Integrity of SOS1/EPS8/ABI1 Tri-Complex Determines Ovarian Cancer Metastasis

Total Page:16

File Type:pdf, Size:1020Kb

Integrity of SOS1/EPS8/ABI1 Tri-Complex Determines Ovarian Cancer Metastasis Published OnlineFirst November 30, 2010; DOI: 10.1158/0008-5472.CAN-10-2394 Cancer Tumor and Stem Cell Biology Research Integrity of SOS1/EPS8/ABI1 Tri-Complex Determines Ovarian Cancer Metastasis Huijun Chen1,2, Xufeng Wu3, Zhixing K. Pan4, and Shuang Huang2 Abstract Ovarian cancer is mainly confined in peritoneal cavity and its metastasis is often associated with the formation of malignant ascites. As lysophosphatidic acid (LPA) is present at high levels in ascites of ovarian cancer patients and potently stimulates cell migration, we reason that LPA-stimulated cell migration may play an important role in ovarian cancer metastasis. Here, we show that only ovarian cancer cell lines with LPA migratory response undergo peritoneal metastatic colonization. LPA-stimulated cell migration is required for metastatic colonization because knockdown of LPA receptor subtype 1 (LPAR1) abolishes this event. However, the difference in metastatic potentials is not caused by the absence of LPAR1 because both metastatic and nonmetastatic lines express similar levels of LPAR1. Instead, we find that LPA can activate Rac only in metastatic cells and that metastatic colonization of ovarian cancer cells necessitates Rac activity. These results thus suggest that LPA-induced Rac activation is a prerequisite for ovarian cancer metastasis. In metastatic cells, Rac activation is facilitated by SOS1/EPS8/ABI1 tri-complex and the integrity of this tri-complex is essential for LPA- stimulated cell migration and metastatic colonization. We show that at least 1 member of SOS1/EPS8/ABI1 tri- complex is absent in nonmetastatic ovarian cancer cells and reexpressing the missing one conferred them with metastatic capability. Importantly, coexpression of SOS1, EPS8, and ABI1, but not of any individual member of SOS1/EPS8/ABI1 tri-complex, correlates with advanced stages and shorter survival of ovarian cancer patients. Our study implicates that the integrity of SOS1/EPS8/ABI1 tri-complex is a determinant of ovarian cancer metastasis. Cancer Res; 70(23); 9979–90. Ó2010 AACR. Introduction (3, 4). Apparently, the ability of ovarian cancer cells to migrate is essential for ovarian cancer metastasis. Ovarian cancer has the highest mortality rate among gyne- Cell migration is a complex process involving the reorga- cologic cancers mainly due to complication of metastasis (1). nization of actin cytoskeleton that is facilitated by the mem- Unlike other solid tumors that rely on the vasculature for bers of the Rho GTPases including Rac, Cdc42, and Rho (5–7). metastasis, ovarian cancer is predominantly confined within In the process of cell migration, Rac facilitates the formation the abdominal cavity and spread by direct extension to of actin-rich membrane ruffle, called lamellipodia, at the adjacent organs and/or disseminate throughout the perito- leading edge of migrating cells. Cdc42 regulates cell polarity neal cavity (2, 3). A widely recognized behavior of ovarian and filopodia formation, thus controlling the direction of cell cancer is its ability to seed the abdominal cavity with tumor movement. Rho controls the formation of stress fibers and implants, subsequent migration of tumor cells into perito- maintains focal adhesions at the rear of the cells (6). Ras has neum and underlying organs, and the formation of ascites also been implicated to play an important role in cell migra- tion because microinjection of Ras-neutralizing antibody blocks cell migration (7) and forced expression of constitu- Authors' Affiliations: 1Department of Gynecological Oncology, Zhongnan tively active Ras mutant enhances ovarian cancer cell migra- Hospital of Wuhan University, Wuhan, Hubei, China; 2Department of tion (8). As Ras can activate