A Planar Linear Arboricity Conjecture∗ Marek Cygan1,Lukasz Kowalik1, Borut Luˇzar2† 1 Institute of Informatics, Warsaw University, Banacha 2, 02-097 Warsaw, Poland {cygan,kowalik}@mimuw.edu.pl 2 Institute of Mathematics, Physics, and Mechanics, Jadranska 19, 1111 Ljubljana, Slovenia
[email protected] Abstract The linear arboricity la(G) of a graph G is the minimum number of linear forests that partition the edges of G. In 1984, Akiyama et al. [1] stated the Linear Arboricity Conjecture (LAC), that the linear arboricity of any simple graph of maximum degree ∆ ∆ ∆+1 is either 2 or 2 . In [14, 17] it was proven that LAC holds for all planar graphs. ∆ LAC implies that for ∆ odd, la(G)= 2 . We conjecture that for planar graphs this equality is true also for any even ∆ ≥ 6. In this paper we show that it is true for any even ∆ ≥ 10, leaving open only the cases ∆ = 6, 8. We present also an O(n log n) algorithm for partitioning a planar graph into max{la(G), 5} linear forests, which is optimal when ∆ ≥ 9. 1 Introduction In this paper we consider only undirected and simple graphs. A linear forest is a forest in which every connected component is a path. The linear arboricity la(G) of a graph G is the minimum number of linear forests in G, whose union is the set of all edges of G. This one of the most natural graph covering notions was introduced by Harary [9] in 1970. Note that for ∆ any graph of maximum degree ∆ one needs at least ⌈ 2 ⌉ linear forests to cover all the edges.