Maximal Entanglement

Total Page:16

File Type:pdf, Size:1020Kb

Maximal Entanglement Maximal Entanglement Applications in Quantum Information and Particle Physics Alba Cervera Lierta Aquesta tesi doctoral està subjecta a la llicència Reconeixement 4.0. Espanya de Creative Commons. Esta tesis doctoral está sujeta a la licencia Reconocimiento 4.0. España de Creative Commons. This doctoral thesis is licensed under the Creative Commons Attribution 4.0. Spain License. Tesi doctoral Maximal Entanglement Applications in Quantum Information and Particle Physics Alba Cervera Lierta Director: Dr. José Ignacio Latorre Sentís Maximal Entanglement Applications in Quantum Information and Particle Physics Programa de doctorat en física Autora: Alba Cervera Lierta Director: Dr. José Ignacio Latorre Sentís Tutor: Dr. Domènec Espriu Climent Copyright c 2019 Alba Cervera Lierta (CC-by) Chapter 2 image art and design by Carlos Villafranca. Quantum circuits have been designed with Q-circuit package. Source can be found at https://cquic.unm.edu/resources/. Feynman diagrams have been designed with TikZ-Feynman package. Documentation can be found in Joshua P. Ellis, Computer Physics Communications 210, 103-123 (2017). LATEX template “The Legrand Orange Book” v. 2.4 by Mathias Legrand with modifications. Unless explicitly stated in the caption, I have produced all the figures that appear in this work, which will often closely follow those in the corresponding publications. First printing, April 2019. A les meves àvies i avis. Agraïments Aquesta tesi no hauria estat possible sense el suport i l’ajut de moltes persones. Algunes d’aquestes han format part de la meva vida abans de començar aquest camí, altres les he conegut a punt d’acabar-lo, però totes i cada una d’elles m’han influenciat tant acadèmicament com personalment. La primera d’elles és en José Ignacio, a qui considero més que un director, un mentor. Gràcies per les teves lliçons. Crec que tant jo com qualsevol dels teus estudiants recordarem sempre les llargues i inspiradores converses davant la pissarra de guix del teu despatx. I mil gràcies per donar-me l’oportunitat d’embarcar-me en aquesta aventura científica i de treballar tot el possible perquè no l’abandonés. En segon lloc, vull agrair al que va ser també el meu director durant uns mesos. Gràcies Juan per convidar-me a treballar amb tu a Oxford. Van ser uns mesos clau on vaig prendre la decisió de continuar amb aquest doctorat com sigui. Estic segura que sense aquella experiència avui no seria on sóc. Aprofito per agrair també a totes aquelles persones que vaig conèixer durant la meva estància al Rudolph Pierls Institute: Marco, Nathan, Stefano, Emanuele, Valerio i, per descomptat, Luca, amb qui he treballat, sofert i gaudit amb un dels projectes d’aquesta tesi. Grazie mille. També vull agrair als meus coautors, Karol, Dardo, Germán i Albert, per les seves aportacions i interessants discussions. Durant aquests quatre anys, he tingut companys al meu voltant amb els que he compartit alegries i frustracions, i que s’han convertit en veritables amics. Gràcies Dani per compartir la teva experiència i feina amb mi. Les llargues tardes al despatx parlant de política i física i les lliçons d’escacs al Petronilla fan que et perdoni per no poder deixar sense vigilància els meus Kinder. Gràcies també a Javier, Adrià, Clara, Marc, Isma i Elis per compartir aquests anys de doctorat i els anteriors de la carrera. Les converses i cafés a mig matí, mitja tarda i/o al mig dia han fet suportables els dies més pesats. Gracias Ivan por los mismos motivos y por nuestras discusiones sobre física de partículas: aprendí mucho contigo. També voldria agrair a totes aquelles persones que han format part de la meva vida fora de la Universitat, en especial les que sempre han estat disponibles per fer unes birres o uns vermuts per desconnectar i gaudir de la vida. Gràcies Sergi, Irene, Fran, Marc, Josep, ii Toni, Gemma, Joan, Marc, Alba i molts més. Aquesta tesi ha sigut el reflex de significants canvis al voltant de la investigació en informació quàntica a Barcelona. El motiu pel qual he dedicat els últims dos anys al camp de la computació quàntica ha sigut la creació d’un grup d’investigació fruit de la col·laboració entre la Universitat de Barcelona i el Barcelona Supercomputing Center (BSC). Voldria agrair al BSC per donar-me suport econòmic en aquests darrers anys i per apostar per aquest camp. En especial vull donar les gràcies a tots els que formen part del grup Quantic o hi col·laboren: