Tight Junctions: from Simple Barriers to Multifunctional Molecular Gates
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Molecular Dynamics Simulations of Tight Junction Proteins
Molecular Dynamics Simulations of Tight Junction Proteins Eleni Fitsiou This dissertation is submitted for the degree of Doctor of Philosophy August 2020 Department of Chemistry I would like to dedicate this dissertation to my husband Antonios and sons Dimitrios and Ioannis. ii “Wisdom begins in wonder” Socrates iii Declaration I, Eleni Fitsiou, declare that this thesis titled ‘Molecular Dynamics Simulations of Tight Junction Proteins’ has not been submitted in support of an application for another degree at this or any other university. It is the result of my own work and includes nothing that is the outcome of work done in collaboration except where specifically indicated. Where I have quoted from the work of others, the source is always given. Lancaster University, UK iv Abstract Tight junctions (TJs) are specialised cell-cell structures that serve primarily as a barrier to molecular transport through the intercellular space between the cells. The claudin family of proteins are the main structural and functional components of the TJ strands that circumscribe the cells. The detailed molecular organisation at the TJs is not entirely resolved, being relatively inaccessible by current experimental methods. Here, we have employed molecular dynamics simulations using both atomistic and coarse-grained models to investigate the TJ structure formed by claudin-1 using self-assembly coupled with free energy calculations and enhanced sampling techniques. A feature of the studies is that the self-assembly simulations have been carried out using atomistic detail (a first) by simulating only the extracellular domains of claudin-1 in an implied membrane. The results show that the cis-interaction can occur in the absence of trans-interacting partners and that a claudin dimer is the smallest stable unit. -
Tight Junction Structure and Function Revisited
Trends in Cell Biology Review Tight Junction Structure and Function Revisited Tetsuhisa Otani 1,2,3,*,@ and Mikio Furuse1,2,3 Tight junctions (TJs) are intercellular junctions critical for building the epithelial Highlights barrier and maintaining epithelial polarity. The claudin family of membrane pro- Tight junction strand formation and teins play central roles in TJ structure and function. However, recent findings membrane apposition formation are have uncovered claudin-independent aspects of TJ structure and function, and differentially regulated. additional players including junctional adhesion molecules (JAMs), membrane Claudins form charge-selective small lipids, phase separation of the zonula occludens (ZO) family of scaffolding pores, while junctional adhesion mole- proteins, and mechanical force have been shown to play important roles in TJ cules regulate the formation of size- structure and function. In this review, we discuss how these new findings have selective large pores. the potential to transform our understanding of TJ structure and function, and Tight junction proteins regulate epithelial how the intricate network of TJ proteins and membrane lipids dynamically polarity, although how tight junctions interact to drive TJ assembly. form a membrane fence remains unclear. Tight Junctions Regulate Epithelial Barrier and Polarity Tight junction associated membrane proteins regulate tight junction assembly – Tight junctions (TJs) are epithelial intercellular junctions located at the most apical region of cell in conjunction with zonula occludens cell contacts. TJs are structurally defined by electron microscopy. On ultrathin sections, TJs protein phase separation, membrane appear as a region with close apposition of adjacent plasma membranes where adjacent plasma lipids, mechanical force, and polarity signaling proteins. -
Cadherin-Mediated Adhesion Is Essential for Myofibril Continuity Across the Plasma Membrane but Not for Assembly of the Contract
