Review of Artificial Downwelling for Mitigating Hypoxia in Coastal Waters
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Effects of Eutrophication on Stream Ecosystems
EFFECTS OF EUTROPHICATION ON STREAM ECOSYSTEMS Lei Zheng, PhD and Michael J. Paul, PhD Tetra Tech, Inc. Abstract This paper describes the effects of nutrient enrichment on the structure and function of stream ecosystems. It starts with the currently well documented direct effects of nutrient enrichment on algal biomass and the resulting impacts on stream chemistry. The paper continues with an explanation of the less well documented indirect ecological effects of nutrient enrichment on stream structure and function, including effects of excess growth on physical habitat, and alterations to aquatic life community structure from the microbial assemblage to fish and mammals. The paper also dicusses effects on the ecosystem level including changes to productivity, respiration, decomposition, carbon and other geochemical cycles. The paper ends by discussing the significance of these direct and indirect effects of nutrient enrichment on designated uses - especially recreational, aquatic life, and drinking water. 2 1. Introduction 1.1 Stream processes Streams are all flowing natural waters, regardless of size. To understand the processes that influence the pattern and character of streams and reduce natural variation of different streams, several stream classification systems (including ecoregional, fluvial geomorphological, and stream order classification) have been adopted by state and national programs. Ecoregional classification is based on geology, soils, geomorphology, dominant land uses, and natural vegetation (Omernik 1987). Fluvial geomorphological classification explains stream and slope processes through the application of physical principles. Rosgen (1994) classified stream channels in the United States into seven major stream types based on morphological characteristics, including entrenchment, gradient, width/depth ratio, and sinuosity in various land forms. -
Robert A. Dalrymple
Robert A. Dalrymple Department of Civil Engineering and Environmental Engineeering Northwestern University Evanston, IL (410)-299-5245 email: [email protected] Personal Nationality: U. S. Citizen Place of Birth: Camp Rucker, Alabama Date of Birth: May 30, 1945 Marital Status: Married, 1 child Education Institution and Location Degree Year Field University of Florida Ph.D. 1973 Civil and Coastal Engineering Gainesville, Florida University of Hawaii M.S. 1968 Ocean Engineering Honolulu, Hawaii Dartmouth College A.B. 1967 Engineering Sciences Hanover, New Hampshire Professional Experience • Distinguished Professor of Coastal Engineering, Northwestern University, 2017- • Williard and Lillian Hackerman Professor Emeritus of Civil Engineering, Johns Hopkins Uni- versity, 2016-present. 1 • Williard and Lillian Hackerman Professor of Civil Engineering, Johns Hopkins University, 2002-2016. • Department Chair, Civil Engineering, Johns Hopkins University, 2002-2004. • Edward C. Davis Professor Emeritus of Civil and Environmental Engineering, 2002-present. • Edward C. Davis Professor of Civil and Environmental Engineering, 1996-2002. • Visiting Professor, Department of Civil Engineering, Johns Hopkins University, 1999-2000. • Director (and Founder), Center for Applied Coastal Research, University of Delaware, 1989- 2002. • Acting Chair, Department of Civil Engineering, University of Delaware, 1994. • Professor, Department of Civil Engineering, University of Delaware, 1984 to 1996. Also, Professor of Marine Studies, College of Marine Studies, 1984-present. • Associate Professor, Department of Civil Engineering, University of Delaware, 1977 to 1984. Also, Associate Professor of Marine Studies, College of Marine Studies. • Assistant Dean, College of Engineering, University of Delaware, 1980 to January 1982. • Assistant Professor, Department of Civil Engineering, University of Delaware, 1973 to 1977. Also, Assistant Professor of Marine Studies, College of Marine Studies. -
Yearly Report on IRPWIND and EERA JP Wind Activities Work Package 2