Pol, Artur, Luca, Sofyan, Chris, Carlos, David, Adrian, Diego, Sergi, Elies i Josep. També voldria agrair a l’empresa IBM per atorgar-me el premi “Teach Me QISKit” i donar-me així visibilitat en aquest camp. Gracias Carlos por plantar la semilla de todo esto. Fuiste una fuente de inspiración para mi y muchos otros. Gracias por ser el primero en mostrarme la belleza de la física. Gràcies també als meus pares, Jordi i Gemma, i al meu germà, Gerard, per animar-me sempre a estudiar allò que més m’agradés, per animar-me en els moments més baixos i per compartir amb mi les alegries que han anat sorgint. Sense el seu suport res del que he fet hagués estat possible. Gràcies també als meus avis, Roser, Llorenç, Cleo i Luis, per tota una vida de sacrificis que han fet possible que jo ara hagi arribat on hagi volgut. Sé que algun d’ells hagués triat aquest mateix camí si hagués pogut, però les circumstàncies de l’època no ho van fer possible. Per aquest motiu els hi dedico especialment aquesta tesi, que no és més que el fruit del seu esforç. Por último, a la persona que mejor conoce los entresijos no escritos de esta tesis. Gracias Miguel, por tu apoyo, por tu optimismo, por tus cuidados, por soportar los malos momentos, por celebrar los buenos, por tu infinita paciencia, por escucharme, por tu dedicación y, en definitiva, por quererme. Esta tesis también va dedicada a ti. List of publications • D. Alsina, A. Cervera, D. Goyeneche, J. I. Latorre and K. Życzkowski, Operational Approach to Bell Inequalities: Application to qutrits, Physical Review A 94, 032102 (2016). • A. Cervera-Lierta, J. I. Latorre, J. Rojo and L. Rottoli, Maximal Entanglement in High Energy Physics, SciPost Physics 3, 036 (2017). • A. Cervera-Lierta, A. Gasull, J. I. Latorre and G. Sierra, Multipartite entanglement in spin chains and the Hyperdeterminant, Journal of Physical A: Mathematical and Theoretical 51, 505301 (2018). • A. Cervera-Lierta, Exact Ising model simulation on a quantum computer, Quantum 2, 114 (2018). Resum L’entrellaçament és una de les principals característiques de la mecànica quàntica. És probablement un dels fenòmens quàntics més debatuts i estudiants degut, en part, a la seva naturalesa antiintuïtiva i, més recentment, a les seves aplicacions en el camp de la informació quàntica. És precisament una propietat que va més enllà del que la física clàssica pot explicar. La motivació d’aquesta tesi és estudiar l’entrellaçament en general i sota quines circumstàncies és màxim en particular. Primerament, analitzem el paper de l’entrellaçament en la construcció de la frontera entre la física clàssica i la física quàntica. Els experiments de Bell ens permeten calcular una sèrie de correladors que ens ajudaran a distingir si les partícules implicades en l’experiment obeeixen el que es coneix com a realisme local. La violació de les desigualtats de Bell demostra que no hi ha una teoria clàssica de variables ocultes que expliqui els resultats de l’experiment, és a dir, la física quàntica subjacent no pot ser explicada des de la física clàssica. La caracterització de desigualtats de Bell per a qualsevol nombre de partícules i dimensions locals és un problema obert en informació quàntica. En aquesta tesi, estudiem i deduïm noves desigualtats de Bell en termes d’operadors, focalitzant-nos especialment en aquelles que involucren qutrits. Les desigualtats per qubits són violades màximament pels estats altament entrellaçats coneguts com a GHZ. Les desigualtats de qutrits, o altres dimensions més grans, són violades màximament per estats que són una deformació dels GHZ. Aquest resultat mostra l’estreta relació, però no equivalència, entre no-localitat i màxim entrellaçament. Seguidament, estudiem l’entrellaçament multipartit i la seva aplicació en la detecció de transicions de fase quàntiques. En particular, estudiem l’entrellaçament entre quatre partícules de dimensió dos, és a dir, entre quatre qubits. Com a figura de mèrit, utilitzem l’hiperdeterminant i els dos invariants polinòmics que el formen, anomenats S i T . Analitzem uns quants estats quàntics rellevants per acabar concloent que aquesta figura de mèrit capta un tipus concret d’entrellaçament multipartit. Quan calculem l’hiperdeterminant en cadenes d’espins 1/2, obtenim un pic pronunciat al voltant de la transició de fase en el vi cas del model d’Ising. En el cas del model XXZ, l’hiperdeterminant és sempre zero. En aquest cas, utilitzem els invariants S i T . El resultat és que el valor dels invariants canvia bruscament en els punts on hi ha transició de