [Show full text]
  • Optimisation of Propellant Consumption for Power Limited Rockets
    Delft University of Technology Faculty Electrical Engineering, Mathematics and Computer Science Delft Institute of Applied Mathematics Optimisation of Propellant Consumption for Power Limited Rockets. What Role do Power Limited Rockets have in Future Spaceflight Missions? (Dutch title: Optimaliseren van brandstofverbruik voor vermogen gelimiteerde raketten. De rol van deze raketten in toekomstige ruimtevlucht missies. ) A thesis submitted to the Delft Institute of Applied Mathematics as part to obtain the degree of BACHELOR OF SCIENCE in APPLIED MATHEMATICS by NATHALIE OUDHOF Delft, the Netherlands December 2017 Copyright c 2017 by Nathalie Oudhof. All rights reserved. BSc thesis APPLIED MATHEMATICS \ Optimisation of Propellant Consumption for Power Limited Rockets What Role do Power Limite Rockets have in Future Spaceflight Missions?" (Dutch title: \Optimaliseren van brandstofverbruik voor vermogen gelimiteerde raketten De rol van deze raketten in toekomstige ruimtevlucht missies.)" NATHALIE OUDHOF Delft University of Technology Supervisor Dr. P.M. Visser Other members of the committee Dr.ir. W.G.M. Groenevelt Drs. E.M. van Elderen 21 December, 2017 Delft Abstract In this thesis we look at the most cost-effective trajectory for power limited rockets, i.e. the trajectory which costs the least amount of propellant. First some background information as well as the differences between thrust limited and power limited rockets will be discussed. Then the optimal trajectory for thrust limited rockets, the Hohmann Transfer Orbit, will be explained. Using Optimal Control Theory, the optimal trajectory for power limited rockets can be found. Three trajectories will be discussed: Low Earth Orbit to Geostationary Earth Orbit, Earth to Mars and Earth to Saturn. After this we compare the propellant use of the thrust limited rockets for these trajectories with the power limited rockets.
    [Show full text]
  • Asteroid Retrieval Mission
    Where you can put your asteroid Nathan Strange, Damon Landau, and ARRM team NASA/JPL-CalTech © 2014 California Institute of Technology. Government sponsorship acknowledged. Distant Retrograde Orbits Works for Earth, Moon, Mars, Phobos, Deimos etc… very stable orbits Other Lunar Storage Orbit Options • Lagrange Points – Earth-Moon L1/L2 • Unstable; this instability enables many interesting low-energy transfers but vehicles require active station keeping to stay in vicinity of L1/L2 – Earth-Moon L4/L5 • Some orbits in this region is may be stable, but are difficult for MPCV to reach • Lunar Weakly Captured Orbits – These are the transition from high lunar orbits to Lagrange point orbits – They are a new and less well understood class of orbits that could be long term stable and could be easier for the MPCV to reach than DROs – More study is needed to determine if these are good options • Intermittent Capture – Weakly captured Earth orbit, escapes and is then recaptured a year later • Earth Orbit with Lunar Gravity Assists – Many options with Earth-Moon gravity assist tours Backflip Orbits • A backflip orbit is two flybys half a rev apart • Could be done with the Moon, Earth or Mars. Backflip orbit • Lunar backflips are nice plane because they could be used to “catch and release” asteroids • Earth backflips are nice orbits in which to construct things out of asteroids before sending them on to places like Earth- Earth or Moon orbit plane Mars cyclers 4 Example Mars Cyclers Two-Synodic-Period Cycler Three-Synodic-Period Cycler Possibly Ballistic Chen, et al., “Powered Earth-Mars Cycler with Three Synodic-Period Repeat Time,” Journal of Spacecraft and Rockets, Sept.-Oct.
    [Show full text]
  • Download Paper
    Ever Wonder What’s in Molniya? We Do. John T. McGraw J. T. McGraw and Associates, LLC and University of New Mexico Peter C. Zimmer J. T. McGraw and Associates, LLC Mark R. Ackermann J. T. McGraw and Associates, LLC ABSTRACT Molniya orbits are high inclination, high eccentricity orbits which provide the utility of long apogee dwell time over northern continents, with the additional benefit of obviating the largest orbital perturbation introduced by the Earth’s nonspherical (oblate) gravitational potential. We review the few earlier surveys of the Molniya domain and evaluate results from a new, large area unbiased survey of the northern Molniya domain. We detect 120 Molniya objects in a three hour survey of ~ 1300 square degrees of the sky to a limiting magnitude of about 16.5. Future Molniya surveys will discover a significant number of objects, including debris, and monitoring these objects might provide useful data with respect to orbital perturbations including solar radiation and Earth atmosphere drag effects. 1. SPECIALIZED ORBITS Earth Orbital Space (EOS) supports many versions of specialized satellite orbits defined by a combination of satellite mission and orbital dynamics. Surely the most well-known family of specialized orbits is the geostationary orbits proposed by science fiction author Arthur C. Clarke in 1945 [1] that lie sensibly in the plane of Earth’s equator, with orbital period that matches the Earth’s rotation period. Satellites in these orbits, and the closely related geosynchronous orbits, appear from Earth to remain constantly overhead, allowing continuous communication with the majority of the hemisphere below. Constellations of three geostationary satellites equally spaced in orbit (~ 120° separation) can maintain near-global communication and terrestrial surveillance.