Rac through Tiam1 (9), b-PIX (10), Biochemistry and Molecular Biology, Medical College of Georgia, Augusta, Georgia; 3Department of Gynecology, Hubei Maternity and Child or SOS1/EPS8/ABI1 tri-complex (11, 12), it is likely that Ras Care Hospital, Wuhan, Hubei, China; and 4Department of Medical Immu- may facilitate cell migration by regulating Rac activity. nology and Microbiology, University of Toledo Medical Center, Toledo, Lysophosphatidic acid (LPA) is a growth factor–like phos- Ohio pholipid and has been uniquely linked to ovarian malignan- Note: Supplementary material for this article is available at Cancer cies. For example, LPA triggers protease production/ Research Online (http://cancerres.aacrjournals.org/). activation (13, 14) and Cox-2 expression (15), thus facilitating Corresponding Author: Shuang Huang, Department of Biochemistry and Molecular Biology, Medical College of Georgia, 1459 Laney Walker ovarian cancer cell invasion. It also promotes angiogenesis by Blvd, Augusta, GA 30907. Phone: 706-721-1637; Fax: 706-721-6608; inducing the expression of various proangiogenic factors E-mail: [email protected]. including VEGF (16), IL8 (17), and Gro-a (18). Moreover, doi: 10.1158/0008-5472.CAN-10-2394 LPA can be produced and secreted into peritoneal cavity Ó2010 American Association for Cancer Research. by both ovarian cancer cells (19, 20) and mesothelial cells www.aacrjournals.org 9979 Downloaded from cancerres.aacrjournals.org on September 26, 2021. © 2010 American Association for Cancer Research. Published OnlineFirst November 30, 2010; DOI: 10.1158/0008-5472.CAN-10-2394 Chen et al. nu (21). Importantly, LPA is present at high levels in ascites of female nude mice (Hsd: athymic Nude-Foxn1 , Harlan Spra- ovarian cancer patients (22–25) and potently stimulates ovar- gue Dawley) were intraperitoneally injected with 107 cells per ian cancer cell migration (8, 26, 27). Therefore, ascite-borne mouse. To determine the role of LPAR1, SOS1, EPS8, and ABI1 LPA is likely to play a critical role in ovarian cancer metastasis in metastatic colonization, SK-OV3 and HEY cells expressing by facilitating cell migration. shRNAs against these genes were intraperitoneally injected In this study, we demonstrated an excellent correlation into mice. To determine the importance of Rac activity, cells between LPA migratory responses and metastatic potentials expressing constitutively active Rac1 (Rac1G12V) or dominant- in a panel of ovarian cancer cell lines. Preventing LPA-stimu- negative Rac1 (Rac1T17N) were injected into mice. Five weeks lated cell migration by silencing LPA receptor subtype 1 after injection, the mice were sacrificed and autopsied. Visible (LPAR1) diminished peritoneal metastatic colonization of metastatic implants were also collected and weighed. All ovarian cancer cells, implicating the importance of LPA- procedures were approved by the Institution Animal Care stimulated cell migration in ovarian cancer metastasis. LPA Committee at Medical College of Georgia. activates Rac only in metastatic cells, and a signaling pathway consisting of Ras-SOS1/EPS8/ABI1 tri-complex mediates LPA- Real-time quantitative PCR induced Rac activation. Interestingly, 1 or more members of Total RNA was extracted from cells using Trizol (Invitro- SOS1/EPS8/ABI1 tri-complex are absent in nonmetastatic gen), treated by DNase I and reverse transcribed with Super- ovarian cancer cells; however, reexpressing the missing mem- Scriptase II (Invitrogen). Generated cDNA was subjected to ber converts the nonmetastatic lines to metastatic ones. real-time PCR to measure LPAR1, LPAR2, LPAR3, and GAPDH Finally, we show that SOS1/EPS8/ABI1 coexpression, but levels with the respective TaqMan probes (Applied Biosys- not any one alone, correlates with advanced clinical stage tem). The expression levels were standardized by comparing and shorter survival of ovarian cancer patients. the Ct values of target with