Research Article 1471 Cadherin-mediated adhesion is essential for myofibril continuity across the plasma membrane but not for assembly of the contractile apparatus Yang Luo and Glenn L. Radice* Center for Research on Reproduction and Women’s Health, University of Pennsylvania School of Medicine, Philadelphia, PA 19104, USA *Author for correspondence (e-mail: [email protected]) Accepted 23 December 2002 Journal of Cell Science 116, 1471-1479 © 2003 The Company of Biologists Ltd doi:10.1242/jcs.00339 Summary The strong coordinated contraction of heart muscle is however, alignment of the myofibrils through regions of dependent on the correct alignment and connection of the cell-cell contact was lost, resulting in their random myofibrils across the plasma membrane. Previous studies orientation. Gap junctions were perturbed in the N- indicate that N-cadherin is involved in cardiac myocyte cadherin-null myocytes. By contrast, focal contacts adhesion and myofibrillogenesis. To investigate whether N- appeared normal in the mutant cells. Furthermore, E- cadherin is specifically required for normal myocyte cadherin restored normal cell morphology and behavior structure and function, we cultured myocytes from wild- to the N-cadherin-deficient myocytes, including proper type, N-cadherin-null and mutant embryos expressing the alignment of the myofibrils. We conclude that a different epithelial cadherin E-cadherin. In contrast to previous adhesive system, most probably integrin, is responsible for studies in chicken using N-cadherin-perturbing antibodies, myofibrillogenesis in the N-cadherin-null myocytes. our in vitro studies with mouse cells demonstrate that N- cadherin is not required for myofibrillogenesis, but is critical for myofibril organization. -
Adherens Junctions, Desmosomes and Tight Junctions in Epidermal Barrier Function Johanna M
14 The Open Dermatology Journal, 2010, 4, 14-20 Open Access Adherens Junctions, Desmosomes and Tight Junctions in Epidermal Barrier Function Johanna M. Brandner1,§, Marek Haftek*,2,§ and Carien M. Niessen3,§ 1Department of Dermatology and Venerology, University Hospital Hamburg-Eppendorf, Hamburg, Germany 2University of Lyon, EA4169 Normal and Pathological Functions of Skin Barrier, E. Herriot Hospital, Lyon, France 3Department of Dermatology, Center for Molecular Medicine, Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, Germany Abstract: The skin is an indispensable barrier which protects the body from the uncontrolled loss of water and solutes as well as from chemical and physical assaults and the invasion of pathogens. In recent years several studies have suggested an important role of intercellular junctions for the barrier function of the epidermis. In this review we summarize our knowledge of the impact of adherens junctions, (corneo)-desmosomes and tight junctions on barrier function of the skin. Keywords: Cadherins, catenins, claudins, cell polarity, stratum corneum, skin diseases. INTRODUCTION ADHERENS JUNCTIONS The stratifying epidermis of the skin physically separates Adherens junctions are intercellular structures that couple the organism from its environment and serves as its first line intercellular adhesion to the cytoskeleton thereby creating a of structural and functional defense against dehydration, transcellular network that coordinate the behavior of a chemical substances, physical insults and micro-organisms. population of cells. Adherens junctions are dynamic entities The living cell layers of the epidermis are crucial in the and also function as signal platforms that regulate formation and maintenance of the barrier on two different cytoskeletal dynamics and cell polarity. -
Tight Junctions: from Simple Barriers to Multifunctional Molecular Gates
Tight Junctions: From simple barriers to multifunctional molecular gates Ceniz Zihni1, Clare Mills1, Karl Matter1# and Maria S Balda1# Department of Cell Biology UCL Institute of Ophthalmology University College London London EC1V 9EL, UK # Address for correspondence UCL Institute of Ophthalmology University College London Bath Street London EC1V 9EL United Kingdom Tel – 44 20 7608 4014/6861 Fax – 44 20 7608 4034 E-mail: [email protected]/[email protected] Main body of text: 5983 words 1 Epithelia and endothelia separate different tissue compartments and protect multicellular organisms form the outside world. This requires the formation of tight junctions, selective gates that control paracellular diffusion of ions and solutes. Tight junctions also form the border between the apical and basolateral plasma membrane domains and are linked to the machinery that controls apicobasal polarization. Additionally, signalling networks that guide diverse cell behaviours and functions are connected to tight junctions, transmitting information to and from the cytoskeleton, nucleus and different cell adhesion complexes. Here, we discuss recent advances in our understanding of the molecular architecture and cellular functions of tight junctions. Microscopists in the 19th century described the paracellular space between neighbouring cells within an epithelial sheet to be sealed by a “terminal bar”, a structure later resolved by electron microscopy into a composite of distinct cell-cell junctions that is now called the epithelial junctional complex and is formed by tight junctions, adherens junctions and desmosomes1,2. As the former two junctions are more tightly associated and often reside at the apical end of the lateral membrane, they are often referred to as the apical junctional complex (however, in endothelia, tight junctions and adherens junctions can be intercalated) (Fig. -
