Orchestration Between Ilc2s and Th2 Cells in Shaping Type 2 Immune Responses
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Use of Mepolizumab in Adult Patients with Cystic Fibrosis and An
Zhang et al. Allergy Asthma Clin Immunol (2020) 16:3 Allergy, Asthma & Clinical Immunology https://doi.org/10.1186/s13223-019-0397-3 CASE REPORT Open Access Use of mepolizumab in adult patients with cystic fbrosis and an eosinophilic phenotype: case series Lijia Zhang1, Larry Borish2,3, Anna Smith2, Lindsay Somerville2 and Dana Albon2* Abstract Background: Cystic fbrosis (CF) is characterized by infammation, progressive lung disease, and respiratory failure. Although the relationship is not well understood, patients with CF are thought to have a higher prevalence of asthma than the general population. CF Foundation (CFF) annual registry data in 2017 reported a prevalence of asthma in CF of 32%. It is difcult to diferentiate asthma from CF given similarities in symptoms and reversible obstructive lung function in both diseases. However, a specifc asthma phenotype (type 2 infammatory signature), is often identifed in CF patients and this would suggest potential responsiveness to biologics targeting this asthma phenotype. A type 2 infammatory condition is defned by the presence of an interleukin (IL)-4high, IL-5high, IL-13high state and is suggested by the presence of an elevated total IgE, specifc IgE sensitization, or an elevated absolute eosinophil count (AEC). In this manuscript we report the efects of using mepolizumab in patients with CF and type 2 infammation. Results: We present three patients with CF (63, 34 and 24 year of age) and personal history of asthma, who displayed signifcant eosinophilic infammation and high total serum IgE concentrations (type 2 infammation) who were treated with mepolizumab. All three patients were colonized with multiple organisms including Pseudomonas aeruginosa and Aspergillus fumigatus and tested positive for specifc IgE to multiple allergens. -
Type 2 Immunity in Tissue Repair and Fibrosis
REVIEWS Type 2 immunity in tissue repair and fibrosis Richard L. Gieseck III1, Mark S. Wilson2 and Thomas A. Wynn1 Abstract | Type 2 immunity is characterized by the production of IL‑4, IL‑5, IL‑9 and IL‑13, and this immune response is commonly observed in tissues during allergic inflammation or infection with helminth parasites. However, many of the key cell types associated with type 2 immune responses — including T helper 2 cells, eosinophils, mast cells, basophils, type 2 innate lymphoid cells and IL‑4- and IL‑13‑activated macrophages — also regulate tissue repair following injury. Indeed, these cell populations engage in crucial protective activity by reducing tissue inflammation and activating important tissue-regenerative mechanisms. Nevertheless, when type 2 cytokine-mediated repair processes become chronic, over-exuberant or dysregulated, they can also contribute to the development of pathological fibrosis in many different organ systems. In this Review, we discuss the mechanisms by which type 2 immunity contributes to tissue regeneration and fibrosis following injury. Type 2 immunity is characterized by increased pro‑ disorders remain unclear, although persistent activation duction of the cytokines IL‑4, IL‑5, IL‑9 and IL‑13 of tissue repair pathways is a major contributing mech‑ (REF. 1) . The T helper 1 (TH1) and TH2 paradigm was anism in most cases. In this Review, we provide a brief first described approximately three decades ago2, and overview of fibrotic diseases that have been linked to for many of the intervening years, type 2 immunity activation of type 2 immunity, discuss the various mech‑ was largely considered as a simple counter-regulatory anisms that contribute to the initiation and maintenance mechanism controlling type 1 immunity3 (BOX 1). -
T Cell Factor 1 Is Required for Group 2 Innate Lymphoid Cell Generation
