Edit Master Title Style

Total Page:16

File Type:pdf, Size:1020Kb

Edit Master Title Style NASA’s Earth Observing Missions In Operation, Development and the Decadal Survey Dr. Stephen Volz Associate Director for Flight Programs Earth Science Division, Science Mission Directorate Why are we here? 2007 National Academy Study indicated that NASA needed to spend greater effort to enable the societal benefits that could be achieved from its orbiting observatories. We have initiated our first DS missions with a focus on renewed focus on applications We have conducted Applications workshops for SMAP, HyspIRI, and DESDynI, with more planned for each mission as they mature. But we have not considered in a focused way how our other missions are successfully (or unsuccessfully) achieving their full potential for societal benefits We need to assess how the operating and foundational NASA missions are achieving their potential, and what we (NASA and partner Agencies) can do to ensure they do achieve that potential 2 Missions Distributed by NASA Flight Project Life Cycle Extracted from NASA: NASA: NASA: NASANPR: 7120.5D NASA Prime: DESDynI ICESat-2 SMAP NPP Aura CLARREO Venture EV-1 Glory OSTM SWOT Aquarius NASA Extended: ASCENDS GPM Aqua ACE LDCM Terra GEO-CAPE TRMM HyspIRI Jason Reimbursable: Reimbursable: Reimbursable: Reimbursable: EO-1 QuikSCAT FO Jason-3 TSIS GOES-P QuikSCAT CERES FM6 GOES-R/S SORCE Acrimsat Other: CALIPSO OCO-2 Other: CloudSat NPOESS? SAGE III GRACE BLUE indicates Decadal Survey activities ICESat 7 Phase E: Missions In Operation NASA Operating Research Missions 9 Phase C/D: Missions In Development ESD Missions in Development & Formulation GLORY AQUARIUS NPP Late 2010 Late 2010 Sep 2011 LDCM Dec 2012 GPM ICESat-2 SMAP Jul 2013 Late 2015 Nov 2014 Nov 2014 13 Earth Science Missions in Development NPOESS Preparatory Project1 Required for continuity of several key Strategic mission – Systematic climate measurements between EOS measurement and NPOESS Glory Addresses high priority objective of the Strategic mission – Initiate New US Climate Change Science Program Measurement and Continue and provide continuity for total solar Systematic Measurement irradiance Aquarius2 First dedicated global measurement of Competed mission – Earth System sea surface salinity from space Science Pathfinder LDCM1 Continues the 30+ year Landsat Strategic mission – Systematic moderate resolution multispectral land measurement imaging data record; includes new high sensitivity thermal instrument TIRS Global Precipitation Measure rain microphysical properties Measurement2 and vertical structure, Improve weather, Strategic Mission – Systematic climate, and hydrologic predictions and measurement water resource management 14 1 Represents Interagency Partnership 2 Represents International Partnership Phase A/B: Missions In Formulation Note on Decadal Survey Mission Development NASA follows a well defined process for mission development, tailored to the specifics of the program All Decadal Survey missions are considered Strategic, and will be directed missions (as opposed to AO selected) This means the mission management will be assigned to a Facility (almost always a NASA Center) Venture Class and ESTO technology initiatives are competed Elements of the missions will be competed, with possible competed elements include but are not limited to Science Definition Teams and Instruments ICESat-2 lidar recently went from an in-house build to a government-vendor partnership The developmental products, and to a degree the mission development schedule are largely defined by this established process. 16 Earth Science Decadal Survey Missions in Formulation Soil Moisture Active/Passive Will use a combined radiometer and Mission high-resolution radar to measure 1st Decadal Survey mission – globally surface soil moisture and Systematic measurement freeze-thaw state. Earth Venture – 1 (EV-1) AO Complete suborbital, principal 1st Decadal Survey Venture class investigator-led investigations to announcement conduct innovative, integrated, hypothesis or scientific question-driven approaches to pressing Earth system science issues Ice Cloud and land Elevation Will measure the dynamic state of the Satellite – 2, ICESat-2 Earth’s ice sheets, their seasonal and Systematic measurement and 2nd annual variations and volumetric Decadal Survey mission change 17 1 Represents Interagency Partnership 2 Represents International Partnership Mission Studies in Pre-Formulation Missions in Pre-Formulation 19 NASA Near-Term Missions (4/15 total) Mission