Adherens Junctions on the Move—Membrane Trafficking of E-Cadherin
Downloaded from http://cshperspectives.cshlp.org/ on September 26, 2021 - Published by Cold Spring Harbor Laboratory Press Adherens Junctions on the Move—Membrane Trafficking of E-Cadherin Lena Bru¨ser1 and Sven Bogdan1,2 1Institut fu¨r Neurobiologie, Universita¨tMu¨nster, Badestraße 9, 48149 Mu¨nster, Germany 2Institut fu¨r Physiologie und Pathophysiologie, Abteilung Molekulare Zellphysiologie, Phillips-Universita¨t Marburg, Emil-Mannkopff-Straße 2, 35037 Marburg, Germany Correspondence: [email protected] Cadherin-based adherens junctions are conserved structuresthat mediate epithelial cell–cell adhesion in invertebrates andvertebrates. Despite their pivotal function in epithelial integrity, adherens junctions show a remarkable plasticity that is a prerequisite for tissue architecture and morphogenesis. Epithelial cadherin (E-cadherin) is continuously turned over and under- goes cycles of endocytosis, sorting and recycling back to the plasma membrane. Mammalian cell culture and genetically tractable model systems such as Drosophila have revealed con- served, but also distinct, mechanisms in the regulation of E-cadherin membrane trafficking. Here, we discuss our current knowledge about molecules and mechanisms controlling endocytosis, sorting and recycling of E-cadherin during junctional remodeling. he ability of epithelial cells to organize into Classical cadherins such as E-cadherin are Tmonolayered sheets is a prerequisite for single-pass membrane proteins with character- multicellularity, thereby providing tissue in- istic extracellular cadherin (EC) repeat do- tegrity, barrier function, and tissue polarity in mains that mediate trans-homophilic interac- metazoan organisms. Adherens junctions (AJs) tions between neighboring cells. While the are conserved key structures that mediate cell– numbers of ECs vary between different species, cell adhesion in invertebrates and vertebrates. -
Actin-Related Protein2/3 Complex Regulates Tight Junctions and Terminal Differentiation to Promote Epidermal Barrier Formation
Actin-related protein2/3 complex regulates tight junctions and terminal differentiation to promote epidermal barrier formation Kang Zhoua,1, Andrew Muroyamaa,1, Julie Underwooda, Rebecca Leyleka, Samriddha Raya, Scott H. Soderlinga,b, and Terry Lechlera,c,2 Departments of aCell Biology, bNeurobiology, and cDermatology, Duke University Medical Center, Durham, NC 27710 Edited by Joan S. Brugge, Harvard Medical School, Boston, MA, and approved August 19, 2013 (received for review May 3, 2013) The epidermis provides an essential seal from the external gastrulation in Caenorhabditis elegans embryos(11,12).In environment and retains fluids within the body. To form an Drosophila, the Arp2/3 complex plays roles in myoblast fusion, effective barrier, cells in the epidermis must form tight junctions ring canal expansion, adherens junction formation, Notch sig- and terminally differentiate into cornified envelopes. Here, we naling, and bristle development (6, 13, 14). demonstrate that the branched actin nucleator, the actin-related The functions of the Arp2/3 complex in intact tissues during protein (Arp)2/3 complex, is unexpectedly required for both these mammalian development and homeostasis have only begun to be activities. Loss of the ArpC3 subunit of the Arp2/3 complex addressed. Loss of the Arp2/3 complex globally results in early resulted in minimal changes in the morphogenesis and architec- lethality at the blastocyst stage in mice (15). In the mouse oocyte, ture of this stratified squamous epithelium, but resulted in the Arp2/3 complex is required for asymmetric cell division profound defects in its physiology. Mutant embryos did not through positioning of the mitotic spindle (16). -
The Density of Small Tight Junction Pores Varies Among Cell Types and Is Increased by Expression of Claudin-2