that of GAPDH. Materials and Methods Rac, Cdc42, and Rho activity assays Activation of Rac/Cdc42, and Rho was measured with the Cells, shRNAs, and other reagents Rac/Cdc42 and the Rho activity assay kits (Cellbio Labs). To All cells were maintained in DMEM containing 10% fetal determine the effect of LPA on Rac, Cdc42, or RhoA activity, calf serum at 37C in a humidified incubator supplied with 5% cells(2 Â 106 cellsper10-cm dish)wereserum-starved for2 days CO2. The shRNA sequences for each target genes were and then stimulated with 10 mmol/L of LPA for various times. designed using web-based Block-iT program (Invitrogen) The cells were lysed and analyzed for Rac, Cdc42, or RhoA and subcloned into pLV-shRNA vector (Biosettia). Informa- activity. To determine the effect of constitutively active Ras on tion for shRNA sequences, antibodies, and other reagents are Rac activity, HEY, IGROV1, OVCAR3, and SK-OV3 cells were described in Supplementary Data. infected with empty or H-RasG12V-containing retrovirus for 2 days followed by 2-day puromycin selection. The cells were Transwell cell migration assay lysed and analyzed for Rac activity. To determine how silencing Transwell cell migration was assayed as previously Tiam1, SOS1, EPS8, and ABI1 affected LPA-induced Rac activa- described (28). Briefly, the lower phase of Transwell was tion, HEY and SK-OV3 cells were incubated with lentiviral coated with 10 mg/mL of collagen I or laminin, and serum- vectors containing the respective shRNAs for 2 days and starved free medium with or without 10 mmol/L of LPA was added to for another 2 days. The cells were stimulated with 10 mmol/L of lower chambers. Serum-starved cells (105 per well) were added LPA for 2 or 5 minutes followed by the analysis of Rac activity. to Transwells and allowed to migrate for 4 hours. Cells that To determine the effect of forced expression of SOS1, EPS8, and remained
Recommended publications
  • Intersectin 1 Forms Complexes with SGIP1 and Reps1 in Clathrin-Coated
    Biochemical and Biophysical Research Communications 402 (2010) 408–413 Contents lists available at ScienceDirect Biochemical and Biophysical Research Communications journal homepage: www.elsevier.com/locate/ybbrc Intersectin 1 forms complexes with SGIP1 and Reps1 in clathrin-coated pits ⇑ Oleksandr Dergai a, ,1, Olga Novokhatska a,1, Mykola Dergai a, Inessa Skrypkina a, Liudmyla Tsyba a, Jacques Moreau b, Alla Rynditch a a Department of Functional Genomics, Institute of Molecular Biology and Genetics, NASU, 150 Zabolotnogo Street, 03680 Kyiv, Ukraine b Molecular Mechanisms of Development, Jacques Monod Institute, Development and Neurobiology Program, UMR7592 CNRS – Paris Diderot University, 15 rue Hélène Brion, 75205 Paris Cedex 13, France article info abstract Article history: Intersectin 1 (ITSN1) is an evolutionarily conserved adaptor protein involved in clathrin-mediated endo- Received 7 October 2010 cytosis, cellular signaling and cytoskeleton rearrangement. ITSN1 gene is located on human chromosome Available online 12 October 2010 21 in Down syndrome critical region. Several studies confirmed role of ITSN1 in Down syndrome pheno- type. Here we report the identification of novel interconnections in the interaction network of this endo- Keywords: cytic adaptor. We show that the membrane-deforming protein SGIP1 (Src homology 3-domain growth Endocytosis factor receptor-bound 2-like (endophilin) interacting protein 1) and the signaling adaptor Reps1 (RalBP Adaptor proteins associated Eps15-homology domain protein) interact with ITSN1 in vivo. Both interactions are mediated Intersectin 1 by the SH3 domains of ITSN1 and proline-rich motifs of protein partners. Moreover complexes compris- Protein interactions SGIP1 ing SGIP1, Reps1 and ITSN1 have been identified. We also identified new interactions between SGIP1, Reps1 Reps1 and the BAR (Bin/amphiphysin/Rvs) domain-containing protein amphiphysin 1.