Mission Description Orbit Instruments CLARREO Solar and Earth radiation: LEO, Absolute, (NASA spectrally resolved forcing and Precessing spectrally-resolved portion) response of the climate interferometer system SMAP Soil moisture and freeze/thaw LEO, SSO L-band radar for weather and water cycle L-band radiometer processes ICESat-2 Ice sheet height changes for LEO, Non- Laser altimeter climate change diagnosis SSO DESDynI Surface and ice sheet LEO, SSO L-band InSAR deformation for understanding Laser altimeter natural hazards and climate; vegetation structure for ecosystem health 20 NASA Mid-Term Missions (5/15 total) Mission Mission Description Orbit Instruments HyspIRI Land surface composition for LEO, SSO Hyperspectral agriculture and mineral spectrometer characterization; vegetation types for ecosystem health ASCENDS Day/night, all-latitude, all- LEO, SSO Multifrequency laser season CO2 column integrals for climate emissions SWOT Ocean, lake, and river water LEO, SSO Ka-band wide swath levels for ocean and inland radar water dynamics C-band radar GEO-CAPE Atmospheric gas columns for GEO High and low spatial air quality forecasts; ocean resolution color for coastal ecosystem hyperspectral health and climate emissions imagers ACE Aerosol and cloud profiles for LEO, SSO Backscatter lidar climate and water cycle; ocean Multiangle color for open ocean polarimeter biogeochemistry Doppler radar 21 NASA Late-Term Missions (6/15 total) Mission Mission Description Orbit Instruments LIST Land surface topography for LEO, SSO Laser altimeter landslide hazards and water runoff PATH High frequency, all-weather GEO MW array temperature and humidity spectrometer soundings for weather forecasting and SST* GRACE-II High temporal resolution gravity LEO, SSO Microwave or laser fields for tracking large-scale ranging system water movement SCLP Snow accumulation for fresh LEO, SSO Ku and X-band radars water availability K and Ka-band radiometers GACM Ozone and related gases for LEO, SSO UV spectrometer intercontinental air quality and IR spectrometer stratospheric ozone layer Microwave limb prediction sounder 3D-Winds Tropospheric winds for weather LEO, SSO Doppler lidar (Demo) forecasting and pollution transport *Cloud-independent, high temporal resolution, lower accuracy SST to complement, not replace, global 22 operational high-accuracy SST measurement Flight Project Life Cycle These activities are what NASA does very well. But the same process that produces successful missions does not encourage outreach to organizations outside the focused mission science DESDynI, ICESat-2 SMAP CLARREO & Venture EV-1 requirements. Tier 2 23 Mission Requirements for Pre-Phase A Scope of Major Pre-Phase A Activities: Areas for Mission Science Team Headquarters Approve a Formulation Authorization Document Development of Level 1 Develop DRAFT Level 1 Requirements Science Requirements Conduct Acquisition Strategy Planning Meeting Support development of Technical Activities: preliminary mission concepts Develop and document preliminary mission concepts Conduct internal Reviews Support the assessment of Conduct Mission Concept Review Project Planning, Technical Readiness Levels Costing and Scheduling Identify potential partnerships Develop and document a DRAFT Integrated Baseline, including: High level WBS Assessment of Technology Readiness Levels Areas for Applied Science Assessment of Infrastructure and Workforce needs Community Identification of potential partnerships Identification of conceptual acquisition strategies Initiate assessments of potential for proposed major procurements applied science returns KDP Readiness Caucus community and partner Obtain KDP A Readiness products input Approval through the governing PMC Support cost benefit analyses for possible requirements modifications to enable critical applications 24 Mission Requirements for Phase A Scope of Major Phase A Activities: Areas for the Mission Science Team: Headquarters Concur with Level 1 Science Establish Baseline Level 1 Requirements Requirements Conduct Acquisition Strategy Meeting Support development of Initiate Interagency and International Agreements preliminary system-level Technical Activities: requirements Develop preliminary system level requirements Support development of Develop/document Baseline Mission Concept mission baseline concept Develop preliminary mission operations concept Support Development of Initiate technology developments preliminary mission operation Develop initial orbital debris assessment concept Conduct System Requirements Review Conduct Mission Definition Review Project Planning, Costing and Scheduling: Areas for Applied Science Prepare a preliminary Project Plan Community: Conduct required Integrated Baseline Reviews Develop/document preliminary Integrated Baseline Refine applications feasibility Identify Export Controlled technical data studies KDP Readiness: Participate in science team Obtain KDP B Readiness products analysis of refined level 1 Approval through the governing PMC requirements Support
