Relationship of in Vitro Acrosome Reaction to Sperm Function: an Update
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Bull Sperm Capacitation Is Accompanied by Redox Modifications of Proteins
International Journal of Molecular Sciences Article Bull Sperm Capacitation Is Accompanied by Redox Modifications of Proteins Agnieszka Mostek *, Anna Janta , Anna Majewska and Andrzej Ciereszko Department of Gamete and Embryo Biology, Institute of Animal Reproduction and Food Research of Polish Academy of Sciences, 10-748 Olsztyn, Poland; [email protected] (A.J.); [email protected] (A.M.); [email protected] (A.C.) * Correspondence: [email protected]; Tel.: +48-89-5393134 Abstract: The ability to fertilise an egg is acquired by the mammalian sperm during the complex biochemical process called capacitation. Capacitation is accompanied by the production of reactive oxygen species (ROS), but the mechanism of redox regulation during capacitation has not been elucidated. This study aimed to verify whether capacitation coincides with reversible oxidative post-translational modifications of proteins (oxPTMs). Flow cytometry, fluorescence microscopy and Western blot analyses were used to verify the sperm capacitation process. A fluorescent gel-based redox proteomic approach allowed us to observe changes in the level of reversible oxPTMs manifested by the reduction or oxidation of susceptible cysteines in sperm proteins. Sperm capacitation was accompanied with redox modifications of 48 protein spots corresponding to 22 proteins involved in the production of ROS (SOD, DLD), playing a role in downstream redox signal transfer (GAPDHS and GST) related to the cAMP/PKA pathway (ROPN1L, SPA17), acrosome exocytosis (ACRB, sperm acrosome associated protein 9, IZUMO4), actin polymerisation (CAPZB) and hyperactivation Citation: Mostek, A.; Janta, A.; (TUBB4B, TUB1A). The results demonstrated that sperm capacitation is accompanied by altered Majewska, A.; Ciereszko, A. -
TRPV4 Is the Temperature-Sensitive Ion Channel of Human Sperm Nadine Mundt1,2, Marc Spehr2, Polina V Lishko1*
RESEARCH ARTICLE TRPV4 is the temperature-sensitive ion channel of human sperm Nadine Mundt1,2, Marc Spehr2, Polina V Lishko1* 1Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, United States; 2Department of Chemosensation, Institute for Biology II, RWTH Aachen University, Aachen, Germany Abstract Ion channels control the ability of human sperm to fertilize the egg by triggering hyperactivated motility, which is regulated by membrane potential, intracellular pH, and cytosolic calcium. Previous studies unraveled three essential ion channels that regulate these parameters: (1) the Ca2+ channel CatSper, (2) the K+ channel KSper, and (3) the H+ channel Hv1. However, the molecular identity of the sperm Na+ conductance that mediates initial membrane depolarization and, thus, triggers downstream signaling events is yet to be defined. Here, we functionally characterize DSper, the Depolarizing Channel of Sperm, as the temperature-activated channel TRPV4. It is functionally expressed at both mRNA and protein levels, while other temperature- sensitive TRPV channels are not functional in human sperm. DSper currents are activated by warm temperatures and mediate cation conductance, that shares a pharmacological profile reminiscent of TRPV4. Together, these results suggest that TRPV4 activation triggers initial membrane depolarization, facilitating both CatSper and Hv1 gating and, consequently, sperm hyperactivation. DOI: https://doi.org/10.7554/eLife.35853.001 Introduction The ability of human spermatozoa to navigate the female reproductive tract and eventually locate and fertilize the egg is essential for reproduction (Okabe, 2013). To accomplish these goals, a sper- *For correspondence: [email protected] matozoon must sense the environment and adapt its motility, which is controlled in part by ATP pro- duction and flagellar ion homeostasis (Lishko et al., 2012). -
Mechanisms of the Sperm Guidance, an Essential Aid for Meeting the Oocyte