View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Elsevier - Publisher Connector Immunity Article T Cell Factor 1 Is Required for Group 2 Innate Lymphoid Cell Generation Qi Yang,1 Laurel A. Monticelli,2 Steven A. Saenz,2 Anthony Wei-Shine Chi,1 Gregory F. Sonnenberg,2 Jiangbo Tang,3 Maria Elena De Obaldia,1 Will Bailis,1 Jerrod L. Bryson,1 Kristin Toscano,1 Jian Huang,4 Angela Haczku,4 Warren S. Pear,1 David Artis,2 and Avinash Bhandoola1,* 1Department of Pathology and Laboratory Medicine 2Department of Microbiology 3Department of Cancer Biology 4Department of Medicine Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA *Correspondence: [email protected] http://dx.doi.org/10.1016/j.immuni.2012.12.003 SUMMARY 2012b; Hoyler et al., 2012; Moro et al., 2010; Wong et al., 2012). However, other transcription factors implicated in the Group 2 innate lymphoid cells (ILC2) are innate generation and function of ILC2 remain to be identified. lymphocytes that confer protective type 2 immunity ILC2 share many similarities with T cells. ILC2 derive from during helminth infection and are also involved in lymphoid progenitors and phenotypically resemble double- allergic airway inflammation. Here we report that negative 3 (DN3) cells that are committed to the T cell lineage ILC2 development required T cell factor 1 (TCF-1, (Moro et al., 2010; Neill et al., 2010; Price et al., 2010; Wong the product of the Tcf7 gene), a transcription factor et al., 2012; Yang et al., 2011). -
ILC2 Activation by Protozoan Commensal Microbes
International Journal of Molecular Sciences Review ILC2 Activation by Protozoan Commensal Microbes Kyle Burrows 1 , Louis Ngai 1 , Flora Wong 1,2, David Won 1 and Arthur Mortha 1,* 1 University of Toronto, Department of Immunology, Toronto, ON M5S 1A8, Canada; [email protected] (K.B.) [email protected] (L.N.); fl[email protected] (F.W.); [email protected] (D.W.) 2 Ranomics, Inc. Toronto, ON M5G 1X5, Canada * Correspondence: [email protected] Received: 3 September 2019; Accepted: 27 September 2019; Published: 30 September 2019 Abstract: Group 2 innate lymphoid cells (ILC2s) are a member of the ILC family and are involved in protective and pathogenic type 2 responses. Recent research has highlighted their involvement in modulating tissue and immune homeostasis during health and disease and has uncovered critical signaling circuits. While interactions of ILC2s with the bacterial microbiome are rather sparse, other microbial members of our microbiome, including helminths and protozoans, reveal new and exciting mechanisms of tissue regulation by ILC2s. Here we summarize the current field on ILC2 activation by the tissue and immune environment and highlight particularly new intriguing pathways of ILC2 regulation by protozoan commensals in the intestinal tract. Keywords: ILC2; protozoa; Trichomonas; Tritrichomonas musculis; mucosal immunity; taste receptors; succinate; intestinal immunity; type 2 immunity; commensals 1. The ILC Lineage 1.1. The Family of Innate Lymphoid Cells Research over the last decade has redirected focus away from classical immune cell interactions within lymphoid tissues towards immunity within non-lymphoid tissues. Within these tissues, immune interactions involve local adaptation and rapid responses by tissue-resident immune cells. -
Innate Lymphocytes—Lineage, Localization and Timing of Differentiation
Cellular & Molecular Immunology www.nature.com/cmi REVIEW ARTICLE Innate lymphocytes—lineage, localization and timing of differentiation Emily R. Kansler1,2 and Ming O. Li1 Innate lymphocytes are a diverse population of cells that carry out specialized functions in steady-state homeostasis and during immune challenge. While circulating cytotoxic natural killer (NK) cells have been studied for decades, tissue-resident innate lymphoid cells (ILCs) have only been characterized and studied over the past few years. As ILCs have been largely viewed in the context of helper T-cell biology, models of ILC lineage and function have been founded within this perspective. Notably, tissue- resident innate lymphocytes with cytotoxic potential have been described in an array of tissues, yet whether they are derived from the NK or ILC lineage is only beginning to be elucidated. In this review, we aim to shed light on the identities of innate lymphocytes through the lenses of cell lineage, localization, and timing of differentiation. Cellular & Molecular Immunology (2019) 16:627–633; https://doi.org/10.1038/s41423-019-0211-7 INTRODUCTION memory T cells have been described.3 Central memory T (Tcm) Lymphocytes are a fundamental component of the host immune cells are derived from CX3CR1− effector T cells and primarily response to challenge. Different classes of the lymphocyte circulate between the blood and secondary lymphoid organs. response are best defined by the type of effector programs Resident memory T (Trm) cells, although also derived from carried out by CD8+ or CD4+ T cells. CD8+ T cells are cytotoxic CX3CR1− effector T cells, enter peripheral tissues where they are lymphocytes that mediate a type 1 immune response to maintained locally by self-renewal and do not recirculate. -