Recommended publications
  • Gao-16-309Sp, Nasa
    United States Government Accountability Office Report to Congressional Committees March 2016 NASA Assessments of Major Projects GAO-16-309SP March 2016 NASA Assessments of Major Projects Highlights of GAO-16-309SP, a report to congressional committees Why GAO Did This Study What GAO Found This report provides GAO’s annual The cost and schedule performance of the National Aeronautics and Space snapshot of how well NASA is planning Administration’s (NASA) portfolio of major projects has improved over the past 5 and executing its major acquisition years, and most current projects are adhering to their committed cost and projects. In March 2015, GAO found schedule baselines. Over the last 2 years, eight projects in the portfolio that projects continued a general established cost and schedule baselines. As the figure below shows, as the positive trend of limiting cost and average age of the portfolio has decreased, the cost performance of the portfolio schedule growth, maturing has improved, because new projects are less likely to have experienced cost technologies, and stabilizing designs, growth. but that NASA faced several challenges that could affect its ability to Development Cost Performance of NASA’s Major Project Portfolio Has Improved as Average effectively manage its portfolio. Project Age Has Decreased The explanatory statement of the House Committee on Appropriations accompanying the Omnibus Appropriations Act, 2009 included a provision for GAO to prepare project status reports on selected large-scale NASA programs, projects, and activities. This is GAO’s eighth annual assessment of NASA’s major projects. This report describes (1) the cost and schedule performance of NASA’s portfolio of major projects, (2) the maturity of technologies and stability of project designs at key milestones, and (3) NASA’s progress in implementing Note: GAO presents cost and schedule growth both including and excluding JWST because the initiatives to manage acquisition risk magnitude of JWST’s cost growth has historically masked the performance of the rest of the portfolio.
    [Show full text]
  • Estimating Gale to Hurricane Force Winds Using the Satellite Altimeter
    VOLUME 28 JOURNAL OF ATMOSPHERIC AND OCEANIC TECHNOLOGY APRIL 2011 Estimating Gale to Hurricane Force Winds Using the Satellite Altimeter YVES QUILFEN Space Oceanography Laboratory, IFREMER, Plouzane´, France DOUG VANDEMARK Ocean Process Analysis Laboratory, University of New Hampshire, Durham, New Hampshire BERTRAND CHAPRON Space Oceanography Laboratory, IFREMER, Plouzane´, France HUI FENG Ocean Process Analysis Laboratory, University of New Hampshire, Durham, New Hampshire JOE SIENKIEWICZ Ocean Prediction Center, NCEP/NOAA, Camp Springs, Maryland (Manuscript received 21 September 2010, in final form 29 November 2010) ABSTRACT A new model is provided for estimating maritime near-surface wind speeds (U10) from satellite altimeter backscatter data during high wind conditions. The model is built using coincident satellite scatterometer and altimeter observations obtained from QuikSCAT and Jason satellite orbit crossovers in 2008 and 2009. The new wind measurements are linear with inverse radar backscatter levels, a result close to the earlier altimeter high wind speed model of Young (1993). By design, the model only applies for wind speeds above 18 m s21. Above this level, standard altimeter wind speed algorithms are not reliable and typically underestimate the true value. Simple rules for applying the new model to the present-day suite of satellite altimeters (Jason-1, Jason-2, and Envisat RA-2) are provided, with a key objective being provision of enhanced data for near-real- time forecast and warning applications surrounding gale to hurricane force wind events. Model limitations and strengths are discussed and highlight the valuable 5-km spatial resolution sea state and wind speed al- timeter information that can complement other data sources included in forecast guidance and air–sea in- teraction studies.