    [Show full text]
  • UCSD MOLECULE PAGES Doi:10.6072/H0.MP.A002549.01 Volume 1, Issue 2, 2012 Copyright UC Press, All Rights Reserved
    UCSD MOLECULE PAGES doi:10.6072/H0.MP.A002549.01 Volume 1, Issue 2, 2012 Copyright UC Press, All rights reserved. Review Article Open Access WAVE2 Tadaomi Takenawa1, Shiro Suetsugu2, Daisuke Yamazaki3, Shusaku Kurisu1 WASP family verprolin-homologous protein 2 (WAVE2, also called WASF2) was originally identified by its sequence similarity at the carboxy-terminal VCA (verprolin, cofilin/central, acidic) domain with Wiskott-Aldrich syndrome protein (WASP) and N-WASP (neural WASP). In mammals, WAVE2 is ubiquitously expressed, and its two paralogs, WAVE1 (also called suppressor of cAMP receptor 1, SCAR1) and WAVE3, are predominantly expressed in the brain. The VCA domain of WASP and WAVE family proteins can activate the actin-related protein 2/3 (Arp2/3) complex, a major actin nucleator in cells. Proteins that can activate the Arp2/3 complex are now collectively known as nucleation-promoting factors (NPFs), and the WASP and WAVE families are a founding class of NPFs. The WAVE family has an amino-terminal WAVE homology domain (WHD domain, also called the SCAR homology domain, SHD) followed by the proline-rich region that interacts with various Src-homology 3 (SH3) domain proteins. The VCA domain located at the C-terminus. WAVE2, like WAVE1 and WAVE3, constitutively forms a huge heteropentameric protein complex (the WANP complex), binding through its WHD domain with Abi-1 (or its paralogs, Abi-2 and Abi-3), HSPC300 (also called Brick1), Nap1 (also called Hem-2 and NCKAP1), Sra1 (also called p140Sra1 and CYFIP1; its paralog is PIR121 or CYFIP2). The WANP complex is recruited to the plasma membrane by cooperative action of activated Rac GTPases and acidic phosphoinositides.
    [Show full text]
  • Defining Functional Interactions During Biogenesis of Epithelial Junctions
    ARTICLE Received 11 Dec 2015 | Accepted 13 Oct 2016 | Published 6 Dec 2016 | Updated 5 Jan 2017 DOI: 10.1038/ncomms13542 OPEN Defining functional interactions during biogenesis of epithelial junctions J.C. Erasmus1,*, S. Bruche1,*,w, L. Pizarro1,2,*, N. Maimari1,3,*, T. Poggioli1,w, C. Tomlinson4,J.Lees5, I. Zalivina1,w, A. Wheeler1,w, A. Alberts6, A. Russo2 & V.M.M. Braga1 In spite of extensive recent progress, a comprehensive understanding of how actin cytoskeleton remodelling supports stable junctions remains to be established. Here we design a platform that integrates actin functions with optimized phenotypic clustering and identify new cytoskeletal proteins, their functional hierarchy and pathways that modulate E-cadherin adhesion. Depletion of EEF1A, an actin bundling protein, increases E-cadherin levels at junctions without a corresponding reinforcement of cell–cell contacts. This unexpected result reflects a more dynamic and mobile junctional actin in EEF1A-depleted cells. A partner for EEF1A in cadherin contact maintenance is the formin DIAPH2, which interacts with EEF1A. In contrast, depletion of either the endocytic regulator TRIP10 or the Rho GTPase activator VAV2 reduces E-cadherin levels at junctions. TRIP10 binds to and requires VAV2 function for its junctional localization. Overall, we present new conceptual insights on junction stabilization, which integrate known and novel pathways with impact for epithelial morphogenesis, homeostasis and diseases. 1 National Heart and Lung Institute, Faculty of Medicine, Imperial College London, London SW7 2AZ, UK. 2 Computing Department, Imperial College London, London SW7 2AZ, UK. 3 Bioengineering Department, Faculty of Engineering, Imperial College London, London SW7 2AZ, UK. 4 Department of Surgery & Cancer, Faculty of Medicine, Imperial College London, London SW7 2AZ, UK.