298298 Research Article The density of small tight junction pores varies among cell types and is increased by expression of claudin-2 Christina M. Van Itallie1,*, Jennifer Holmes2, Arlene Bridges3, Jody L. Gookin4, Maria R. Coccaro4, William Proctor3, Oscar R. Colegio5 and James M. Anderson2 1Department of Medicine, 2Cell and Molecular Physiology and 3School of Pharmacy, University of North Carolina, Chapel Hill, NC 27599, USA 4Department of Molecular Biomedical Sciences, North Carolina State University, Raleigh, NC 27695, USA 5Department of Dermatology, Yale University School of Medicine, New Haven, CT 06510, USA *Author for correspondence (e-mail: [email protected]) Accepted 4 November 2007 Journal of Cell Science 121, 298-305 Published by The Company of Biologists 2008 doi:10.1242/jcs.021485 Summary Epithelial tight junctions contain size- and charge-selective cell types and is not necessarily related to electrical resistance. pores that control the paracellular movement of charged and Expression of claudin-2 results in a selective increase in pore noncharged solutes. Claudins influence the charge selectivity number but not size and has no effect on the permeability of and electrical resistance of junctions, but there is no direct PEGs that are larger than the pores; however, neither evidence describing pore composition or whether pore size or knockdown of claudin-2 nor overexpression of several other density differs among cell types. To characterize paracellular claudins altered either the number of small pores or their size. pores independent of influences from charge selectivity, we We speculate that permeability of all small solutes is profiled the ‘apparent permeabilities’ (Papp) of a continuous proportional to pore number but that small electrolytes are series of noncharged polyethylene glycols (PEGs) across subject to further selectivity by the profile of claudins monolayers of five different epithelial cell lines and porcine expressed, explaining the dissociation between the Papp for ileum. -
Regulated Assembly of Tight Junctions by Protein Kinase C ROBERT 0
Proc. Natl. Acad. Sci. USA Vol. 92, pp. 6072-6076, June 1995 Cell Biology Regulated assembly of tight junctions by protein kinase C ROBERT 0. STUART AND SANJAY K. NIGAM* Renal Division, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA 02115 Communicated by Carl W. Gottschalk, University of North Carolina, Chapel Hill, NC, March 14, 1995 (received for review December 7, 1994) ABSTRACT We have previously shown that protein phos- We have previously observed localized changes in intracel- phorylation plays an important role in the sorting and assembly lular calcium at sites of cell-cell contact as MDCK cells of tight junctions. We have now examined in detail the role of establish intercellular junctions and hypothesized a role for this protein kinases in intercellular junction biogenesis by using a ion in signaling relevant to intercellular-junction formation (4, combination of highly specific and broad-spectrum inhibitors 6). In addition, previous studies have suggested a role for that act by independent mechanisms. Our data indicate that phosphorylation in the assembly of tight junctions and sorting protein kinase C (PKC) is required for the proper assembly of of tight-junction proteins, zona occludens 1 (ZO-1) and cin- tight junctions. Low concentrations of the specific inhibitor of gulin, to the tight junction (3, 7). Using a combination of highly PKC, calphostin C, markedly inhibited development oftransepi- specific, as well as broad-spectrum, inhibitors of protein ki- thelial electrical resistance, a functional measure of tight- nases, we now detect apparent selective regulation of the junction biogenesis. The effect of PKC inhibitors on the devel- biogenesis oftightjunctions by protein kinase C (PKC) without opment of tight junctions, as measured by resistance, was par- immunocytochemical evidence of an effect on desmosome and alleled by a delay in the sorting ofthe tight-junction protein, zona adherens junction biogenesis. -
University of London Thesis
REFERENCE ONLY UNIVERSITY OF LONDON THESIS Degree fV \D Year "L ooS Name of Author C\A.OO^i COPYRIGHT This is a thesis accepted for a Higher Degree of the University of London. It is an unpublished typescript and the copyright is held by the author. All persons consulting the thesis must read and abide by the Copyright Declaration below. COPYRIGHT DECLARATION I recognise that the copyright of the above-described thesis rests with the author and that no quotation from it or information derived from it may be published without the prior written consent of the author. LOAN Theses may not be lent to individuals, but the University Library may lend a copy to approved libraries within the United Kingdom, for consultation solely on the premises of those libraries. Application should be made to: The Theses Section, University of London Library, Senate House, Malet Street, London