430 Editorial Mechanisms of the sperm guidance, an essential aid for meeting the oocyte Raquel Lottero-Leconte*, Carlos Agustín Isidro Alonso*, Luciana Castellano, Silvina Perez Martinez Laboratory of Biology of Reproduction in Mammals, Center for Pharmacological and Botanical Studies (CEFYBO-CONICET), School of Medicine, University of Buenos Aires (UBA), Buenos Aires, Argentina *These authors contributed equally to this work. Correspondence to: Silvina Perez Martinez, Senior Investigator. Center for Pharmacological and Botanical Studies, University of Buenos Aires (UBA), School of Medicine, National Scientific and Technical Research Council-Argentina (CONICET), Paraguay 2155, 15th Floor, C1121ABG, Ciudad de Buenos Aires, Argentina. Email: [email protected]. Provenance: This is an invited Editorial commissioned by Section Editor Weijun Jiang (Nanjing Normal University, Department of Reproductive and Genetics, Institute of Laboratory Medicine, Jinling Hospital, Nanjing University School of Medicine, Nanjing, China). Comment on: De Toni L, Garolla A, Menegazzo M, et al. Heat Sensing Receptor TRPV1 Is a Mediator of Thermotaxis in Human Spermatozoa. PLoS One 2016;11:e0167622. Submitted Mar 07, 2017. Accepted for publication Mar 14, 2017. doi: 10.21037/tcr.2017.03.68 View this article at: http://dx.doi.org/10.21037/tcr.2017.03.68 In mammals, ejaculated spermatozoa must migrate into the to a temperature gradient (towards the warmer temperature) female reproductive tract in order to reach and fertilize the (Figure 1). Spermatozoa can sense both the absolute ambient oocyte (Figure 1). The number of spermatozoa that reach temperature and the temperature gradient. Previous studies the oviductal isthmus (where they attach to oviductal cells showed that, at peri-ovulation stage, there is a temperature and form the sperm reservoir) is small (1,2) and only ~10% difference between the sperm reservoir site (cooler) and the of these spermatozoa in humans become capacitated (3) fertilization site (warmer). -
Sperm Capacitation in Surgicallyinseminated Gilts
Regional influences of the Fallopian tubes on the rate of boar sperm capacitation in surgically inseminated gilts R. H. F. Hunter, W. T. Huang and W. Holtz Institute ofAnimal Physiology and Genetics, University of Göttingen, Albrecht-Thaer-Weg 3, D-37075 Göttingen, Germany Aliquots of ejaculated boar semen containing known numbers of spermatozoa were deposited into the caudal isthmus or rostral ampulla of the Fallopian tubes of gilts at, or immediately after, ovulation to assess regional influences on the rate of capacitation. Eggs were recovered during a second intervention 4, 5, 6 or 7 h after surgical insemination and were examined by phase-contrast microscopy. Results were obtained from ten animals in each of the 4-, 5- and 6-h groups and from eight animals in the 7-h group. With two exceptions, fertilized eggs were not recovered until 6 h after insemination into the isthmus, the proportion (45.6%) being significantly greater than the corresponding figure (1.4%) for ampullary insemination (P < 0.001). Similarly, the proportion of fertilized eggs recovered 7 h after insemination into the isthmus (58.7%) was significantly greater than after ampullary insemination (21.9%; P < 0.01). Numbers of spermatozoa associated with the zona pellucida remained low in all these instances, with mean figures per egg ranging from 0.3 to 3.8. Insemination into the isthmus gave a 1\p=n-\2h advantage in fertilization compared with insemination into the ampulla. Although relative rates of sperm cell progression to the site of fertilization may have contributed to this, there is strong evidence that rates of capacitation differ significantly in the respective portions of the Fallopian tube. -
Progesterone Activates the Principal Ca2+ Channel of Human Sperm
LETTER doi:10.1038/nature09767 Progesterone activates the principal Ca21 channel of human sperm Polina V. Lishko1, Inna L. Botchkina1 & Yuriy Kirichok1 Steroid hormone progesterone released by cumulus cells surround- Under normal physiological conditions, mouse and human CatSper ing the egg is a potent stimulator of human spermatozoa. It attracts channels are Ca21 selective, but pass monovalent ions (Cs1 or Na1) spermatozoa towards the egg and helps them penetrate the egg’s pro- under divalent-free conditions12,13. Because monovalent CatSper tective vestments1.ProgesteroneinducesCa21 influx into spermato- currents are significantly larger, we studied CatSper currents under zoa1–3 and triggers multiple Ca21-dependent physiological responses divalent-free conditions. The monovalent human CatSper current essential for successful fertilization, such as sperm hyperactivation, (ICatSper) was overall smaller (Fig. 1a, blue) than mouse ICatSper acrosome reaction and chemotaxis towards the egg4–8.Asanovarian (Fig. 1c, blue), especially at negative membrane potentials (inward cur- hormone, progesterone acts by regulating gene expression through a rent). The virtual absence of human ICatSper at the negative potentials well-characterized