    [Show full text]
  • Systems Analysis Implicates WAVE2&Nbsp
    JACC: BASIC TO TRANSLATIONAL SCIENCE VOL.5,NO.4,2020 ª 2020 THE AUTHORS. PUBLISHED BY ELSEVIER ON BEHALF OF THE AMERICAN COLLEGE OF CARDIOLOGY FOUNDATION. THIS IS AN OPEN ACCESS ARTICLE UNDER THE CC BY-NC-ND LICENSE (http://creativecommons.org/licenses/by-nc-nd/4.0/). PRECLINICAL RESEARCH Systems Analysis Implicates WAVE2 Complex in the Pathogenesis of Developmental Left-Sided Obstructive Heart Defects a b b b Jonathan J. Edwards, MD, Andrew D. Rouillard, PHD, Nicolas F. Fernandez, PHD, Zichen Wang, PHD, b c d d Alexander Lachmann, PHD, Sunita S. Shankaran, PHD, Brent W. Bisgrove, PHD, Bradley Demarest, MS, e f g h Nahid Turan, PHD, Deepak Srivastava, MD, Daniel Bernstein, MD, John Deanfield, MD, h i j k Alessandro Giardini, MD, PHD, George Porter, MD, PHD, Richard Kim, MD, Amy E. Roberts, MD, k l m m,n Jane W. Newburger, MD, MPH, Elizabeth Goldmuntz, MD, Martina Brueckner, MD, Richard P. Lifton, MD, PHD, o,p,q r,s t d Christine E. Seidman, MD, Wendy K. Chung, MD, PHD, Martin Tristani-Firouzi, MD, H. Joseph Yost, PHD, b u,v Avi Ma’ayan, PHD, Bruce D. Gelb, MD VISUAL ABSTRACT Edwards, J.J. et al. J Am Coll Cardiol Basic Trans Science. 2020;5(4):376–86. ISSN 2452-302X https://doi.org/10.1016/j.jacbts.2020.01.012 JACC: BASIC TO TRANSLATIONALSCIENCEVOL.5,NO.4,2020 Edwards et al. 377 APRIL 2020:376– 86 WAVE2 Complex in LVOTO HIGHLIGHTS ABBREVIATIONS AND ACRONYMS Combining CHD phenotype–driven gene set enrichment and CRISPR knockdown screening in zebrafish is an effective approach to identifying novel CHD genes.
    [Show full text]
  • Effects and Mechanisms of Eps8 on the Biological Behaviour of Malignant Tumours (Review)
    824 ONCOLOGY REPORTS 45: 824-834, 2021 Effects and mechanisms of Eps8 on the biological behaviour of malignant tumours (Review) KAILI LUO1, LEI ZHANG2, YUAN LIAO1, HONGYU ZHOU1, HONGYING YANG2, MIN LUO1 and CHEN QING1 1School of Pharmaceutical Sciences and Yunnan Key Laboratory of Pharmacology for Natural Products, Kunming Medical University, Kunming, Yunnan 650500; 2Department of Gynecology, Yunnan Tumor Hospital and The Third Affiliated Hospital of Kunming Medical University; Kunming, Yunnan 650118, P.R. China Received August 29, 2020; Accepted December 9, 2020 DOI: 10.3892/or.2021.7927 Abstract. Epidermal growth factor receptor pathway substrate 8 1. Introduction (Eps8) was initially identified as the substrate for the kinase activity of EGFR, improving the responsiveness of EGF, which Malignant tumours are uncontrolled cell proliferation diseases is involved in cell mitosis, differentiation and other physiological caused by oncogenes and ultimately lead to organ and body functions. Numerous studies over the last decade have demon- dysfunction (1). In recent decades, great progress has been strated that Eps8 is overexpressed in most ubiquitous malignant made in the study of genes and signalling pathways in tumours and subsequently binds with its receptor to activate tumorigenesis. Eps8 was identified by Fazioli et al in NIH-3T3 multiple signalling pathways. Eps8 not only participates in the murine fibroblasts via an approach that allows direct cloning regulation of malignant phenotypes, such as tumour proliferation, of intracellular substrates for receptor tyrosine kinases (RTKs) invasion, metastasis and drug resistance, but is also related to that was designed to study the EGFR signalling pathway. Eps8 the clinicopathological characteristics and prognosis of patients.