    [Show full text]
  • Mars, the Nearest Habitable World – a Comprehensive Program for Future Mars Exploration
    Mars, the Nearest Habitable World – A Comprehensive Program for Future Mars Exploration Report by the NASA Mars Architecture Strategy Working Group (MASWG) November 2020 Front Cover: Artist Concepts Top (Artist concepts, left to right): Early Mars1; Molecules in Space2; Astronaut and Rover on Mars1; Exo-Planet System1. Bottom: Pillinger Point, Endeavour Crater, as imaged by the Opportunity rover1. Credits: 1NASA; 2Discovery Magazine Citation: Mars Architecture Strategy Working Group (MASWG), Jakosky, B. M., et al. (2020). Mars, the Nearest Habitable World—A Comprehensive Program for Future Mars Exploration. MASWG Members • Bruce Jakosky, University of Colorado (chair) • Richard Zurek, Mars Program Office, JPL (co-chair) • Shane Byrne, University of Arizona • Wendy Calvin, University of Nevada, Reno • Shannon Curry, University of California, Berkeley • Bethany Ehlmann, California Institute of Technology • Jennifer Eigenbrode, NASA/Goddard Space Flight Center • Tori Hoehler, NASA/Ames Research Center • Briony Horgan, Purdue University • Scott Hubbard, Stanford University • Tom McCollom, University of Colorado • John Mustard, Brown University • Nathaniel Putzig, Planetary Science Institute • Michelle Rucker, NASA/JSC • Michael Wolff, Space Science Institute • Robin Wordsworth, Harvard University Ex Officio • Michael Meyer, NASA Headquarters ii Mars, the Nearest Habitable World October 2020 MASWG Table of Contents Mars, the Nearest Habitable World – A Comprehensive Program for Future Mars Exploration Table of Contents EXECUTIVE SUMMARY ..........................................................................................................................
    [Show full text]
  • Why NASA Consistently Fails at Congress
    W&M ScholarWorks Undergraduate Honors Theses Theses, Dissertations, & Master Projects 6-2013 The Wrong Right Stuff: Why NASA Consistently Fails at Congress Andrew Follett College of William and Mary Follow this and additional works at: https://scholarworks.wm.edu/honorstheses Part of the Political Science Commons Recommended Citation Follett, Andrew, "The Wrong Right Stuff: Why NASA Consistently Fails at Congress" (2013). Undergraduate Honors Theses. Paper 584. https://scholarworks.wm.edu/honorstheses/584 This Honors Thesis is brought to you for free and open access by the Theses, Dissertations, & Master Projects at W&M ScholarWorks. It has been accepted for inclusion in Undergraduate Honors Theses by an authorized administrator of W&M ScholarWorks. For more information, please contact [email protected]. The Wrong Right Stuff: Why NASA Consistently Fails at Congress A thesis submitted in partial fulfillment of the requirement for the degree of Bachelors of Arts in Government from The College of William and Mary by Andrew Follett Accepted for . John Gilmour, Director . Sophia Hart . Rowan Lockwood Williamsburg, VA May 3, 2013 1 Table of Contents: Acknowledgements 3 Part 1: Introduction and Background 4 Pre Soviet Collapse: Early American Failures in Space 13 Pre Soviet Collapse: The Successful Mercury, Gemini, and Apollo Programs 17 Pre Soviet Collapse: The Quasi-Successful Shuttle Program 22 Part 2: The Thin Years, Repeated Failure in NASA in the Post-Soviet Era 27 The Failure of the Space Exploration Initiative 28 The Failed Vision for Space Exploration 30 The Success of Unmanned Space Flight 32 Part 3: Why NASA Fails 37 Part 4: Putting this to the Test 87 Part 5: Changing the Method.
