Satellites: Probes of Dark Matter Microphysics

Ethan Nadler 10/7/19 Small Halos as DM Probes

CDM WDM

Lovell et al. 2011 Faint Galaxies as DM Probes

CDM WDM Milky Way Satellites

Classical Boo III CVn II Com SDSS CVn I Boo I Boo II +60 II PS1 Vir I Wil 1 Boo IV Leo IV Seg 1 DES UMa I UMi Dra II Crt II Sex DECam Her +30 UMa II Dra HSC Hyd II ATLAS Gaia Ant II

0

Sgr Car III Car II Tri II Sgr II Car LMC Pic II Col I 30 Hyi I Pic I Seg 2 Peg III SMC Psc II Ret III Ret II Tuc II Tuc V Gru II Hor I Aqr II Tuc IV Gru I Cet III Tuc III Hor II 60 Phe II For Cet II Scl

Drlica-Wagner et al. in prep. 1. Resimulate Milky Way- like halos from large cosmological volume.

AAAB7XicbVBNS8NAEJ3Ur1q/qh69LBbBU0mqoMeiF48V7Ae0oUy2m3btZhN2N0IJ/Q9ePCji1f/jzX/jts1BWx8MPN6bYWZekAiujet+O4W19Y3NreJ2aWd3b/+gfHjU0nGqKGvSWMSqE6BmgkvWNNwI1kkUwygQrB2Mb2d++4kpzWP5YCYJ8yMcSh5yisZKrR6KZIT9csWtunOQVeLlpAI5Gv3yV28Q0zRi0lCBWnc9NzF+hspwKti01Es1S5COcci6lkqMmPaz+bVTcmaVAQljZUsaMld/T2QYaT2JAtsZoRnpZW8m/ud1UxNe+xmXSWqYpItFYSqIicnsdTLgilEjJpYgVdzeSugIFVJjAyrZELzll1dJq1b1Lqq1+8tK/SaPowgncArn4MEV1OEOGtAECo/wDK/w5sTOi/PufCxaC04+cwx/4Hz+AIzPjxw= 2. Paint satellite galaxies

AAAB/HicbVBNS8NAEN3Ur1q/oj16CRbBU0mqoMeiF48V7Ae0IWy2m3TpbhJ2J2II8a948aCIV3+IN/+N2zYHbX0w8Hhvhpl5fsKZAtv+Nipr6xubW9Xt2s7u3v6BeXjUU3EqCe2SmMdy4GNFOYtoFxhwOkgkxcLntO9Pb2Z+/4FKxeLoHrKEugKHEQsYwaAlz6yPFAsF9vIR0EfIQ8yLwjMbdtOew1olTkkaqETHM79G45ikgkZAOFZq6NgJuDmWwAinRW2UKppgMsUhHWoaYUGVm8+PL6xTrYytIJa6IrDm6u+JHAulMuHrToFhopa9mfifN0whuHJzFiUp0IgsFgUptyC2ZklYYyYpAZ5pgolk+laLTLDEBHReNR2Cs/zyKum1ms55s3V30Whfl3FU0TE6QWfIQZeojW5RB3URQRl6Rq/ozXgyXox342PRWjHKmTr6A+PzB8RalX4= gal onto subhalos using BAAAB8nicbVDLSgMxFM3UV62vqks3wSK4KjNV0GWpG5cV7AOmQ8mkmTY0kwzJHaEM/Qw3LhRx69e482/MtLPQ1gOBwzn3knNPmAhuwHW/ndLG5tb2Tnm3srd/cHhUPT7pGpVqyjpUCaX7ITFMcMk6wEGwfqIZiUPBeuH0Lvd7T0wbruQjzBIWxGQsecQpASv5g5jAhBKRtebDas2tuwvgdeIVpIYKtIfVr8FI0TRmEqggxviem0CQEQ2cCjavDFLDEkKnZMx8SyWJmQmyReQ5vrDKCEdK2ycBL9TfGxmJjZnFoZ3MI5pVLxf/8/wUotsg4zJJgUm6/ChKBQaF8/vxiGtGQcwsIVRzmxXTCdGEgm2pYkvwVk9eJ91G3buqNx6ua81WUUcZnaFzdIk8dIOa6B61UQdRpNAzekVvDjgvzrvzsRwtOcXOKfoD5/MHcyGRXA==