    [Show full text]
  • Improved Quality Control for Quikscat Near Real-Time Data
    JP4.6 Improved Quality Control for QuikSCAT Near Real-time Data S. Mark Leidner, Ross N. Hoffman, and Mark C. Cerniglia Atmospheric and Environmental Research Inc., Lexington, Massachusetts Abstract errors. We will illustrate the types of errors that occur due to rain contamination and ambiguity removal. SeaWinds on QuikSCAT, launched in June 1999, We will also give examples of how the quality of the provides a new source of surface wind information retrieved winds varies across the satellite track, and over the world’s oceans. This new window on global varies with wind speed. surface vector winds has been a great aid to real- SeaWinds is an active, Ku-band microwave radar time operational users, especially in remote areas operating near ¢¤£¦¥¨§ © and is sensitive to centimeter- of the world. As with in situ observations, the qual- scale or capillary waves on the ocean surface. ity of remotely-sensed geophysical data is closely These waves are usually in equilibrium with the wind. tied to the characteristics of the instrument. But Each radar backscatter observation samples a patch remotely-sensed scatterometer winds also have a of ocean about . The vector wind is re- whole range of additional quality control concerns trieved by combining several backscatter observa- different from those of in situ observation systems. tions made from multiple viewing geometries as the The retrieval of geophysical information from the raw scatterometer passes overhead. The resolution of satellite measurements introduces uncertainties but the retrieved winds is . also produces diagnostics about the reliability of the Backscatter from capillary waves on the ocean retrieved quantities.
    [Show full text]
  • Watching the Winds Where Sea Meets Sky 14 August 2014, by Rosalie Murphy
    Watching the winds where sea meets sky 14 August 2014, by Rosalie Murphy the speed and direction of wind at the ocean's surface. "Before scatterometers, we could only measure ocean winds on ships, and sampling from ships is very limited," said Timothy Liu of NASA's Jet Propulsion Laboratory in Pasadena, California, who led the science team for NASA's QuikScat mission. Scatterometry began to emerge during World War II, when scientists realized wind disturbing the ocean's surface caused noise in their radar signals. NASA included an experimental scatterometer in its The SeaWinds scatterometer on NASA's QuikScat first space station in 1973 and again when it satellite stares into the eye of 1999's Hurricane Floyd as launched its SeaSat satellite in 1978. During its it hits the U.S. coast. The arrows indicate wind direction, three-month life, SeaSat's scatterometer provided while the colors represent wind speed, with orange and scientists with more individual wind observations yellow being the fastest. Credit: NASA/JPL-Caltech than ships had collected in the previous century. The ocean covers 71 percent of Earth's surface and affects weather over the entire globe. Hurricanes and storms that begin far out over the ocean affect people on land and interfere with shipping at sea. And the ocean stores carbon and heat, which are transported from the ocean to the air and back, allowing for photosynthesis and affecting Earth's climate. To understand all these processes, scientists need information about winds A JPL team then designed a mission called near the ocean's surface.
    [Show full text]
  • NASA Earth Science Research Missions NASA Observing System INNOVATIONS
    NASA’s Earth Science Division Research Flight Applied Sciences Technology NASA Earth Science Division Overview AMS Washington Forum 2 Mayl 4, 2017 FY18 President’s Budget Blueprint 3/2017 (Pre)FormulationFormulation FY17 Program of Record (Pre)FormulationFormulation Implementation MAIA (~2021) Implementation MAIA (~2021) Landsat 9 Landsat 9 Primary Ops Primary Ops TROPICS (~2021) (2020) TROPICS (~2021) (2020) Extended Ops PACE (2022) Extended Ops XXPACE (2022) geoCARB (~2021) NISAR (2022) geoCARB (~2021) NISAR (2022) SWOT (2021) SWOT (2021) TEMPO (2018) TEMPO (2018) JPSS-2 (NOAA) JPSS-2 (NOAA) InVEST/Cubesats InVEST/Cubesats Sentinel-6A/B (2020, 2025) RBI, OMPS-Limb (2018) Sentinel-6A/B (2020, 2025) RBI, OMPS-Limb (2018) GRACE-FO (2) (2018) GRACE-FO (2) (2018) MiRaTA (2017) MiRaTA (2017) Earth Science Instruments on ISS: ICESat-2 (2018) Earth Science Instruments on ISS: ICESat-2 (2018) CATS, (2020) RAVAN (2016) CATS, (2020) RAVAN (2016) CYGNSS (>2018) CYGNSS (>2018) LIS, (2020) IceCube (2017) LIS, (2020) IceCube (2017) SAGE III, (2020) ISS HARP (2017) SAGE III, (2020) ISS HARP (2017) SORCE, (2017)NISTAR, EPIC (2019) TEMPEST-D (2018) SORCE, (2017)NISTAR, EPIC (2019) TEMPEST-D (2018) TSIS-1, (2018) TSIS-1, (2018) TCTE (NOAA) (NOAA’S DSCOVR) TCTE (NOAA) (NOAA’SXX DSCOVR) ECOSTRESS, (2017) ECOSTRESS, (2017) QuikSCAT (2017) RainCube (2018*) QuikSCAT (2017) RainCube (2018*) GEDI, (2018) CubeRRT (2018*) GEDI, (2018) CubeRRT (2018*) OCO-3, (2018) CIRiS (2018*) OCOXX-3, (2018) CIRiS (2018*) CLARREO-PF, (2020) EOXX-1 CLARREOXX XX-PF, (2020) EOXX-1