WC1E 7HU. REPRODUCTION University of London theses may not be reproduced without explicit written permission from the University of London Library. Enquiries should be addressed to the Theses Section of the Library. Regulations concerning reproduction vary according to the date of acceptance of the thesis and are listed below as guidelines. A. Before 1962. Permission granted only upon the prior written consent of the author. (The University Library will provide addresses where possible). B. 1962 - 1974. In many cases the author has agreed to permit copying upon completion of a Copyright Declaration. C. 1975 - 1988. Most theses may be copied upon completion of a Copyright Declaration. D. 1989 onwards. Most theses may be copied. -
Relocalization of Cell Adhesion Molecules During Neoplastic Transformation of Human Fibroblasts
INTERNATIONAL JOURNAL OF ONCOLOGY 39: 1199-1204, 2011 Relocalization of cell adhesion molecules during neoplastic transformation of human fibroblasts CRISTINA BELGIOVINE, ILARIA CHIODI and CHIARA MONDELLO Istituto di Genetica Molecolare, Consiglio Nazionale delle Ricerche, Via Abbiategrasso 207, 27100 Pavia, Italy Received May 6, 2011; Accepted June 10, 2011 DOI: 10.3892/ijo.2011.1119 Abstract. Studying neoplastic transformation of telomerase cell-cell contacts (1,2). Cadherins are transmembrane glyco- immortalized human fibroblasts (cen3tel), we found that the proteins mediating homotypic cell-cell adhesion via their transition from normal to tumorigenic cells was associated extracellular domain. Through their cytoplasmic domain, with the loss of growth contact inhibition, the acquisition of an they bind to catenins, which mediate the connection with the epithelial-like morphology and a change in actin organization, actin cytoskeleton. Different types of cadherins are expressed from stress fibers to cortical bundles. We show here that these in different cell types; e.g. N-cadherin is typically expressed variations were paralleled by an increase in N-cadherin expres- in mesenchymal cells, such as fibroblasts, while E-cadherin sion and relocalization of different adhesion molecules, such participates in the formation of adherens junctions in cells of as N-cadherin, α-catenin, p-120 and β-catenin. These proteins epithelial origin. The role of E-cadherin and β-catenin in the presented a clear membrane localization in tumorigenic cells development and progression of tumors of epithelial origin compared to a more diffuse, cytoplasmic distribution in is well documented (3). In particular, loosening of cell-cell primary fibroblasts and non-tumorigenic immortalized cells, contacts because of loss of E-cadherin expression and nuclear suggesting that tumorigenic cells could form strong cell-cell accumulation of β-catenin are hallmarks of the epithelial- contacts and cell contacts did not induce growth inhibition. -
Molecular Heterogeneity of Adherens Junctions
Published October 1, 1985 Molecular Heterogeneity of Adherens Junctions BENJAMIN GEIGER, TALILA VOLK, and TOVA VOLBERG Department of Chemical Immunology, The Weizmann Institute of Science, Rehovot 76100, Israel ABSTRACT We describe here the subcellular distributions of three junctional proteins in different adherens-type contacts. The proteins examined include vinculin, talin, and a recently described 135-kD protein (Volk, T., and B. Geiger, 1984, EMBO (Eur. Mol. Biol. Organ.) J., 10:2249-2260). Immunofluorescent localization of the three proteins indicated that while vinculin was ubiquitously present in all adherens junctions, the other two showed selective Downloaded from and mutually exclusive association with either cell-substrate or cell-cell adhesions. Talin was abundant in focal contacts and in dense plaques of smooth muscle, but was essentially absent from intercellular junctions such as intercalated disks or adherens junctions of lens fibers. The 135-kD protein, on the other hand, was present in the latter two loci and was apparently absent from membrane-bound plaques of gizzard or from focal contacts. Radioimmunoassay of tissue extracts and immunolabeling of cultured chick lens cells indicated that the selective jcb.rupress.org presence of talin and of the 135-kD protein in different cell contacts is spatially regulated within individual cells. On the basis of these findings it was concluded that adherens junctions are molecularly heterogeneous and consist of at least two major subgroups. Contacts with noncellular sub- on June 15, 2009 strates contain talin and vinculin but not the 135-kD protein, whereas their intercellular counterparts contain the latter two proteins and are devoid of talin.