fase. Finalment, estudiem la funció d’ona de Haldane-Shastry i obtenim resultats similars als del model XXZ. En una segona part de la tesi, ens centrem en el camp de la computació quàntica. Gràcies als avenços que s’han dut a terme en els darrers anys en relació al control dels àtoms, fotons i processos quàntics en general, la computació quàntica ha esdevingut una realitat. Actualment, diverses empreses estan en procès de construcció dels seus propis ordinadors quàntics. Per aquest motiu, es fa necessària la recerca de mètodes per testejar i comparar aquests primers prototips d’ordinadors. Per una banda, proposem i testegem un mètode que consisteix en la simulació exacta del model d’Ising.
Recommended publications
  • Modern Quantum Technologies of Information Security
    MODERN QUANTUM TECHNOLOGIES OF INFORMATION SECURITY Oleksandr Korchenko 1, Yevhen Vasiliu 2, Sergiy Gnatyuk 3 1,3 Dept of Information Security Technologies, National Aviation University, Kosmonavta Komarova Ave 1, 03680 Kyiv, Ukraine 2Dept of Information Technologies and Control Systems, Odesa National Academy of Telecommunications n.a. O.S. Popov, Koval`ska Str 1, 65029 Odesa, Ukraine E-mails: [email protected], [email protected], [email protected] In this paper, the systematisation and classification of modern quantum technologies of information security against cyber-terrorist attack are carried out. The characteristic of the basic directions of quantum cryptography from the viewpoint of the quantum technologies used is given. A qualitative analysis of the advantages and disadvantages of concrete quantum protocols is made. The current status of the problem of practical quantum cryptography use in telecommunication networks is considered. In particular, a short review of existing commercial systems of quantum key distribution is given. 1. Introduction Today there is virtually no area where information technology ( ІТ ) is not used in some way. Computers support banking systems, control the work of nuclear reactors, and control aircraft, satellites and spacecraft. The high level of automation therefore depends on the security level of IT. The latest achievements in communication systems are now applied in aviation. These achievements are public switched telephone network (PSTN), circuit switched public data network (CSPDN), packet switched public data network (PSPDN), local area network (LAN), and integrated services digital network (ISDN) [73]. These technologies provide data transmission systems of various types: surface-to-surface, surface-to-air, air-to-air, and space telecommunication.
    [Show full text]
  • Quantum Information in the Posner Model of Quantum Cognition
    Quantum information in quantum cognition Nicole Yunger Halpern1, 2 and Elizabeth Crosson1 1Institute for Quantum Information and Matter, Caltech, Pasadena, CA 91125, USA 2Kavli Institute for Theoretical Physics, University of California, Santa Barbara, CA 93106, USA (Dated: November 15, 2017) Matthew Fisher recently postulated a mechanism by which quantum phenomena could influence cognition: Phosphorus nuclear spins may resist decoherence for long times. The spins would serve as biological qubits. The qubits may resist decoherence longer when in Posner molecules. We imagine that Fisher postulates correctly. How adroitly could biological systems process quantum information (QI)? We establish a framework for answering. Additionally, we apply biological qubits in quantum error correction, quantum communication, and quantum computation. First, we posit how the QI encoded by the spins transforms as Posner molecules form. The transformation points to a natural computational basis for qubits in Posner molecules. From the basis, we construct a quantum code that detects arbitrary single-qubit errors. Each molecule encodes one qutrit. Shifting from information storage to computation, we define the model of Posner quantum computation. To illustrate the model's quantum-communication ability, we show how it can teleport information in- coherently: A state's weights are teleported; the coherences are not. The dephasing results from the entangling operation's simulation of a coarse-grained Bell measurement. Whether Posner quantum computation is universal remains an open question. However, the model's operations can efficiently prepare a Posner state usable as a resource in universal measurement-based quantum computation. The state results from deforming the Affleck-Lieb-Kennedy-Tasaki (AKLT) state and is a projected entangled-pair state (PEPS).