AAAB+XicbVDLSsNAFL2pr1pfUZduBovgqiRV0WXRjRuhgn1AG8JkOm2HTiZhZlIoIX/ixoUibv0Td/6NkzYLbT0wcDjnXu6ZE8ScKe0431ZpbX1jc6u8XdnZ3ds/sA+P2ipKJKEtEvFIdgOsKGeCtjTTnHZjSXEYcNoJJne535lSqVgknvQspl6IR4INGcHaSL5t90OsxwTz9CHz0ysn8+2qU3PmQKvELUgVCjR9+6s/iEgSUqEJx0r1XCfWXoqlZoTTrNJPFI0xmeAR7RkqcEiVl86TZ+jMKAM0jKR5QqO5+nsjxaFSszAwk3lOtezl4n9eL9HDGy9lIk40FWRxaJhwpCOU14AGTFKi+cwQTCQzWREZY4mJNmVVTAnu8pdXSbtecy9q9cfLauO2qKMMJ3AK5+DCNTTgHprQAgJTeIZXeLNS68V6tz4WoyWr2DmGP7A+fwBvspOG 50 galaxy—halo model. M

AAAB73icbVDLSgNBEOz1GeMr6tHLYBA8hd0o6DHoxYsQwTwgWcLsZDYZMo91ZlYIS37CiwdFvPo73vwbJ8keNLGgoajqprsrSjgz1ve/vZXVtfWNzcJWcXtnd2+/dHDYNCrVhDaI4kq3I2woZ5I2LLOcthNNsYg4bUWjm6nfeqLaMCUf7DihocADyWJGsHVSu2vYQODeXa9U9iv+DGiZBDkpQ456r/TV7SuSCiot4diYTuAnNsywtoxwOil2U0MTTEZ4QDuOSiyoCbPZvRN06pQ+ipV2JS2aqb8nMiyMGYvIdQpsh2bRm4r/eZ3UxldhxmSSWirJfFGccmQVmj6P+kxTYvnYEUw0c7ciMsQaE+siKroQgsWXl0mzWgnOK9X7i3LtOo+jAMdwAmcQwCXU4Bbq0AACHJ7hFd68R+/Fe/c+5q0rXj5zBH/gff4A8YOP5w== M

3. Apply observational selection functions based on imaging data. Markov Chain Monte Carlo 4. Calculate likelihood of observed satellites given galaxy—halo connection parameters.

Nadler et al. in prep. Galaxy-Halo Connection Model

EN, Y.-Y. Mao, G. Green, R. Wechsler 2019 Observational Selection Functions

1.0 3 DES

Boo III Tuc II Tuc IV 2 UMa II Gru II 0.8 Tuc III Ret II Com Seg 2 (r / pc) Boo II Dra IISeg 1 Cet II 10 Wil 1 Tuc V Tri II

log 1 0.6 8

Boo I Col I Detection E ciency Aqr II 2 Ret III Leo IV Peg III Cet III Sgr II Hor I Hor II Vir I CVn II Psc II (r / pc) Phe II Leo V

10 0.2 Gru I Pic I

log 1

64

0 0.0 10.0 7.5 5.0 2.5 0.0 10.0 7.5 5.0 2.5 0.0 10.0 7.5 5.0 2.5 0.0 MV MV MV Drlica-Wagner et al. in prep. Mock Satellite Observations

simulated “LMC” Mock Satellite Observations

simulated “LMC” Mock Satellite Observations

simulated “LMC” Minimum Halo Mass Constraints

+0.016 ↵ = 1.436 0.019

+0.057 M =0.201 0.000 0.5 0.4 M 0.3 +0.43 50 =7.51 0.00 M 8.5 50

M 8.0 +0.36 =0.70 0.22 B 1.6 B 0.8 Preliminary +0.00 gal =1.00 0.62 0.8 gal

0.4 +9.4 = 32.6 8.3 75 A

50 A 25 +0.15 R =0.26 0.16 0.6 R 0.3 +0.30 n =1.47 0.50 1.6 n 0.8

1.501.451.40 0.3 0.4 0.5 8.0 8.5 0.8 1.6 0.4 0.8 25 50 75 0.3 0.6 0.8 1.6 ↵ M 50 gal R n M B A Nadler et al. in prep. Minimum Halo Mass Constraints

+0.016 ↵ = 1.436 0.019 Classical+SDSS+DES

+0.057 Classical+SDSS M =0.201 0.000 0.5 0.4 M 0.3 +0.43 50 =7.51 0.00 M 8.5 1.8 50