Atopic Dermatitis: an Expanding Therapeutic Pipeline for a Complex Disease
REVIEWS Atopic dermatitis: an expanding therapeutic pipeline for a complex disease Thomas Bieber 1,2,3 Abstract | Atopic dermatitis (AD) is a common chronic inflammatory skin disease with a complex pathophysiology that underlies a wide spectrum of clinical phenotypes. AD remains challenging to treat owing to the limited response to available therapies. However, recent advances in understanding of disease mechanisms have led to the discovery of novel potential therapeutic targets and drug candidates. In addition to regulatory approval for the IL-4Ra inhibitor dupilumab, the anti- IL-13 inhibitor tralokinumab and the JAK1/2 inhibitor baricitinib in Europe, there are now more than 70 new compounds in development. This Review assesses the various strategies and novel agents currently being investigated for AD and highlights the potential for a precision medicine approach to enable prevention and more effective long-term control of this complex disease. Atopic disorders Atopic dermatitis (AD) is the most common chronic inhibitors tacrolimus and pimecrolimus and more 1,2 A group of disorders having in inflammatory skin disease . About 80% of disease cases recently the phosphodiesterase 4 (PDE4) inhibitor cris- common a genetic tendency to typically start in infancy or childhood, with the remain- aborole. For the more severe forms of AD, besides the develop IgE- mediated allergic der developing during adulthood. Whereas the point use of ultraviolet light, current therapeutic guidelines reactions. These are atopic dermatitis, food allergy, allergic prevalence in children varies from 2.7% to 20.1% across suggest ciclosporin A, methotrexate, azathioprine and 3,4 rhino- conjunctivitis and countries, it ranges from 2.1% to 4.9% in adults . -
The Chemokine System in Innate Immunity
Downloaded from http://cshperspectives.cshlp.org/ on September 28, 2021 - Published by Cold Spring Harbor Laboratory Press The Chemokine System in Innate Immunity Caroline L. Sokol and Andrew D. Luster Center for Immunology & Inflammatory Diseases, Division of Rheumatology, Allergy and Immunology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts 02114 Correspondence: [email protected] Chemokines are chemotactic cytokines that control the migration and positioning of immune cells in tissues and are critical for the function of the innate immune system. Chemokines control the release of innate immune cells from the bone marrow during homeostasis as well as in response to infection and inflammation. Theyalso recruit innate immune effectors out of the circulation and into the tissue where, in collaboration with other chemoattractants, they guide these cells to the very sites of tissue injury. Chemokine function is also critical for the positioning of innate immune sentinels in peripheral tissue and then, following innate immune activation, guiding these activated cells to the draining lymph node to initiate and imprint an adaptive immune response. In this review, we will highlight recent advances in understanding how chemokine function regulates the movement and positioning of innate immune cells at homeostasis and in response to acute inflammation, and then we will review how chemokine-mediated innate immune cell trafficking plays an essential role in linking the innate and adaptive immune responses. hemokines are chemotactic cytokines that with emphasis placed on its role in the innate Ccontrol cell migration and cell positioning immune system. throughout development, homeostasis, and in- flammation. The immune system, which is de- pendent on the coordinated migration of cells, CHEMOKINES AND CHEMOKINE RECEPTORS is particularly dependent on chemokines for its function. -
NK Cell Development in Times of Innate Lymphoid Cell Diversity