    [Show full text]
  • Qiskit Backend Specifications for Openqasm and Openpulse
    Qiskit Backend Specifications for OpenQASM and OpenPulse Experiments David C. McKay1,∗ Thomas Alexander1, Luciano Bello1, Michael J. Biercuk2, Lev Bishop1, Jiayin Chen2, Jerry M. Chow1, Antonio D. C´orcoles1, Daniel Egger1, Stefan Filipp1, Juan Gomez1, Michael Hush2, Ali Javadi-Abhari1, Diego Moreda1, Paul Nation1, Brent Paulovicks1, Erick Winston1, Christopher J. Wood1, James Wootton1 and Jay M. Gambetta1 1IBM Research 2Q-CTRL Pty Ltd, Sydney NSW Australia September 11, 2018 Abstract As interest in quantum computing grows, there is a pressing need for standardized API's so that algorithm designers, circuit designers, and physicists can be provided a common reference frame for designing, executing, and optimizing experiments. There is also a need for a language specification that goes beyond gates and allows users to specify the time dynamics of a quantum experiment and recover the time dynamics of the output. In this document we provide a specification for a common interface to backends (simulators and experiments) and a standarized data structure (Qobj | quantum object) for sending experiments to those backends via Qiskit. We also introduce OpenPulse, a language for specifying pulse level control (i.e. control of the continuous time dynamics) of a general quantum device independent of the specific arXiv:1809.03452v1 [quant-ph] 10 Sep 2018 hardware implementation. ∗[email protected] 1 Contents 1 Introduction3 1.1 Intended Audience . .4 1.2 Outline of Document . .4 1.3 Outside of the Scope . .5 1.4 Interface Language and Schemas . .5 2 Qiskit API5 2.1 General Overview of a Qiskit Experiment . .7 2.2 Provider . .8 2.3 Backend .
    [Show full text]
  • Quantum Cryptography: from Theory to Practice
    Quantum cryptography: from theory to practice by Xiongfeng Ma A thesis submitted in conformity with the requirements for the degree of Doctor of Philosophy Thesis Graduate Department of Department of Physics University of Toronto Copyright °c 2008 by Xiongfeng Ma Abstract Quantum cryptography: from theory to practice Xiongfeng Ma Doctor of Philosophy Thesis Graduate Department of Department of Physics University of Toronto 2008 Quantum cryptography or quantum key distribution (QKD) applies fundamental laws of quantum physics to guarantee secure communication. The security of quantum cryptog- raphy was proven in the last decade. Many security analyses are based on the assumption that QKD system components are idealized. In practice, inevitable device imperfections may compromise security unless these imperfections are well investigated. A highly attenuated laser pulse which gives a weak coherent state is widely used in QKD experiments. A weak coherent state has multi-photon components, which opens up a security loophole to the sophisticated eavesdropper. With a small adjustment of the hardware, we will prove that the decoy state method can close this loophole and substantially improve the QKD performance. We also propose a few practical decoy state protocols, study statistical fluctuations and perform experimental demonstrations. Moreover, we will apply the methods from entanglement distillation protocols based on two-way classical communication to improve the decoy state QKD performance. Fur- thermore, we study the decoy state methods for other single photon sources, such as triggering parametric down-conversion (PDC) source. Note that our work, decoy state protocol, has attracted a lot of scienti¯c and media interest. The decoy state QKD becomes a standard technique for prepare-and-measure QKD schemes.