    [Show full text]
  • Evaluation of Quikscat Data for Monitoring Vegetation Phenology
    City University of New York (CUNY) CUNY Academic Works Dissertations and Theses City College of New York 2011 Evaluation of QuikSCAT data for Monitoring Vegetation Phenology Doralee Pellot CUNY City College How does access to this work benefit ou?y Let us know! More information about this work at: https://academicworks.cuny.edu/cc_etds_theses/27 Discover additional works at: https://academicworks.cuny.edu This work is made publicly available by the City University of New York (CUNY). Contact: [email protected] Evaluation of QuikSCAT data for Monitoring Vegetation Phenology Thesis Submitted in partial fulfillment of the requirements for the degree Master of Engineering (Civil) at The City College of New York of The City University of New York by Doralee Pellot May 2012 ____________________________________________ Professor Reza Khanbilvardi Dr. Tarendra Lakhankar Department of Civil Engineering Table of Contents List of Figures ................................................................................................................................. 1 Abstract ........................................................................................................................................... 3 1 Introduction ............................................................................................................................. 4 2 Data Sources ........................................................................................................................... 6 2.1 Radar Backscatter from QuikSCAT ................................................................................
    [Show full text]
  • The Web of Glory: a Study of the Concept of Man As Expressed in the Christian Fantasy Novels of Charles Williams
    Loyola University Chicago Loyola eCommons Master's Theses Theses and Dissertations 1964 The Web of Glory: A Study of the Concept of Man as Expressed in the Christian Fantasy Novels of Charles Williams Beverlee Fissinger Smith Loyola University Chicago Follow this and additional works at: https://ecommons.luc.edu/luc_theses Part of the English Language and Literature Commons Recommended Citation Smith, Beverlee Fissinger, "The Web of Glory: A Study of the Concept of Man as Expressed in the Christian Fantasy Novels of Charles Williams" (1964). Master's Theses. 1896. https://ecommons.luc.edu/luc_theses/1896 This Thesis is brought to you for free and open access by the Theses and Dissertations at Loyola eCommons. It has been accepted for inclusion in Master's Theses by an authorized administrator of Loyola eCommons. For more information, please contact [email protected]. Copyright © 1964 Beverlee Fissinger Smith THE WEB OF GLORY: A STUDY OF THE CONCEPT OF MAl{ AS EXPRESSED IN THE CHRISTIAN FANTASY NOVELS OF CHARLES WILLIAMS BEVERLEE FISSINGER SMITH A Th•• is Submitted to the Faculty or the Graduate School ot Loyola University 1n Partial Pultillment at the Requirement. tor the Degree ot Master ot Arts June 1964 TABLE OF CONTENTS Page Lite. • • • • • • • • • • • • • • • • • • • • • • 1 8ig1a. • • • • • • • • • • • • • • • • • • • • •• ii Chapter I. AN DrfRODUOTION TO CHARLES WILLIAMS. • • • • 1 Purpose and Procedure ot Thesis--Wl1liama the Man-­ Family Baokground--Education--Oxtord University Press--Wll1iwms the wrlter-~Intel1ectual Gitts-­ Conversations with the "Oxfol'd Circlett·... the Poet-­ Beatriclan rove in Early Sonnets--Orlginality ot Later Poet17 II. THE WEB OF GLORY. • • • • • • • • • • • • •• 18 Saoramental View ot Man and Nature--God as the Source 01' Good and Evll--Tne Way ot Attil'mation-­ Co-tnherenoe--Tbe Index ot the Body--The Image 01' the City--Substitution and Exchange--Meohanistio and Moral Ttme--Oonversion of Energies--In-coherence and Isolation--The Perversion of tbe Images III.