REVIEW published: 08 July 2020 doi: 10.3389/fimmu.2020.00813 NK Cell Development in Times of Innate Lymphoid Cell Diversity Vladislava Stokic-Trtica 1,2, Andreas Diefenbach 1,3,4* and Christoph S. N. Klose 1* 1 Department of Microbiology, Infectious Diseases and Immunology, Charité–Universitätsmedizin Berlin, Berlin, Germany, 2 Max-Planck Institute for Infection Biology, Berlin, Germany, 3 Berlin Institute of Health (BIH), Berlin, Germany, 4 Mucosal and Developmental Immunology, Deutsches Rheuma-Forschungszentrum, Berlin, Germany After being described in the 1970s as cytotoxic cells that do not require MHC-dependent pre-activation, natural killer (NK) cells remained the sole member of innate lymphocytes for decades until lymphoid tissue-inducer cells in the 1990s and helper-like innate lymphoid lineages from 2008 onward completed the picture of innate lymphoid cell (ILC) diversity. Since some of the ILC members, such as ILC1s and CCR6− ILC3s, share specific markers previously used to identify NK cells, these findings provoked the question of how to delineate the development of NK cell and helper-like ILCs and how to properly identify and genetically interfere with NK cells. The description of eomesodermin Edited by: (EOMES) as a lineage-specifying transcription factor of NK cells provided a candidate Ewa Sitnicka, Lund University, Sweden that may serve as a selective marker for the genetic targeting and identification of Reviewed by: NK cells. Unlike helper-like ILCs, NK cell activation is, to a large degree, regulated Gabrielle Belz, by the engagement of activating and inhibitory surface receptors. NK cell research Walter and Eliza Hall Institute of has revealed some elegant mechanisms of immunosurveillance, coined “missing-self” Medical Research, Australia Barbara L. -
Innate Lymphoid Cells (Ilcs): Cytokine Hubs Regulating Immunity and Tissue Homeostasis
Downloaded from http://cshperspectives.cshlp.org/ on September 30, 2021 - Published by Cold Spring Harbor Laboratory Press Innate Lymphoid Cells (ILCs): Cytokine Hubs Regulating Immunity and Tissue Homeostasis Maho Nagasawa, Hergen Spits, and Xavier Romero Ros Department of Experimental Immunology, Academic Medical Center at the University of Amsterdam, 1105 BA Amsterdam, Netherlands Correspondence: [email protected] Innate lymphoid cells (ILCs) have emerged as an expanding family of effector cells particu- larly enriched in the mucosal barriers. ILCs are promptly activated by stress signals and multiple epithelial- and myeloid-cell-derived cytokines. In response, ILCs rapidly secrete effector cytokines, which allow them to survey and maintain the mucosal integrity. Uncontrolled action of ILCs might contribute to tissue damage, chronic inflammation, met- abolic diseases, autoimmunity, and cancer. Here we discuss the recent advances in our understanding of the cytokine network that modulate ILC immune responses: stimulating cytokines, signature cytokines secreted by ILC subsets, autocrine cytokines, and cytokines that induce cell plasticity. nnate lymphoid cells (ILCs) are innate lym- Klose et al. 2014; Gasteiger et al. 2015). ILCs Iphocytes that play important roles in immune cross talk with the resident tissue by sensing defense against microbes, regulation of adaptive the cytokines present in their microenviron- immunity, tissue remodeling, and repair and ments and subsequently secreting a plethora homeostasis of hematopoietic and nonhemato- of cytokines that regulate innate immunity poietic cell types. ILCs are present in all tissues, and homeostasis of hematopoietic and nonhe- but they are particularly enriched in mucosal matopoietic cells in the tissues (Artis and Spits surfaces. Unlike adaptive lymphocytes, ILCs 2015). -
Natural Killer Cells and Type 1 Innate Lymphoid Cells in Hepatocellular Carcinoma: Current Knowledge and Future Perspectives
International Journal of Molecular Sciences Review Natural Killer Cells and Type 1 Innate Lymphoid Cells in Hepatocellular Carcinoma: Current Knowledge and Future Perspectives Nicolas Jacquelot 1,* , Cyril Seillet 2,3 , Fernando Souza-Fonseca-Guimaraes 4, Adrian G. Sacher 1, Gabrielle T. Belz 2,3,4 and Pamela S. Ohashi 1,5 1 Princess Margaret Cancer Centre, University Health Network, Toronto, ON M5G 2C1, Canada; [email protected] (A.G.S.); [email protected] (P.S.O.) 2 Walter and Eliza Hall Institute of Medical Research, Parkville, Melbourne, VIC 3052, Australia; [email protected] (C.S.); [email protected] (G.T.B.) 3 Department of Medical Biology, University of