    [Show full text]
  • Parafermions in a Kagome Lattice of Qubits for Topological Quantum Computation
    PHYSICAL REVIEW X 5, 041040 (2015) Parafermions in a Kagome Lattice of Qubits for Topological Quantum Computation Adrian Hutter, James R. Wootton, and Daniel Loss Department of Physics, University of Basel, Klingelbergstrasse 82, CH-4056 Basel, Switzerland (Received 3 June 2015; revised manuscript received 16 September 2015; published 14 December 2015) Engineering complex non-Abelian anyon models with simple physical systems is crucial for topological quantum computation. Unfortunately, the simplest systems are typically restricted to Majorana zero modes (Ising anyons). Here, we go beyond this barrier, showing that the Z4 parafermion model of non-Abelian anyons can be realized on a qubit lattice. Our system additionally contains the Abelian DðZ4Þ anyons as low-energetic excitations. We show that braiding of these parafermions with each other and with the DðZ4Þ anyons allows the entire d ¼ 4 Clifford group to be generated. The error-correction problem for our model is also studied in detail, guaranteeing fault tolerance of the topological operations. Crucially, since the non- Abelian anyons are engineered through defect lines rather than as excitations, non-Abelian error correction is not required. Instead, the error-correction problem is performed on the underlying Abelian model, allowing high noise thresholds to be realized. DOI: 10.1103/PhysRevX.5.041040 Subject Areas: Condensed Matter Physics, Quantum Physics, Quantum Information I. INTRODUCTION Non-Abelian anyons supported by a qubit system Non-Abelian anyons exhibit exotic physics that would typically are Majorana zero modes, also known as Ising – make them an ideal basis for topological quantum compu- anyons [12 15]. A variety of proposals for experimental tation [1–3].
    [Show full text]
  • Arxiv:1807.01863V1 [Quant-Ph] 5 Jul 2018 Β 2| +I Γ 2 =| I 1
    Quantum Error Correcting Code for Ternary Logic Ritajit Majumdar1,∗ Saikat Basu2, Shibashis Ghosh2, and Susmita Sur-Kolay1y 1Advanced Computing & Microelectronics Unit, Indian Statistical Institute, India 2A. K. Choudhury School of Information Technology, University of Calcutta, India Ternary quantum systems are being studied because these provide more computational state space per unit of information, known as qutrit. A qutrit has three basis states, thus a qubit may be considered as a special case of a qutrit where the coefficient of one of the basis states is zero. Hence both (2 × 2)-dimensional as well as (3 × 3)-dimensional Pauli errors can occur on qutrits. In this paper, we (i) explore the possible (2 × 2)-dimensional as well as (3 × 3)-dimensional Pauli errors in qutrits and show that any pairwise bit swap error can be expressed as a linear combination of shift errors and phase errors, (ii) propose a new type of error called quantum superposition error and show its equivalence to arbitrary rotation, (iii) formulate a nine qutrit code which can correct a single error in a qutrit, and (iv) provide its stabilizer and circuit realization. I. INTRODUCTION errors or (d d)-dimensional errors only and no explicit circuit has been× presented. Quantum computers hold the promise of reducing the Main Contributions: In this paper, we study error cor- computational complexity of certain problems. However, rection in qutrits considering both (2 2)-dimensional × quantum systems are highly sensitive to errors; even in- as well as (3 3)-dimensional errors. We have intro- × teraction with environment can cause a change of state.
    [Show full text]
  • Qubit Coupled Cluster Singles and Doubles Variational Quantum Eigensolver Ansatz for Electronic Structure Calculations
    Quantum Science and Technology PAPER Qubit coupled cluster singles and doubles variational quantum eigensolver ansatz for electronic structure calculations To cite this article: Rongxin Xia and Sabre Kais 2020 Quantum Sci. Technol. 6 015001 View the article online for updates and enhancements. This content was downloaded from IP address 128.210.107.25 on 20/10/2020 at 12:02 Quantum Sci. Technol. 6 (2021) 015001 https://doi.org/10.1088/2058-9565/abbc74 PAPER Qubit coupled cluster singles and doubles variational quantum RECEIVED 27 July 2020 eigensolver ansatz for electronic structure calculations REVISED 14 September 2020 Rongxin Xia and Sabre Kais∗ ACCEPTED FOR PUBLICATION Department of Chemistry, Department of Physics and Astronomy, and Purdue Quantum Science and Engineering Institute, Purdue 29 September 2020 University, West Lafayette, United States of America ∗ PUBLISHED Author to whom any correspondence should be addressed. 20 October 2020 E-mail: [email protected] Keywords: variational quantum eigensolver, electronic structure calculations, unitary coupled cluster singles and doubles excitations Abstract Variational quantum eigensolver (VQE) for electronic structure calculations is believed to be one major potential application of near term quantum computing. Among all proposed VQE algorithms, the unitary coupled cluster singles and doubles excitations (UCCSD) VQE ansatz has achieved high accuracy and received a lot of research interest. However, the UCCSD VQE based on fermionic excitations needs extra terms for the parity when using Jordan–Wigner transformation. Here we introduce a new VQE ansatz based on the particle preserving exchange gate to achieve qubit excitations. The proposed VQE ansatz has gate complexity up-bounded to O(n4)for all-to-all connectivity where n is the number of qubits of the Hamiltonian.