    [Show full text]
  • Cloudsat-CALIPSO Launch
    NATIONAL AERONAUTICS AND SPACE ADMINISTRATION CloudSat-CALIPSO Launch Press Kit April 2006 Media Contacts Erica Hupp Policy/Program (202) 358-1237 NASA Headquarters, Management [email protected] Washington Alan Buis CloudSat Mission (818) 354-0474 NASA Jet Propulsion Laboratory, [email protected] Pasadena, Calif. Emily Wilmsen Colorado Role - CloudSat (970) 491-2336 Colorado State University, [email protected] Fort Collins, Colo. Julie Simard Canada Role - CloudSat (450) 926-4370 Canadian Space Agency, [email protected] Saint-Hubert, Quebec, Canada Chris Rink CALIPSO Mission (757) 864-6786 NASA Langley Research Center, [email protected] Hampton, Va. Eliane Moreaux France Role - CALIPSO 011 33 5 61 27 33 44 Centre National d'Etudes [email protected] Spatiales, Toulouse, France George Diller Launch Operations (321) 867-2468 NASA Kennedy Space Center, [email protected] Fla. Contents General Release ......................................................................................................................... 3 Media Services Information ........................................................................................................ 5 Quick Facts ................................................................................................................................. 6 Mission Overview ....................................................................................................................... 7 CloudSat Satellite ....................................................................................................................
    [Show full text]
  • SMEX05 Quikscat/Seawinds Backscatter Data: Iowa
    Notice to Data Users: The documentation for this data set was provided solely by the Principal Investigator(s) and was not further developed, thoroughly reviewed, or edited by NSIDC. Thus, support for this data set may be limited. SMEX05 QuikSCAT/SeaWinds Backscatter Data: Iowa Summary This data set includes radar backscatter data collected over the Soil Moisture Experiment 2005 (SMEX05) area of Iowa, USA from 01 May 2005 through 31 July 2005. The SeaWinds scatterometer on the NASA Quick Scatterometer (QuikSCAT) satellite collected backscatter data. The total volume of this data set is approximately 18 megabytes. Data are provided in gzip compressed Brigham Young University - Microwave Earth Remote Sensing (BYU-MERS) Scatterometer Image Reconstruction (SIR) images and Graphics Interchange Format (GIF) images, and are available via FTP. The Advanced Microwave Scanning Radiometer - Earth Observing System (AMSR-E) is a mission instrument launched aboard NASA's Aqua satellite on 04 May 2002. AMSR-E validation studies linked to SMEX are designed to evaluate the accuracy of AMSR-E soil moisture data. Specific validation objectives include: assessing and refining soil moisture algorithm performance; verifying soil moisture estimation accuracy; investigating the effects of vegetation, surface temperature, topography, and soil texture on soil moisture accuracy; and determining the regions that are useful for AMSR-E soil moisture measurements. Citing These Data: Long, David G. 2010. SMEX05 QuikSCAT/SeaWinds Backscatter Data: Iowa. Boulder, Colorado USA: NASA DAAC at the National Snow and Ice Data Center. Overview Table Category Description gzip compressed SIR Data format GIF Spatial coverage 41.5º to 42.5º N, 93º to 95º W Temporal coverage 01 May 2005 to 31 July 2005 queh-a-NAm05-121-124.sir.SME.gz File naming convention queh-a-NAm05-121-124.sir.SM.gif .gz files range in size from 7 to 32 KB File size .gif files range in size from 3 KB to 14 KB Procedures for obtaining data Data are available via FTP.