Melbourne, Parkville, Melbourne, VIC 3010, Australia 4 Diamantina Institute, University of Queensland, 37 Kent Street, Woolloongabba, Brisbane, QLD 4102, Australia; [email protected] 5 Department of Immunology, University of Toronto, Toronto, ON M5S 1A8, Canada * Correspondence: [email protected] Abstract: Natural killer (NK) cells and type 1 innate lymphoid cells (ILC1) are specific innate lymphoid cell subsets that are key for the detection and elimination of pathogens and cancer cells. In liver, while they share a number of characteristics, they differ in many features. These include their developmental pathways, tissue distribution, phenotype and functions. NK cells and ILC1 contribute to organ homeostasis through the production of key cytokines and chemokines and the Citation: Jacquelot, N.; Seillet, C.; elimination of potential harmful bacteria and viruses. In addition, they are equipped with a wide Souza-Fonseca-Guimaraes, F.; Sacher, A.G.; Belz, G.T.; Ohashi, P.S. -
Tumor Necrosis Factor Superfamily in Innate Immunity and Inflammation
Downloaded from http://cshperspectives.cshlp.org/ on September 29, 2021 - Published by Cold Spring Harbor Laboratory Press Tumor Necrosis Factor Superfamily in Innate Immunity and Inflammation John Sˇ edy´, Vasileios Bekiaris, and Carl F. Ware Laboratory of Molecular Immunology, Infectious and Inflammatory Disease Center, Sanford Burnham Medical Research Institute, La Jolla, California 92037 Correspondence: [email protected] The tumor necrosis factor superfamily (TNFSF) and its corresponding receptor superfamily (TNFRSF) form communication pathways required for developmental, homeostatic, and stimulus-responsive processes in vivo. Although this receptor–ligand system operates between many different cell types and organ systems, many of these proteins play specific roles in immune system function. The TNFSF and TNFRSF proteins lymphotoxins, LIGHT (homologous to lymphotoxins, exhibits inducible expression, and competes with HSV gly- coprotein D for herpes virus entry mediator [HVEM], a receptor expressed by T lympho- cytes), lymphotoxin-b receptor (LT-bR), and HVEM are used by embryonic and adult innate lymphocytes to promote the development and homeostasis of lymphoid organs. Lymphotoxin-expressing innate-acting B cells construct microenvironments in lymphoid organs that restrict pathogen spread and initiate interferon defenses. Recent results illustrate how the communication networks formed among these cytokines and the coreceptors B and T lymphocyte attenuator (BTLA) and CD160 both inhibit and activate innate lymphoid cells (ILCs), -
The Role of Dupilumab in Severe Asthma
biomedicines Review The Role of Dupilumab in Severe Asthma Fabio Luigi Massimo Ricciardolo * , Francesca Bertolini and Vitina Carriero Department of Clinical and Biological Sciences, University of Turin, San Luigi Gonzaga University Hospital, Orbassano, 10043 Turin, Italy; [email protected] (F.B.); [email protected] (V.C.) * Correspondence: [email protected]; Tel.: +39-0119026777 Abstract: Dupilumab is a fully humanized monoclonal antibody, capable of inhibiting intracellular signaling of both interleukin (IL)-4 and IL-13. These are two molecules that, together with other proinflammatory cytokines such as IL-5 and eotaxins, play a pivotal role in orchestrating the airway inflammatory response defined as Type 2 (T2) inflammation, driven by Th2 or Type 2 innate lymphoid cells, which is the major feature of the T2 high asthma phenotype. The dual inhibition of IL-4 and IL-13 activities is due to the blockade of type II IL-4 receptor through the binding of dupilumab with the subunit IL-4Rα. This results in the repression of STAT6 and in the suppression of subsequent de novo formation of several molecules involved in the T2 inflammatory signature. Several clinical trials tested the efficacy and safety of dupilumab in large populations of uncontrolled severe asthmatics, revealing significant improvements in lung function, asthma control, and exacerbation rate. Similar results were reported when dupilumab was employed in patients harboring pathogenetic processes related to T2 immune response, such as atopic dermatitis and chronic rhinosinusitis. In this review, we provide an overview of the recent research in the field of respiratory medicine about dupilumab mechanism of action and its effects.