Integrated Research Programme on Wind Energy Project acronym: IRPWIND Grant agreement no 609795 Collaborative project Start date: 01st March 2014 Duration: 4 years Title: Yearly report on IRPWIND and EERA JP Wind Activities Work Package 2 - Deliverable number 2.12 Lead Beneficiary: DTU Delivery date: 25 April 2016 Dissemination level: PU The research leading to these results has received funding from the European Union Seventh Framework Programme under the agreement GA-2013-609795. 1 Table of contents Contents 1. Executive Summary ..................................................................................................... 4 1.1 Status on the EERA Joint Programme on Wind Energy and the Integrated Research Programme on Wind Energy (IRPWIND) ........................................................................................4 1.2 Mobility.................................................................................................................................4 1.3 IRPWIND KPIs – 2014 values ............................................................................................5 1.4 Contact points .....................................................................................................................8 1.5 Reporting on Research Themes ...................................................................................... 10 1.6 Reporting on Milestones and deliverables ..................................................................... 15 1.7 International collaboration in 2015 ............................................................................... -
Hypoxia Infographic
Understanding HYP XIA Hypoxia is an environmental phenomenon where the concentration of dissolved oxygen in the water column decreases to a level that can no longer 1 support living aquatic organisms. The level is often considered to be 2 mg O2 per liter of water or lower. Hypoxic and anoxic (no oxygen) waters have existed throughout geologic time, but their occurrence in shallow coastal and estuarine areas appears to be increasing as a result of human activities. 2 What causes hypoxia? In 2015, scientists determined the Gulf of Mexico dead zone to be 6,474 square miles, which is an area about the size of Connecticut and Rhode Island combined. 3 Major events leading to the formation of hypoxia in the Gulf of Mexico include: Coastal Hypoxia and Eutrophication Sunlight Watershed Areas of anthropogenically-influenced n> In the past century, Hypoxia has become a global concern with estuarine and coastal hypoxia. 550 over 550 coastal areas identified as experiencing this issue. 4 Runoff and nutrient 1 loading of the Mississippi River. Nutrient-rich water from the Mississippi River forms 1960 a surface lens. 1970 Combined, Dead Zones 1980 cover 4x the area of the 1990 Great Lakes. % 2000 Nutrient-enhanced 4 2 primary production, Only a small fraction of the 550-plus Number of dead zones has approximately Today, there is currently about 1,148,000 km2 or eutrophication. hypoxia zones exhibited any signs doubled each decade since the 1960’s. 5 of seabed covered by Oxygen Minimum Phytoplankton growth of improvement. 5 Zones (OMZs) (<0.5 ml of O /liter) 5 is fueled by nutrients. -
Part II-1 Water Wave Mechanics
Chapter 1 EM 1110-2-1100 WATER WAVE MECHANICS (Part II) 1 August 2008 (Change 2) Table of Contents Page II-1-1. Introduction ............................................................II-1-1 II-1-2. Regular Waves .........................................................II-1-3 a. Introduction ...........................................................II-1-3 b. Definition of wave parameters .............................................II-1-4 c. Linear wave theory ......................................................II-1-5 (1) Introduction .......................................................II-1-5 (2) Wave celerity, length, and period.......................................II-1-6 (3) The sinusoidal wave profile...........................................II-1-9 (4) Some useful functions ...............................................II-1-9 (5) Local fluid velocities and accelerations .................................II-1-12 (6) Water particle displacements .........................................II-1-13 (7) Subsurface pressure ................................................II-1-21 (8) Group velocity ....................................................II-1-22 (9) Wave energy and power.............................................II-1-26 (10)Summary of linear wave theory.......................................II-1-29 d. Nonlinear wave theories .................................................II-1-30 (1) Introduction ......................................................II-1-30 (2) Stokes finite-amplitude wave theory ...................................II-1-32 -