    [Show full text]
  • Positioning: Drift Orbit and Station Acquisition
    Orbits Supplement GEOSTATIONARY ORBIT PERTURBATIONS INFLUENCE OF ASPHERICITY OF THE EARTH: The gravitational potential of the Earth is no longer µ/r, but varies with longitude. A tangential acceleration is created, depending on the longitudinal location of the satellite, with four points of stable equilibrium: two stable equilibrium points (L 75° E, 105° W) two unstable equilibrium points ( 15° W, 162° E) This tangential acceleration causes a drift of the satellite longitude. Longitudinal drift d'/dt in terms of the longitude about a point of stable equilibrium expresses as: (d/dt)2 - k cos 2 = constant Orbits Supplement GEO PERTURBATIONS (CONT'D) INFLUENCE OF EARTH ASPHERICITY VARIATION IN THE LONGITUDINAL ACCELERATION OF A GEOSTATIONARY SATELLITE: Orbits Supplement GEO PERTURBATIONS (CONT'D) INFLUENCE OF SUN & MOON ATTRACTION Gravitational attraction by the sun and moon causes the satellite orbital inclination to change with time. The evolution of the inclination vector is mainly a combination of variations: period 13.66 days with 0.0035° amplitude period 182.65 days with 0.023° amplitude long term drift The long term drift is given by: -4 dix/dt = H = (-3.6 sin M) 10 ° /day -4 diy/dt = K = (23.4 +.2.7 cos M) 10 °/day where M is the moon ascending node longitude: M = 12.111 -0.052954 T (T: days from 1/1/1950) 2 2 2 2 cos d = H / (H + K ); i/t = (H + K ) Depending on time within the 18 year period of M d varies from 81.1° to 98.9° i/t varies from 0.75°/year to 0.95°/year Orbits Supplement GEO PERTURBATIONS (CONT'D) INFLUENCE OF SUN RADIATION PRESSURE Due to sun radiation pressure, eccentricity arises: EFFECT OF NON-ZERO ECCENTRICITY L = difference between longitude of geostationary satellite and geosynchronous satellite (24 hour period orbit with e0) With non-zero eccentricity the satellite track undergoes a periodic motion about the subsatellite point at perigee.
    [Show full text]
  • 2. Going to Mars
    aMARTE A MARS ROADMAP FOR TRAVEL AND EXPLORATION Final Report International Space University Space Studies Program 2016 © International Space University. All Rights Reserved. The 2016 Space Studies Program of the International Space University (ISU) was hosted by the Technion – Israel Institute of Technology in Haifa, Israel. aMARTE has been selected as the name representing the Mars Team Project. This choice was motivated by the dual meaning the term conveys. aMARTE first stands for A Mars Roadmap for Travel and Exploration, the official label the team has adopted for the project. Alternatively, aMARTE can be interpreted from its Spanish roots "amarte," meaning "to love," or can also be viewed as "a Marte," meaning "going to Mars." This play on words represents the mission and spirit of the team, which is to put together a roadmap including various disciplines for a human mission to Mars and demonstrate a profound commitment to Mars exploration. The aMARTE title logo was developed based on sections of the astrological symbols for Earth and Mars. The blue symbol under the team's name represents Earth, and the orange arrow symbol is reminiscent of the characteristic color of Mars. The arrow also serves as an invitation to go beyond the Earth and explore our neighboring planet. Electronic copies of the Final Report and the Executive Summary can be downloaded from the ISU Library website at http://isulibrary.isunet.edu/ International Space University Strasbourg Central Campus Parc d’Innovation 1 rue Jean-Dominique Cassini 67400 Illkirch-Graffenstaden France Tel +33 (0)3 88 65 54 30 Fax +33 (0)3 88 65 54 47 e-mail: [email protected] website: www.isunet.edu I.
    [Show full text]
  • Low-Excess Speed Triple Cyclers of Venus, Earth, and Mars
    AAS 17-577 LOW EXCESS SPEED TRIPLE CYCLERS OF VENUS, EARTH, AND MARS Drew Ryan Jones,∗ Sonia Hernandez,∗ and Mark Jesick∗ Ballistic cycler trajectories which repeatedly encounter Earth and Mars may be in- valuable to a future transportation architecture ferrying humans to and from Mars. Such trajectories which also involve at least one flyby of Venus are computed here for the first time. The so-called triple cyclers are constructed to exhibit low excess speed on Earth-Mars and Mars-Earth transit legs, and thereby reduce the cost of hyperbolic rendezvous. Thousands of previously undocumented two synodic pe- riod Earth-Mars-Venus triple cyclers are discovered. Many solutions are identified with average transit leg excess speed below 5 km/sec, independent of encounter epoch. The energy characteristics are lower than previously documented cyclers not involving Venus, but the repeat periods are generally longer. NOMENCLATURE ∆tH Earth-Mars Hohmann transfer flight time, days δ Hyperbolic flyby turning angle, degrees R;^ S;^ T^ B-plane unit vectors B B-plane vector, km µ Gravitational parameter, km3/sec2 θB B-plane angle between B and T^, degrees rp Periapsis radius, km T Cycler repeat period, days t0 Cycle starting epoch ∗ t0 Earth-Mars Hohmann transfer epoch tf Cycle ending epoch Tsyn Venus-Earth-Mars synodic period, days v1 Hyperbolic excess speed, km/sec INTRODUCTION Trajectories are computed which ballistically and periodically cycle between flybys of Venus, Earth, and Mars. Using only gravity assists, a cycling vehicle returns to the starting body after a flight time commensurate with the celestial bodies’ orbital periods, thereby permitting indefinite repetition.
    [Show full text]