M 8.0 +0.36 =0.70 0.22 M 1.2 B 1.6

B 0.6 0.8 Preliminary +0.00 gal =1.00 0.62 0.8 gal 8.5 0.4

+9.4 min = 32.6 8.3 75 A M 8.0 50 A 25 +0.15 R =0.26 0.16 1.8 0.6 R 0.3 1.2 +0.30 B n =1.47 0.50 1.6 0.6 n 0.8

1.501.451.40 0.3 0.4 0.5 8.0 8.5 0.8 1.6 0.4 0.8 25 50 75 0.3 0.6 0.8 1.6 1.44 1.36 1.28 0.6 1.2 1.8 8.0 8.5 0.6 1.2 1.8 ↵ M 50 gal R n ↵ M min M B A M B Theoretical Uncertainties

Subhalo Number Counts Fit to Satellites 2 109 ] ⇥ M [ 109 50 M 5 108 ⇥

2 108 ⇥ Upper Limit on 108 Minimal + MW Host + Subhalo + Satellites + Satellites CDM Mass Disruption (Confirmed) (Unconfirmed)

Nadler et al. in prep. DM-Baryon Scattering Constraints

• Early-time DM-baryon scattering M [M ] suppresses small-scale power 1016 1014 1012 1010 108 1.0 • Mass of the smallest halo allowed to form corresponds to the size of the horizon when 0.75 CDM /P 0.5 mWDM =0.3 keV mWDM =1.2 keV m =4.7 keV

collisional WDM

• Smallest detected subhalo yields P 27 2 0.25 0 = 10 cm 28 2 (analytic!) cross section limit: 0 = 10 cm 29 2 0 = 10 cm 0.05 0.1 1 5 10 30 50 1 k [h Mpc ]

EN, V. Gluscevic, K. Boddy, R. Wechsler 2019 DM-Baryon Scattering Constraints

24 10 CMB Lyman-↵ XQC ] 26 XQC ] 26 2 10 2 10 MiniBoone CR [cm [cm 0 0 28 28 10

XENON1T CR 30 10 Direct Detection cross section cross section 32 10

34 1034 10 5 4 3 2 1 0 1 2 10 10 10 10 10 10 10 10 dark matter mass m [GeV] EN, V. Gluscevic, K. Boddy, R. Wechsler 2019 DM-Baryon Scattering Constraints

24 10 CMB Lyman-↵ XQC ] 26 2 10 MiniBoone CR [cm

0 28 10

XENON1T CR 30 10 Direct Detection

cross section 32 10

34 10 5 4 3 2 1 0 1 2 10 10 10 10 10 10 10 10 dark matter mass m [GeV] EN, V. Gluscevic, K. Boddy, R. Wechsler 2019 DM-Baryon Scattering Constraints

24 10 CMB Lyman-↵ XQC ] 26 2 10 MiniBoone CR [cm

0 28 Milky Way Satellites 10

XENON1T CR 30 10 Direct Detection

cross section 32 10 Analytic Estimate Population Analysis 34 10 5 4 3 2 1 0 1 2 10 10 10 10 10 10 10 10 dark matter mass m [GeV] EN, V. Gluscevic, K. Boddy, R. Wechsler 2019 Warm DM Constraints

• Minimum detected halo mass 24 10 m = 10 GeV constrains thermal relic WDM: 1 m = 10 GeV 25 3 10 m = 10 GeV ]

2 5 M 0.3 m = 10 GeV hm [cm 26 10 mWDM =2.3 keV 0 109 M

AAACQnicbZA/axsxGMZ17p+kTtM6ydhF1ATcIcedXUgyBIyToUsghfpP8dlGJ+tsYel0SLqAEfpsXfIJsvUDdMnQUrJmqM6+obX7gODh+b0vkp44Y1TpIPjuVZ49f/FyZ/dVde/1/pu3tYPDnhK5xKSLBRNyECNFGE1JV1PNyCCTBPGYkX68uCx4/5ZIRUX6RS8zMuJoltKEYqRdNKl95RMTSW76V9fWwgvY9FsRjDp01ogSibC5XuM5t9aaMBibcxvBMozEVGiXF+MfxuYk8FsOFmRBenZSqwd+sBLcNmFp6qDUzaR2H00FzjlJNWZIqWEYZHpkkNQUM2KrUa5IhvACzcjQ2RRxokZmVYGFxy6ZwkRId1INV+nfGwZxpZY8dpMc6bnaZEX4PzbMdXI2MjTNck1SvL4oyRnUAhZ9wimVBGu2dAZhSd1bIZ4jV512rVddCeHml7dNr+mHLb/5+WO93Snr2AXvwHvQACE4BW3wCdyALsDgG/gBfoJf3p334P32HtejFa/cOQL/yHv6AyIesJM= 27 ⇣ ⌘ 10