Gulf of Mexico Hypoxia Monitoring Strategy
Gulf of Mexico Hypoxia Monitoring Strategy Hypoxia Zone Areal Extent (km2) Interpolation Observations Data Analysis Workshop Steering Committee Trevor Meckley, Alan Lewitus, A White Paper by the Steering Committee of the: Dave Scheurer, Dave Hilmer NOAA National Ocean Service, National 6th Annual NOAA/NGI Hypoxia Research Centers of Coastal Ocean Science Coordination Workshop: Establishing a Steve Ashby Cooperative Hypoxic Zone Monitoring Program Northern Gulf Institute convened by the NOAA National Centers for Steve DiMarco Texas A&M University Coastal Ocean Science and Northern Gulf Institute Steve Giordano on 12-13 September 2016 at the Mississippi State NOAA National Marine Fisheries Service University Science and Technology Center at Rick Greene NASA's Stennis Space Center in Mississippi. EPA Office of Research and Development Stephan Howden University of Southern Mississippi Barb Kirkpatrick Gulf of Mexico Coastal Ocean Observing System Troy Pierce EPA Gulf of Mexico Program Nancy Rabalais Louisiana Universities Marine Consortium Rick Raynie Louisiana Coastal Protection and Restoration Authority Mike Woodside USGS National Water Quality Program Abstract The Gulf of Mexico Hypoxia Monitoring Strategy is a resource to inform the proceedings of the 6th Annual NOAA/NGI Hypoxia Research Coordination Workshop: Establishing a Cooperative Hypoxic Zone Monitoring Program. It provides a framework for a cooperative hypoxia monitoring program based on programmatic and financial requirements that are designed to meet management needs. The Monitoring Strategy includes sections on management drivers, current monitoring capabilities and gaps, and projected programmatic, data, and financial requirements based on the input of multiple partners and the responses from a survey of modelers currently applying deterministic 3D time variable models to Gulf hypoxia assessment and prediction. -
James T. Kirby, Jr
James T. Kirby, Jr. Edward C. Davis Professor of Civil Engineering Center for Applied Coastal Research Department of Civil and Environmental Engineering University of Delaware Newark, Delaware 19716 USA Phone: 1-(302) 831-2438 Fax: 1-(302) 831-1228 [email protected] http://www.udel.edu/kirby/ Updated September 12, 2020 Education • University of Delaware, Newark, Delaware. Ph.D., Applied Sciences (Civil Engineering), 1983 • Brown University, Providence, Rhode Island. Sc.B.(magna cum laude), Environmental Engineering, 1975. Sc.M., Engineering Mechanics, 1976. Professional Experience • Edward C. Davis Professor of Civil Engineering, Department of Civil and Environmental Engineering, University of Delaware, 2003-present. • Visiting Professor, Grupo de Dinamica´ de Flujos Ambientales, CEAMA, Universidad de Granada, 2010, 2012. • Professor of Civil and Environmental Engineering, Department of Civil and Environmental Engineering, University of Delaware, 1994-2002. Secondary appointment in College of Earth, Ocean and the Environ- ment, University of Delaware, 1994-present. • Associate Professor of Civil Engineering, Department of Civil Engineering, University of Delaware, 1989- 1994. Secondary appointment in College of Marine Studies, University of Delaware, as Associate Professor, 1989-1994. • Associate Professor, Coastal and Oceanographic Engineering Department, University of Florida, 1988. • Assistant Professor, Coastal and Oceanographic Engineering Department, University of Florida, 1984- 1988. • Assistant Professor, Marine Sciences Research Center, State University of New York at Stony Brook, 1983- 1984. • Graduate Research Assistant, Department of Civil Engineering, University of Delaware, 1979-1983. • Principle Research Engineer, Alden Research Laboratory, Worcester Polytechnic Institute, 1979. • Research Engineer, Alden Research Laboratory, Worcester Polytechnic Institute, 1977-1979. 1 Technical Societies • American Society of Civil Engineers (ASCE) – Waterway, Port, Coastal and Ocean Engineering Division. -
Microscale Ecology Regulates Particulate Organic Matter Turnover in Model Marine Microbial Communities