    [Show full text]
  • Eps8l2 (F-8): Sc-514673
    SAN TA C RUZ BI OTEC HNOL OG Y, INC . Eps8L2 (F-8): sc-514673 BACKGROUND APPLICATIONS Eps8L2 (epidermal growth factor receptor kinase substrate 8-like protein 2), Eps8L2 (F-8) is recommended for detection of Eps8L2 of human origin by also known as EPS8R2 or PP13181, is a 715 amino acid protein that localizes Western Blotting (starting dilution 1:100, dilution range 1:100-1:1000), to the cytoplasm and belongs to the Eps8 (epidermal growth factor receptor immunoprecipitation [1-2 µg per 100-500 µg of total protein (1 ml of cell pathway substrate 8) family. Expressed in placenta and fibroblasts, Eps8L2 lysate)], immunofluorescence (starting dilution 1:50, dilution range 1:50- functions to stimulate the guanine exchange activity of Sos 1 (son of seven - 1:500) and solid phase ELISA (starting dilution 1:30, dilution range 1:30- less homolog 1), a protein that promotes the exchange of Ras-bound GDP 1:3000). for GTP. Additionally, Eps8L2 is thought to associate with Actin and, via this Suitable for use as control antibody for Eps8L2 siRNA (h): sc-96954, Eps8L2 association, may play a role in membrane ruffling and remodeling of the shRNA Plasmid (h): sc-96954-SH and Eps8L2 shRNA (h) Lentiviral Particles: Actin cytoskeleton. Through its ability to regulate protein activation and cyto- sc-96954-V. skeleton dynamics, Eps8L2 may participate in cell growth and differentiation events within the cell. Eps8L2, a protein that is expressed as two isoforms Molecular Weight of Eps8L2: 81 kDa. due to alternative splicing, contains one PID (phosphotyrosine interaction) Positive Controls: A-431 whole cell lysate: sc-2201, HeLa whole cell lysate: domain and one SH3 domain.
    [Show full text]
  • Noonan Syndrome and Related Disorders Sos1, Raf1, Kras & Shoc2 Gene Sequencing
    Molecular Diagnostic Laboratory 1600 Rockland Road, Wilmington, DE 19803 302.651.6775 email: [email protected] NOONAN SYNDROME AND RELATED DISORDERS SOS1, RAF1, KRAS & SHOC2 GENE SEQUENCING Noonan syndrome (OMIM 163950) is an autosomal dominant disorder due to mutations in several genes that are involved in the Ras-mitogen-activated protein kinase (RAS/MapK) pathway. Specifically, Noonan syndrome is caused by mutations in PTPN11* (OMIM 176876), SOS1 (OMIM 182530), RAF1 (OMIM 164760), and KRAS (OMIM 190070). Noonan syndrome is characterized by heart defects including hypertrophic cardiomyopathy and pulmonic valve stenosis, facial dysmorphology, short stature, chest wall deformities, and developmental delay. Noonan syndrome-like disorder with loose anagen hair (OMIM 607721) is a closely related disorder characterized by the above features as well as actively growing hair that is sparse, easy to pluck, thin, and slow-growing. This related disorder is due to mutations in SHOC2 (OMIM 602775), which is also involved in the RAS/MapK pathway. PTPN11* and RAF1 are also associated with LEOPARD syndrome (OMIM 151100). LEOPARD syndrome is an acronym for multiple lentigines, electrocardiogram abnormalities, ocular hypertelorism, pulmonic valvular stenosis, abnormalities of genitalia, retardation of growth, and sensorineural deafness. LEOPARD syndrome is an autosomal dominant disorder, and can present much like Noonan syndrome with additional features. * Please note: We are no longer able to offer diagnostic testing for the PTPN11 gene due to patent restrictions enforced by U.S. Patent 7,335,469. Testing: Testing can be performed in tiers, moving to the next tier only if the preceding test is negative. Testing can also be performed concurrently or in any order requested.
    [Show full text]
  • Intersectin-1S Deficiency in Pulmonary Pathogenesis Niranjan Jeganathan1*, Dan Predescu2 and Sanda Predescu3
    Jeganathan et al. Respiratory Research (2017) 18:168 DOI 10.1186/s12931-017-0652-4 REVIEW Open Access Intersectin-1s deficiency in pulmonary pathogenesis Niranjan Jeganathan1*, Dan Predescu2 and Sanda Predescu3 Abstract Intersectin-1s (ITSN-1s), a multidomain adaptor protein, plays a vital role in endocytosis, cytoskeleton rearrangement and cell signaling. Recent studies have demonstrated that deficiency of ITSN-1s is a crucial early event in pulmonary pathogenesis. In lung cancer, ITSN-1s deficiency impairs Eps8 ubiquitination and favors Eps8-mSos1 interaction which activates Rac1 leading to enhanced lung cancer cell proliferation, migration and metastasis. Restoring ITSN-1s deficiency in lung cancer cells facilitates cytoskeleton changes favoring mesenchymal to epithelial transformation and impairs lung cancer progression. ITSN-1s deficiency in acute lung injury leads to impaired endocytosis which leads to ubiquitination and degradation of growth factor receptors such as Alk5. This deficiency is counterbalanced by microparticles which, via paracrine effects, transfer Alk5/TGFβRII complex to non-apoptotic cells. In the presence of ITSN-1s deficiency, Alk5-restored cells signal via Erk1/2 MAPK pathway leading to restoration and repair of lung architecture. In inflammatory conditions such as pulmonary artery hypertension, ITSN-1s full length protein is cleaved by granzyme B into EHITSN and SH3A-EITSN fragments. The EHITSN fragment leads to pulmonary cell proliferation via activation of p38 MAPK and Elk-1/c-Fos signaling. In vivo, ITSN-1s deficient mice transduced with EHITSN plasmid develop pulmonary vascular obliteration and plexiform lesions consistent with pathological findings seen in severe pulmonary arterial hypertension. These novel findings have significantly contributed to understanding the mechanisms and pathogenesis involved in pulmonary pathology.