    [Show full text]
  • Arxiv:1812.09167V1 [Quant-Ph] 21 Dec 2018 It with the Tex Typesetting System Being a Prime Example
    Open source software in quantum computing Mark Fingerhutha,1, 2 Tomáš Babej,1 and Peter Wittek3, 4, 5, 6 1ProteinQure Inc., Toronto, Canada 2University of KwaZulu-Natal, Durban, South Africa 3Rotman School of Management, University of Toronto, Toronto, Canada 4Creative Destruction Lab, Toronto, Canada 5Vector Institute for Artificial Intelligence, Toronto, Canada 6Perimeter Institute for Theoretical Physics, Waterloo, Canada Open source software is becoming crucial in the design and testing of quantum algorithms. Many of the tools are backed by major commercial vendors with the goal to make it easier to develop quantum software: this mirrors how well-funded open machine learning frameworks enabled the development of complex models and their execution on equally complex hardware. We review a wide range of open source software for quantum computing, covering all stages of the quantum toolchain from quantum hardware interfaces through quantum compilers to implementations of quantum algorithms, as well as all quantum computing paradigms, including quantum annealing, and discrete and continuous-variable gate-model quantum computing. The evaluation of each project covers characteristics such as documentation, licence, the choice of programming language, compliance with norms of software engineering, and the culture of the project. We find that while the diversity of projects is mesmerizing, only a few attract external developers and even many commercially backed frameworks have shortcomings in software engineering. Based on these observations, we highlight the best practices that could foster a more active community around quantum computing software that welcomes newcomers to the field, but also ensures high-quality, well-documented code. INTRODUCTION Source code has been developed and shared among enthusiasts since the early 1950s.
    [Show full text]
  • Quantum Algorithms for Classical Lattice Models
    Home Search Collections Journals About Contact us My IOPscience Quantum algorithms for classical lattice models This content has been downloaded from IOPscience. Please scroll down to see the full text. 2011 New J. Phys. 13 093021 (http://iopscience.iop.org/1367-2630/13/9/093021) View the table of contents for this issue, or go to the journal homepage for more Download details: IP Address: 147.96.14.15 This content was downloaded on 16/12/2014 at 15:54 Please note that terms and conditions apply. New Journal of Physics The open–access journal for physics Quantum algorithms for classical lattice models G De las Cuevas1,2,5, W Dür1, M Van den Nest3 and M A Martin-Delgado4 1 Institut für Theoretische Physik, Universität Innsbruck, Technikerstraße 25, A-6020 Innsbruck, Austria 2 Institut für Quantenoptik und Quanteninformation der Österreichischen Akademie der Wissenschaften, Innsbruck, Austria 3 Max-Planck-Institut für Quantenoptik, Hans-Kopfermann-Strasse 1, D-85748 Garching, Germany 4 Departamento de Física Teórica I, Universidad Complutense, 28040 Madrid, Spain E-mail: [email protected] New Journal of Physics 13 (2011) 093021 (35pp) Received 15 April 2011 Published 9 September 2011 Online at http://www.njp.org/ doi:10.1088/1367-2630/13/9/093021 Abstract. We give efficient quantum algorithms to estimate the partition function of (i) the six-vertex model on a two-dimensional (2D) square lattice, (ii) the Ising model with magnetic fields on a planar graph, (iii) the Potts model on a quasi-2D square lattice and (iv) the Z2 lattice gauge theory on a 3D square lattice.