progesterone nuclear receptor9. However, the effect normally found across the sperm plasma membrane was puzzling. of progesterone upon transcriptionally silent spermatozoa remains Interestingly, addition of 500 nM progesterone to the bath solution unexplained and is believed to be mediated by a specialized, non- dramatically increased the amplitude of human monovalent ICatSper 5,10 genomic membrane progesterone receptor . The identity of this (Fig. 1a, red). Mouse monovalent ICatSper did not increase after addition non-genomic progesterone receptor and the mechanism by which it of 500 nM progesterone (Fig. 1c, red) or 10 mM progesterone (Sup- causes Ca21 entry remain fundamental unresolved questions in plementary Fig. -
Bull Sperm Binding to Oviductal Epithelium. (A) PDC-109 Addition to the Sperm Plasma Membrane from Seminal Vesicles
The Role of Progesterone-Induced Hyperactivation in the Detachment of Bull Sperm from the Oviduct Reservoir. Sinéad Cronin B.Sc (Ed.) Supervisor: Dr. Seán Fair B.AgSc, PhD. Submitted in accordance with academic requirements for the degree of Master of Science to the Department of Biological Sciences, School of Natural Sciences, Faculty of Science and Engineering, University of Limerick, Ireland. September 2017 Declaration I, the undersigned, hereby declare that I am the sole author of this work and it has not been submitted to any other University or higher education institution, or for any other academic award in this University. To identify the work of others, all sources have been fully acknowledged and referenced in both text and bibliography, in accordance with University of Limerick requirements. Signature: __________________________ Date: __________________ Sinéad Cronin ii Acknowledgements I would like to express my gratitude to everyone who supported me throughout this thesis. To Dr Seán Fair, I thank you sincerely for the advice and mentorship in my bad days and my good. Your feedback and support have been invaluable in the coordination of this learning experience. Thank you for the opportunity to work with your team. To my remarkable parents, I thank you so much for the encouragement and love ye have given me throughout this masters. For the helping hand and the listening ear, the positivity and the reassurance and mostly for giving me the opportunity to make this thesis possible. I cannot thank you enough. To my amazing boyfriend, you have been my rock throughout this masters. Thank you for being there for me through everything. -
Parallel Evolution of Sperm Hyper-Activation Ca2+ Channels
bioRxiv preprint doi: https://doi.org/10.1101/120758; this version posted April 17, 2017. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY 4.0 International license. Parallel evolution of sperm hyper-activation Ca2+ channels Jacob C. Cooper1* and Nitin Phadnis1 1Department of Biology, University of Utah, Salt Lake City, UT 84112, USA. *Corresponding Author: email: [email protected] Abstract Sperm hyper-activation is a dramatic change in sperm behavior where mature sperm burst into a final sprint in the race to the egg. The mechanism of sperm hyper-activation in many metazoans, including humans, consists of a jolt of Ca2+ into the sperm flagellum via CatSper ion channels. Surprisingly, CatSper genes have been independently lost in several animal lineages. In Drosophila, sperm hyper- activation is performed through the co-option of the polycystic kidney disease 2 (Dpkd2) Ca2+ channel. The parallels between CatSpers in primates and Dpkd2 in Drosophila provide a unique opportunity to examine the molecular evolution of the sperm hyper-activation machinery in two independent, non- homologous calcium channels separated by more than 500 million years of divergence. Here, we use a comprehensive phylogenomic approach to investigate the selective pressures on these sperm hyper- activation channels. First, we find that the entire CatSper complex evolves rapidly under recurrent positive selection in primates. Second, we find that pkd2 has parallel patterns of adaptive evolution in Drosophila. Third, we show that this adaptive evolution of pkd2 is driven by its role in sperm hyper- activation. -
Regulation of the Sperm Calcium Channel Catsper by Endogenous Steroids and Plant Triterpenoids