ARTICLE DOI: 10.1038/s41467-018-05159-8 OPEN Microscale ecology regulates particulate organic matter turnover in model marine microbial communities Tim N. Enke1,2, Gabriel E. Leventhal 1, Matthew Metzger1, José T. Saavedra1 & Otto X. Cordero1 The degradation of particulate organic matter in the ocean is a central process in the global carbon cycle, the mode and tempo of which is determined by the bacterial communities that 1234567890():,; assemble on particle surfaces. Here, we find that the capacity of communities to degrade particles is highly dependent on community composition using a collection of marine bacteria cultured from different stages of succession on chitin microparticles. Different particle degrading taxa display characteristic particle half-lives that differ by ~170 h, comparable to the residence time of particles in the ocean’s mixed layer. Particle half-lives are in general longer in multispecies communities, where the growth of obligate cross-feeders hinders the ability of degraders to colonize and consume particles in a dose dependent manner. Our results suggest that the microscale community ecology of bacteria on particle surfaces can impact the rates of carbon turnover in the ocean. 1 Department of Civil and Environmental Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA. 2 Department of Environmental Systems Science, ETH Zurich, Zürich 8092, Switzerland. Correspondence and requests for materials should be addressed to O.X.C. (email: [email protected]) NATURE COMMUNICATIONS | (2018) 9:2743 | DOI: 10.1038/s41467-018-05159-8 | www.nature.com/naturecommunications 1 ARTICLE NATURE COMMUNICATIONS | DOI: 10.1038/s41467-018-05159-8 earning how the composition of ecological communities the North Pacific gyre20. -
Chesapeake Bay Trust Hypoxia Project
Chesapeake Bay dissolved oxygen profiling using a lightweight, low- powered, real-time inductive CTDO2 mooring with sensors at multiple vertical measurement levels Doug Wilson Caribbean Wind LLC Baltimore, MD Darius Miller SoundNine Inc. Kirkland, WA Chesapeake Bay Trust EPA Chesapeake Bay Program Goal Implementation Team Support This project has been funded wholly or in part by the United States Environmental Protection Agency under assistance agreement CB96341401 to the Chesapeake Bay Trust. The contents of this document do not necessarily reflect the views and policies of the Environmental Protection Agency, nor does the EPA endorse trade names or recommend the use of commercial products mentioned in this document. SCOPE 8: “…demonstrate a reliable, cost effective, real-time dissolved oxygen vertical monitoring system for characterizing mainstem Chesapeake Bay hypoxia.” Water quality impairment in the Chesapeake Bay, caused primarily by excessive long-term nutrient input from runoff and groundwater, is characterized by extreme seasonal hypoxia, particularly in the bottom layers of the deeper mainstem (although it is often present elsewhere). In addition to obvious negative impacts on ecosystems where it occurs, hypoxia represents the integrated effect of watershed-wide nutrient pollution, and monitoring the size and location of the hypoxic regions is important to assessing Chesapeake Bay health and restoration progress. Chesapeake Bay Program direct mainstem water quality monitoring has been by necessity widely spaced in time and location, with monthly or bi-monthly single fixed stations separated by several kilometers. The need for continuous, real time, vertically sampled profiles of dissolved oxygen has been long recognized, and improvements in hypoxia modeling and sensor technology make it achievable. -
Manual for Phytoplankton Sampling and Analysis in the Black Sea
Manual for Phytoplankton Sampling and Analysis in the Black Sea Dr. Snejana Moncheva Dr. Bill Parr Institute of Oceanology, Bulgarian UNDP-GEF Black Sea Ecosystem Academy of Sciences, Recovery Project Varna, 9000, Dolmabahce Sarayi, II. Hareket P.O.Box 152 Kosku 80680 Besiktas, Bulgaria Istanbul - TURKEY Updated June 2010 2 Table of Contents 1. INTRODUCTION........................................................................................................ 5 1.1 Basic documents used............................................................................................... 1.2 Phytoplankton – definition and rationale .............................................................. 