COURSE OUTLINE Tutor Ma Jiajun | Coordinator Prof. Mile Gu INTRODUCTION In the first year, you have studied both computer science course, and physics courses. In computer science, you learn about basic programming, Turing Machines, Computational Complexity, and Shannon Entropy. In physics, you learnt mechanics, thermodynamics and maybe some relativity. What does the two course have to do with each other? It turns out that there is a lot. Turing machines are physical objects and obey physical laws, while all physics is can be described by a computer. New physics gives birth new methods of computing, while everything in physics is just information processing. The link between the two fields is remarkable, leading to advanced ideas like emergence, quantum computing, and the unravelling of Maxwell’s demons. Unfortunately, these ideas are generally so new that they’re generally not taught at undergraduate level – here at IIIS, we hope to rectify this. Thus ‘Physics of Information’ will introduce you to these contemporary ideas. As we will be covering a number of graduate level topics at undergraduate level – this course is designed to be based on concepts. We will learn by examples, and the key idea here is for you to gain an intuition of the big picture. As you advanced to junior, senior and postgraduate, you’ll have a chance to learn to full technicalities. COURSE INFORMATION: Lecturer and Course Administrator – Prof. Mile Gu (
[email protected]) Tutorials – Ma Jiajjun (
[email protected]) Course Website – http://www.milegu.net/physics_info Assumed Knowledge – First year mathematics, physics and computer science. ASSESSMENT 50% Exam – 2 Hour Exam on 16th September 30% Assignments – 2 Assignments (15% each): 20% Participation – Discussions in Classroom and feedback are highly encouraged.