Regulation of the sperm calcium channel CatSper by endogenous steroids and plant triterpenoids Nadja Mannowetza, Melissa R. Millera, and Polina V. Lishkoa,1 aDepartment of Molecular and Cell Biology, University of California, Berkeley, CA 94720 Edited by David E. Clapham, Howard Hughes Medical Institute, Boston Children’s Hospital, Boston, MA, and approved April 20, 2017 (received for review January 10, 2017) The calcium channel of sperm (CatSper) is essential for sperm CatSper in a manner similar to P4 and explore the possibility of hyperactivated motility and fertility. The steroid hormone pro- PregS binding to the same sperm receptor as progesterone. gesterone activates CatSper of human sperm via binding to the As spermatozoa travel through the male and female repro- serine hydrolase ABHD2. However, steroid specificity of ABHD2 ductive tract, they are exposed to a variety of steroid hormones, has not been evaluated. Here, we explored whether steroid such as testosterone and estrogen. The rising levels of hydro- hormones to which human spermatozoa are exposed in the male cortisone (HC) in the body as a result of stress can impact fer- and female genital tract influence CatSper activation via modula- tility (16) by interfering with spermatogenesis and/or sperm tion of ABHD2. The results show that testosterone, estrogen, and functions. Therefore, we have also explored what influence tes- hydrocortisone did not alter basal CatSper currents, whereas the tosterone, estrogen, and HC have on CatSper activation. The neurosteroid pregnenolone sulfate exerted similar effects as pro- structural precursor of all steroid hormones in animals is the gesterone, likely binding to the same site. -
Molecular and Physical Interactions of Human Sperm with Female
MOLECULAR AND PHYSICAL INTERACTIONS OF HUMAN SPERM WITH FEMALE TRACT SECRETIONS by Asma M Hamad A thesis submitted to The University of Birmingham For the degree of DOCTOR OF PHILOSOPHY College of Medical and Dental Sciences School of Clinical and Experimental Medicine Institute of Metabolism and Science Research University of Birmingham May 2017 University of Birmingham Research Archive e-theses repository This unpublished thesis/dissertation is copyright of the author and/or third parties. The intellectual property rights of the author or third parties in respect of this work are as defined by The Copyright Designs and Patents Act 1988 or as modified by any successor legislation. Any use made of information contained in this thesis/dissertation must be in accordance with that legislation and must be properly acknowledged. Further distribution or reproduction in any format is prohibited without the permission of the copyright holder. ABSTRACT To achieve fertilisation, human sperm have to navigate and interact with the female reproductive tract (FRT) on molecular and mechanical levels. The current knowledge of some aspects of both types of interactions are limited and they were examined in this research. Proteomic analysis of crude and depleted human follicular fluid (hFF) by three proteomic approaches identified 479 hFF-proteins of which 22% were novel. A table of hFF-proteins, compiled from twenty-four hFF proteomic studies, resulted in 1586 hFF proteins; a resource for folliculogenesis and discovery of hFF biomarkers. A comparative proteomic study of media-capacitated human sperm versus capacitated sperm in the presence of hFF revealed certain hFF proteins were acquired by sperm during capacitation. -
Intracellular Calcium and Protein Tyrosine Phosphorylation During the Release of Bovine Sperm Adhering to the Fallopian Tube Epithelium in Vitro
REPRODUCTIONRESEARCH Intracellular calcium and protein tyrosine phosphorylation during the release of bovine sperm adhering to the fallopian tube epithelium in vitro Roberto Gualtieri, Raffaele Boni1, Elisabetta Tosti2, Maria Zagami and Riccardo Talevi Dipartimento di Biologia Evolutiva e Comparata, Universita` di Napoli ‘Federico II’, Via Mezzocannone 8, 80134 Napoli, Italy, 1Dipartimento di Scienze delle Produzioni Animali, Campus Macchia Romana, 85100 Potenza, Italy and 2Stazione Zoologica ‘Anton Dohrn’, Villa Comunale, Napoli, Italy Correspondence should be addressed to R Gualtieri; Email: [email protected] Abstract In mammals, sperm adhesion to the epithelial cells lining the oviductal isthmus plays a key role in the maintenance of motility and in the selection of superior quality subpopulations. In the bovine species, heparin and other sulfated glycoconjugates powerfully induce the synchronous release of sperm adhering to tubal epithelium in vitro and may represent the signal which triggers release at ovulation in vivo. Sperm detachment may be due either to surface remodeling or to hyperactivation brought 21 21 about by capacitation. In this paper, the dynamics of intracellular free Ca concentration ([Ca ]i) and protein tyrosine phos- phorylation in sperm during and after heparin-induced release from in vitro cultured oviductal monolayers were assessed to determine whether this event is due to capacitation. Moreover, Ca21-ionophore A23187, thapsigargin, thimerosal and caffeine 21 were used to determine whether [Ca ]i increase and/or hyperactivation can induce sperm release. Results showed that: 1. 21 21 heparin-released sperm have significantly higher [Ca ]i than adhering sperm; 2. heparin induces a [Ca ]i elevation in the sperm head followed by detachment from the monolayers; 3. -