    [Show full text]
  • Building Your Quantum Capability
    Building your quantum capability The case for joining an “ecosystem” IBM Institute for Business Value 2 Building your quantum capability A quantum collaboration Quantum computing has the potential to solve difficult business problems that classical computers cannot. Within five years, analysts estimate that 20 percent of organizations will be budgeting for quantum computing projects and, within a decade, quantum computing may be a USD15 billion industry.1,2 To place your organization in the vanguard of change, you may need to consider joining a quantum computing ecosystem now. The reality is that quantum computing ecosystems are already taking shape, with members focused on how to solve targeted scientific and business problems. Joining the right quantum ecosystem today could give your organization a competitive advantage tomorrow. Building your quantum capability 3 The quantum landscape Quantum computing is gathering momentum. By joining a burgeoning quantum computing Today, major tech companies are backing ecosystem, your organization can get a head What is quantum computing? sizeable R&D programs, venture capital funding start today. Unlike “classical” computers, has grown to at least $300 million, dozens of quantum computers can represent a superposition of multiple states at startups have been founded, quantum A quantum ecosystem brings together business the same time. This characteristic is conferences and research papers are climbing, experts with specialists from industry, expected to provide more efficient research, academia, engineering, physics and students from 1,500 schools have used quantum solutions for certain complex business software development/coding across the computing online, and governments, including and scientific problems, such as drug China and the European Union, have announced quantum stack to develop quantum solutions and materials development, logistics billion-dollar investment programs.3,4,5 that solve business and science problems that and artificial intelligence.
    [Show full text]
  • In Situ Quantum Control Over Superconducting Qubits
    ! In situ quantum control over superconducting qubits Anatoly Kulikov M.Sc. A thesis submitted for the degree of Doctor of Philosophy at The University of Queensland in 2020 School of Mathematics and Physics ARC Centre of Excellence for Engineered Quantum Systems (EQuS) ABSTRACT In the last decade, quantum information processing has transformed from a field of mostly academic research to an applied engineering subfield with many commercial companies an- nouncing strategies to achieve quantum advantage and construct a useful universal quantum computer. Continuing efforts to improve qubit lifetime, control techniques, materials and fab- rication methods together with exploring ways to scale up the architecture have culminated in the recent achievement of quantum supremacy using a programmable superconducting proces- sor { a major milestone in quantum computing en route to useful devices. Marking the point when for the first time a quantum processor can outperform the best classical supercomputer, it heralds a new era in computer science, technology and information processing. One of the key developments enabling this transition to happen is the ability to exert more precise control over quantum bits and the ability to detect and mitigate control errors and imperfections. In this thesis, ways to efficiently control superconducting qubits are explored from the experimental viewpoint. We introduce a state-of-the-art experimental machinery enabling one to perform one- and two-qubit gates focusing on the technical aspect and outlining some guidelines for its efficient operation. We describe the software stack from the time alignment of control pulses and triggers to the data processing organisation. We then bring in the standard qubit manipulation and readout methods and proceed to describe some of the more advanced optimal control and calibration techniques.
    [Show full text]
  • Student User Experience with the IBM Qiskit Quantum Computing Interface
    Proceedings of Student-Faculty Research Day, CSIS, Pace University, May 4th, 2018 Student User Experience with the IBM QISKit Quantum Computing Interface Stephan Barabasi, James Barrera, Prashant Bhalani, Preeti Dalvi, Ryan Kimiecik, Avery Leider, John Mondrosch, Karl Peterson, Nimish Sawant, and Charles C. Tappert Seidenberg School of CSIS, Pace University, Pleasantville, New York Abstract - The field of quantum computing is rapidly Schrödinger [11]. Quantum mechanics states that the position expanding. As manufacturers and researchers grapple with the of a particle cannot be predicted with precision as it can be in limitations of classical silicon central processing units (CPUs), Newtonian mechanics. The only thing an observer could quantum computing sheds these limitations and promises a know about the position of a particle is the probability that it boom in computational power and efficiency. The quantum age will be at a certain position at a given time [11]. By the 1980’s will require many skilled engineers, mathematicians, physicists, developers, and technicians with an understanding of quantum several researchers including Feynman, Yuri Manin, and Paul principles and theory. There is currently a shortage of Benioff had begun researching computers that operate using professionals with a deep knowledge of computing and physics this concept. able to meet the demands of companies developing and The quantum bit or qubit is the basic unit of quantum researching quantum technology. This study provides a brief information. Classical computers operate on bits using history of quantum computing, an in-depth review of recent complex configurations of simple logic gates. A bit of literature and technologies, an overview of IBM’s QISKit for information has two states, on or off, and is represented with implementing quantum computing programs, and two a 0 or a 1.
    [Show full text]