    [Show full text]
  • PTPN11, SOS1, KRAS, and RAF1 Gene Analysis, and Genotype–Phenotype Correlation in Korean Patients with Noonan Syndrome
    J Hum Genet (2008) 53:999–1006 DOI 10.1007/s10038-008-0343-6 ORIGINAL ARTICLE PTPN11, SOS1, KRAS, and RAF1 gene analysis, and genotype–phenotype correlation in Korean patients with Noonan syndrome Jung Min Ko Æ Jae-Min Kim Æ Gu-Hwan Kim Æ Han-Wook Yoo Received: 30 July 2008 / Accepted: 27 October 2008 / Published online: 20 November 2008 Ó The Japan Society of Human Genetics and Springer 2008 Abstract After 2006, germline mutations in the KRAS, KRAS (1.7%), and RAF1 (5.1%) genes. Three novel SOS1, and RAF1 genes were reported to cause Noonan mutations (T59A in PTPN11, K170E in SOS1, S259T in syndrome (NS), in addition to the PTPN11 gene, and now RAF1) were identified. The patients with PTPN11 muta- we can find the etiology of disease in approximately tions showed higher prevalences of patent ductus 60–70% of NS cases. The aim of this study was to assess arteriosus and thrombocytopenia. The patients with SOS1 the correlation between phenotype and genotype by mutations had a lower prevalence of delayed psychomotor molecular analysis of the PTPN11, SOS1, KRAS, and development. All patients with RAF1 mutations had RAF1 genes in 59 Korean patients with NS. We found hypertrophic cardiomyopathy. Typical facial features and disease-causing mutations in 30 (50.8%) patients, which auxological parameters were, on statistical analysis, not were located in the PTPN11 (27.1%), SOS1 (16.9%), significantly different between the groups. The molecular defects of NS are genetically heterogeneous and involve several genes other than PTPN11 related to the RAS- MAPK pathway. Electronic supplementary material The online version of this article (doi:10.1007/s10038-008-0343-6) contains supplementary material, which is available to authorized users.
    [Show full text]
  • Author's Personal Copy
    Author's personal copy Provided for non-commercial research and educational use only. Not for reproduction, distribution or commercial use. This article was originally published in the book Encyclopedia of Immunobiology, published by Elsevier, and the attached copy is provided by Elsevier for the author's benefit and for the benefit of the author's institution, for non-commercial research and educational use including without limitation use in instruction at your institution, sending it to specific colleagues who you know, and providing a copy to your institution's administrator. All other uses, reproduction and distribution, including without limitation commercial reprints, selling or licensing copies or access, or posting on open internet sites, your personal or institution’s website or repository, are prohibited. For exceptions, permission may be sought for such use through Elsevier’s permissions site at: http://www.elsevier.com/locate/permissionusematerial From Myers, D.R., Roose, J.P., 2016. Kinase and Phosphatase Effector Pathways in T Cells. In: Ratcliffe, M.J.H. (Editor in Chief), Encyclopedia of Immunobiology, Vol. 3, pp. 25–37. Oxford: Academic Press. Copyright © 2016 Elsevier Ltd. unless otherwise stated. All rights reserved. Academic Press Author's personal copy Kinase and Phosphatase Effector Pathways in T Cells Darienne R Myers and Jeroen P Roose, University of California, San Francisco (UCSF), San Francisco, CA, USA Ó 2016 Elsevier Ltd. All rights reserved. Abstract Multiple interconnected effector pathways mediate the activation of T cells following recognition of cognate antigen. These kinase and phosphatase pathways link proximal T cell receptor (TCR) signaling to changes in gene expression and cell physiology.