    [Show full text]
  • Learning from the Nustar Launch Delay
    STORY | ASK MAGAZINE | 5 laitbrO/hceltaC-LPJ/ASA N:itder CotohP N:itder laitbrO/hceltaC-LPJ/ASA Engineers in the final stages of assembling NuSTAR. LEARNING FROM THE NUSTAR LAUNCH DELAY NuSTAR, the Nuclear Spectroscopic Telescope Array, contains the first focusing telescopes designed to look at high-energy X-ray radiation. It is expected to contribute to a better understanding of collapsing stars and black holes. BY DON COHEN 6 | ASK MAGAZINE Because NuSTAR is designed to function in an equatorial through a series of increasingly demanding flights that start by orbit, it launched on a Pegasus XL rocket from a point south determining basic airworthiness and eventually map the limits of Kwajalein Atoll, in the Marshall Islands, on June 13, 2012. of safe performance. Simulations matter for aircraft design and Built by Orbital Sciences Corporation, the Pegasus is carried construction, too, of course, but not as critically. to approximately 39,000 ft. by an L-1011 aircraft. Released at Although data were arriving late from Orbital, the LSP that altitude, the three-stage, winged rocket ignites its first-stage technical team worked extremely hard to execute the plan motor to continue its journey to orbit. during February and early March, and the mid-March launch The June launch came almost three months after a planned date still seemed achievable, provided no further serious issues early March launch date. The story of that delay—why it were identified. Unfortunately, as the date for the all-important happened and what both NASA and Orbital Sciences learned guidance, navigation, and control review approached, both from the experience—offers insight into how NASA deals with Orbital and LSP were finding that simulations exhibited far too technical risks and into the agency’s developing relationships many failed cases to proceed.
    [Show full text]
  • U.S. Earth Observation/Environmental Satellites
    U.S. Earth Observation/Environmental Satellites •NOAA Geostationary Operational Environmental Satellite System (GOESS) • NOAA Polar Operational Environmental Satellite System (POESS) •DOD Defense Meteorological Satellite Program (DMSP) •NASA Earth Observing System (EOS) Satellites John “JC” Coffey February 2012 NOAA Geostationary Operational Environmental Satellite System (GOESS) ♦ The system uses two satellites in geosynchronous orbits 19340 nm above the earth, one over the east coast of the US and one over the west coast providing overlapping continuous coverage of the US, Atlantic to the west coast of Africa, and eastern Pacific to 140 degrees west longitude ♦ Satellite instrumentation consists of an imager and sounder • The imager provides 1 channel of visible and 4 channels of infrared images with a scan rate for full earth disc of less than or equal to 26 minutes • The sounder provides temperature and moisture profiles of the atmosphere ♦ Data is continuously transmitted to ground terminals for processing and rebroadcast to primary weather service offices in the US and around the world and to the global research community 2 NOAA Polar Operational Environmental Satellite System (POESS) ♦ The system uses two satellites in sun synchronous, nearly polar orbits 470 nm above the earth. Each satellite provides global coverage every 14.1 hours. ♦ Satellite instrumentation includes an Advanced Very High Resolution Radiometer (AVHRR), a High Resolution Infrared Radiation Sounder (HIRS), Advanced Microwave Sounding Unit-A (AMSU-A) and Advanced Microwave Sounding Unit-B (AMSU-B) • AVHRR provides visible and infrared images of the Earth and its atmosphere • HIRS provides data to calculate vertical temperature profiles from the Earth’s surface to an altitude of approximately 22 nm.
    [Show full text]
  • Chapter 7 Instrument Packages
    Chapter 7 Instrument Packages Richard E. Cofield, William A. Imbriale, and Richard E. Hodges This chapter describes antennas used on various instrument packages for science spacecraft. The instruments have been primarily used for the Earth Observing System (EOS), a series of spacecraft to observe Earth from the unique vantage point of space. This chapter includes radiometers (7.1–7.3), scatterometers (7.4), radars (7.5), and altimeters (7.6). 7.1 Radiometers Richard E. Cofield Radiometry is the measurement of electromagnetic radiation using highly sensitive receivers. The blackbody radiation spectrum given by Planck’s radiation law provides a reference against which the radiation spectra of real bodies at the same physical temperature are compared. The spectral, polarization, and angular variations of a scene of interest are dictated by the geometrical configuration and physical properties (dielectric and thermal) of surfaces and interior regions of (1) the materials under study, and (2) the medium (atmosphere or space) through which we make observations. Radiometer parameters (such as frequency, viewing angle, and polarization) can be chosen to relate the radiometer’s output signal strength to properties of the observed scenes. This section describes passive microwave radiometry from spaceborne instruments developed at Jet Propulsion Laboratory (JPL): passive in contrast to active (radio detection and ranging [radar] or laser induced differential absorption radar [lidar]) systems such as altimeters and the scatterometers discussed below, and microwave as a consequence of Planck’s law at the 341 342 Chapter 7 temperature ranges of natural emitters. Hence, it is convenient to express radiometric signals (radiant power per unit bandwidth) as radiances having units of temperature (kelvin, or K).
    [Show full text]