1.3 The main objectives of phytoplankton community analysis ........................... 1.4 Phytoplankton communities in the Black Sea ..................................................... 2. SAMPLING ................................................................................................................. 9 2.1 Site selection................................................................................................................. 2.2 Depth ............................................................................................................................... 2.3 Frequency and seasonality ....................................................................................... 2.4 Algal Blooms................................................................................................................. 2.4.1 Phytoplankton bloom detection -
Denmark Paper May 1 .Yalda Saadat
Helmholtz Resonance Mode for Wave Energy Extraction Yalda Sadaat#1, Nelson Fernandez#2, Alexei Samimi#3, Mohammad Reza Alam*4, Mostafa Shakeri*5, Reza Ghorbani#6 #Department of Mechanical Engineering, University of Hawai’i at Manoa H300, 2540 Dole st., Honolulu, HI, 96822, USA 1 [email protected] 2 [email protected] 3 [email protected] [email protected] *Department of Mechanical Engineering, University of California at Berkeley 6111 Etcheverry Hall, University of California at Berkeley, Berkeley, California, 94720, USA [email protected] [email protected] A. Abstract B. Introduction This study examines the novel concept of extracting wave The extraction of energy from ocean waves possesses immense energy at Helmholtz resonance. The device includes a basin with potential, and with the growing global energy crisis and the need to develop alternative, reliable and environmentally non-detrimental horizontal cross-sectional area A0 that is connected to the sea by a channel of width B and length L, where the maximum water sources of electricity, it’s crucial that we learn to exploit it. depth is H. The geometry of the device causes an oscillating fluid within the channel with the Helmholtz frequency of Beginning in early 19th century France, the idea of harvesting 2 σH =gHB/A0L while the strait's length L, as well as the basin's the ocean’s energy has grown to become a great frontier of the 1/2 length scale A0 , are much smaller than the incoming wave's energy industry. Myriad methods of extraction have arisen, notable wavelength. In this article, we examined the relation of above among them Scotland’s Pelamis Wave Energy Converter [1], Oyster th th frequency to the device’s geometry in both 1/25 and 1/7 [2], Sweden’s Lysekil Project [3], Duck wave energy converter [4], scaled models at wave tank. -
Plankton Community Composition, Organic Carbon and Thorium-234 Particle Size Distributions, and Particle Export in the Sargasso Sea
Journal of Marine Research, 67, 845–868, 2009 Plankton community composition, organic carbon and thorium-234 particle size distributions, and particle export in the Sargasso Sea by H. S. Brew1, S. B. Moran1,2, M. W. Lomas3 and A. B. Burd4 ABSTRACT Measurements of plankton community composition (eight planktonic groups), particle size- fractionated (10, 20, 53, 70, and 100-m Nitex screens) distributions of organic carbon (OC) and 234Th, and particle export of OC and 234Th are reported over a seasonal cycle (2006–2007) from the Bermuda Atlantic Time-Series (BATS) site. Results indicate a convergence of the particle size distributions of OC and 234Th during the winter-spring bloom period (January–March, 2007). The observed convergence of these particle size distributions is directly correlated to the depth-integrated abundance of autotrophic pico-eukaryotes (r ϭ 0.97, P Ͻ 0.05) and, to a lesser extent, Synechococcus (r ϭ 0.85, P ϭ 0.14). In addition, there are positive correlations between the sediment trap flux of OC and 234Th at 150 m and the depth-integrated abundance of pico-eukaryotes (r ϭ 0.94, P ϭ 0.06 for OC, and r ϭ 0.98, P Ͻ 0.05 for 234Th) and Synechococcus (r ϭ 0.95, P ϭ 0.05 for OC, and r ϭ 0.94, P ϭ 0.06 for 234Th). An implication of these observations and recent modeling studies (Richardson and Jackson, 2007) is that, although small in size, pico-plankton may influence large particle export from the surface waters of the subtropical Atlantic.