    [Show full text]
  • Fucoidan–Fucoxanthin Ameliorated Cardiac Function Via IRS1/GRB2/ SOS1, Gsk3β/CREB Pathways and Metabolic Pathways in Senescent Mice
    marine drugs Article Fucoidan–Fucoxanthin Ameliorated Cardiac Function via IRS1/GRB2/ SOS1, GSK3β/CREB Pathways and Metabolic Pathways in Senescent Mice Po-Ming Chang, Kuan-Lun Li and Yen-Chang Lin * Graduate Institute of Biotechnology, Chinese Culture University, Taipei 11114, Taiwan; [email protected] (P.-M.C.); [email protected] (K.-L.L.) * Correspondence: [email protected] or [email protected]; Tel.: +886-02-2861-0511 (ext. 31832); Fax: +886-02-2861-8266 Received: 3 November 2018; Accepted: 18 January 2019; Published: 21 January 2019 Abstract: The effects of low molecular weight fucoidan (LMWF) in combination with high-stability fucoxanthin (HSFUCO) on cardiac function and the metabolic pathways of aging mice (Mus musculus) were investigated. We demonstrated that LMWF and HSFUCO could improve cardiac function in aging mice. Aging mice were treated with LMWF and HSFUCO, either on their own or in combination, on 28 consecutive days. Electrocardiography and whole-cell patch-clamp were used to measure QT interval and action potential duration (APD) of the subjects. Cardiac tissue morphology, reactive oxygen species, and Western blot were also applied. Ultra-high-performance liquid chromatography–quadrupole time-of-flight (UPLC-QTOF) mass spectrometry was used for investigating metabolic alterations. The use of LMWF and HSFUCO resulted in improvements in both ventricular rhythms (QT and APD). Treatment with fucoidan and fucoxanthin reduced the expression levels of SOS1 and GRB2 while increasing GSK3β, CREB and IRS1 proteins expression in the aging process. Three main metabolic pathways, namely the TCA cycle, glycolysis, and steroid hormone biosynthesis, were highly enriched in the pathway enrichment analysis.
    [Show full text]
  • Molecular Cloning of Hmena (ENAH)
    Research Article Molecular Cloning of hMena (ENAH) and Its Splice Variant hMena+11a: Epidermal Growth Factor Increases Their Expression and Stimulates hMena+11a Phosphorylation in Breast Cancer Cell Lines Francesca Di Modugno,1 Lucia DeMonte,5,6 Michele Balsamo,2 Giovanna Bronzi,2 Maria Rita Nicotra,3 Massimo Alessio,6 Elke Jager,7 John S. Condeelis,8 Angela Santoni,4 Pier Giorgio Natali,2 and Paola Nistico`2 1Experimental Chemotherapy and 2Laboratory of Immunology, Regina Elena Cancer Institute; 3Molecular Biology and Pathology Institute, National Research Council; 4Experimental Medicine and Pathology, University ‘‘La Sapienza,’’ Rome, Italy; 5Tumor Immunology and 6Proteome Biochemistry, Dibit, San Raffaele Scientific Institute, Milan, Italy; 7Medizinische Klinik II, Hamatologie-Onkologie, Krankenhaus Nordwest, Frankfurt, Germany; and 8Department of Anatomy, Structural Biology and Analytical Imaging Facility, Albert Einstein College of Medicine, Bronx, New York Abstract (serologic analysis of cDNA expression libraries) technology the hMena (ENAH), an actin regulatory protein involved in the hMena protein (3), the human orthologue of murine Mena, which control of cell motility and adhesion, is modulated during is overexpressed in benign breast lesions with high risk of human breast carcinogenesis. In fact, whereas undetectable in transformation and in >70% of primary breast cancers (4). normal mammary epithelium, hMena becomes overexpressed Mena belongs to the Ena/VASP protein family, which includes key regulatory molecules controlling cell shape (5, 6) and movement (7) in high-risk benign lesions and primary and metastatic tumors. + À by protecting actin filaments from capping proteins at their barbed In vivo, hMena overexpression correlates with the HER-2 /ER / + ends (8). Ena/VASP proteins are constituents of the adherens Ki67 unfavorable prognostic phenotype.
    [Show full text]