Unconventional Endocannabinoid Signalling Governs Sperm Activation
RESEARCH | RESEARCH ARTICLES surface-charge screening and inactivation of 18. B. Abbasi et al., J. Res. Med. Sci. 17,1161–1169 (2012). expert technical assistance and C. Cirelli, G. Tononi, W. Wang, the NALCN channel–dependent Na+-leak cur- 19. I. Slutsky et al., Neuron 65, 165–177 (2010). and C. Nicholson for comments on the manuscript. All authors – rent (20). High [Mg2+] in combination with 20. B. Lu et al., Neuron 68, 488 499 (2010). contributed to data collection, technical design, and writing. e 21. J. Schummers, H. Yu, M. Sur, Science 320, 1638–1643 (2008). hyperpolarization will reduce the likelihood of 22. H. Sontheimer, Glia 11, 156–172 (1994). SUPPLEMENTARY MATERIALS NMDA receptor activation during sleep, reducing 23. A. Torres et al., Sci. Signal. 5, ra8 (2012). the brain’s ability to undergo activity-dependent 24. A. S. Thrane et al., Proc. Natl. Acad. Sci. U.S.A. 109, www.sciencemag.org/content/352/6285/550/suppl/DC1 18974–18979 (2012). Materials and Methods changes in excitatory transmission (LTP). Ma- Figs. S1 to S5 + 2+ 2+ nipulation of [K ]e, [Ca ]e, and [Mg ]e in the ACKNOWLEDGMENTS Table S1 References (25–45) CSF bathing the brain drove behavioral shifts This study was supported by NIH (NS078167 and NS078304) between sleep and awake states (Fig. 5). Astro- and the Office of Naval Research/Department of the Navy. We 18 September 2015; accepted 24 March 2016 cytic Ca2+ signaling is also enhanced by lowering thank W. Song, R. Rasmussen, E. Nicholas, and W. Peng for 10.1126/science.aad4821 2+ 2+ of [Ca ]e and [Mg ]e (21–23) and is strongly inhibited by anesthesia (24).These observations suggest that regulation of extracellular ion ho- meostasis is sufficient to alter behavioral state REPRODUCTIVE BIOLOGY both locally and globally, providing a path for neuromodulators to exert consistent, stable shifts in neuronal and astrocytic activity across Unconventional endocannabinoid the brain. -
Incorporation of the Acrosome Into the Oocyte During Intracytoplasmic Sperm Injection Could Be Potentially Hazardous to Embryo Development
Incorporation of the acrosome into the oocyte during intracytoplasmic sperm injection could be potentially hazardous to embryo development Kazuto Morozumi and Ryuzo Yanagimachi* Institute for Biogenesis Research, University of Hawaii School of Medicine, Honolulu, HI 96822 Contributed by Ryuzo Yanagimachi, August 12, 2005 In mice and humans, a normal offspring can be obtained by the acrosome may have some effects on the development of injecting a single spermatozoon into an oocyte, the process called embryos. intracytoplasmic sperm injection (ICSI). When three or more mouse In this study, we investigated how mouse oocytes respond to spermatozoa with intact acrosomes were injected into individual injection of a single or multiple spermatozoa with or without their mouse oocytes, an increasing proportion of oocytes became de- acrosomes. The effects of the injection of hydrolyzing enzymes formed and lysed. Oocytes did not deform and lyse when acro- (trypsin and hyaluronidase) on oocytes and embryos were also some-less spermatozoa were injected, regardless of the number of examined. spermatozoa injected. Injection of more than four human sperma- tozoa into a mouse oocyte produced vacuole-like structures in each Materials and Methods oocyte. This vacuolation did not happen when spermatozoa were Reagents and Media. All inorganic and organic reagents were freed from acrosomes before injection. Hamsters, cattle, and pigs purchased from Sigma unless otherwise stated. The medium used have much larger acrosomes than the mouse or human. Injection for culturing oocytes after ICSI was bicarbonate-buffered Chatot, of a single acrosome-intact hamster, bovine, and porcine sperma- Ziomet and Bavister (CZB) medium supplemented with 5.56 mM tozoon deformed and lysed many or all mouse oocytes.