28 • Mapping between WDM and 10 DM-baryon scattering constrains cross section 10 29 any “thermal” DM model: 30 10 0 2 4 6 8 10 T ( ,m ) m mWDM [keV] dec 1 = WDM,1 T ( ,m ) m AAACVHicbVFbS8MwGE07p3PqnProS3AIE8Zoq6AvwlAffBEm7AbrKGmWbmFJW5JUGKU/Uh8Ef4kvPphdkLntQOB853xfLid+zKhUlvVlmLmd/O5eYb94cHhUOi6fnHZklAhM2jhikej5SBJGQ9JWVDHSiwVB3Gek608eZ373jQhJo7ClpjEZcDQKaUAxUlryyhM3EAinLS91BU+HBGdZ1ZV0xJFn17jn4jG9yrbazp8N7+FiF75o6z691Owsy1ZrR9deuWLVrTngJrGXpAKWaHrlD3cY4YSTUGGGpOzbVqwGKRKKYkayoptIEiM8QSPS1zREnMhBOg8lg5daGcIgEnqFCs7V1YkUcSmn3NedHKmxXPdm4javn6jgbpDSME4UCfHioCBhUEVwljAcUkGwYlNNEBZU3xXiMdL5KP0PRR2Cvf7kTdJx6vZ13Xm9qTQelnEUwDm4AFVgg1vQAM+gCdoAg3fwbQDDMD6NHzNn5hetprGcOQP/YJZ+AXlNtGk= dec 2 WDM,2 m > 4 keV (95% C.L.) AAACFnicbVDLSgMxFM34rPVVdekmWAp14TBTK+pGinXhQqGCfUBnKJk0bUOTmSHJCGWYr3Djr7hxoYhbceffmLaz0NYDF07OuZfce7yQUaks69tYWFxaXlnNrGXXNza3tnM7uw0ZRAKTOg5YIFoekoRRn9QVVYy0QkEQ9xhpesPq2G8+ECFp4N+rUUhcjvo+7VGMlJY6uSPeiR3B4+bVbZLAC1h24Pg5JI3EgcXzE6cwFarmjZkcdnJ5y7QmgPPETkkepKh1cl9ON8ARJ77CDEnZtq1QuTESimJGkqwTSRIiPER90tbUR5xIN56clcCCVrqwFwhdvoIT9fdEjLiUI+7pTo7UQM56Y/E/rx2p3pkbUz+MFPHx9KNexKAK4Dgj2KWCYMVGmiAsqN4V4gESCCudZFaHYM+ePE8aJdM+Nkt35XzlMo0jA/bBASgCG5yCCrgGNVAHGDyCZ/AK3own48V4Nz6mrQtGOrMH/sD4/AG5Gp0t WDM DM Formation Constraints

• Excess radiation decaying to DM after BBN (late-forming DM) suppresses small-scale power

• Half-mode scale is related to size of horizon when DM forms:

k 1.4 k AAACBXicbVDLSsNAFJ3UV62vqEtdDBbBVUhqQZdFNy4r2Ac0IUymk3bITBJmJmIJ2bjxV9y4UMSt/+DOv3HaZqGtBy4czrmXe+8JUkalsu1vo7Kyura+Ud2sbW3v7O6Z+wddmWQCkw5OWCL6AZKE0Zh0FFWM9FNBEA8Y6QXR9dTv3RMhaRLfqUlKPI5GMQ0pRkpLvnkc+bkreD7mRQFdlKYieYCO1XRh5Ie+Wbctewa4TJyS1EGJtm9+ucMEZ5zECjMk5cCxU+XlSCiKGSlqbiZJinCERmSgaYw4kV4++6KAp1oZwjARumIFZ+rviRxxKSc80J0cqbFc9Kbif94gU+Gll9M4zRSJ8XxRmDGoEjiNBA6pIFixiSYIC6pvhXiMBMJKB1fTITiLLy+TbsNyzq3GbbPeuirjqIIjcALOgAMuQAvcgDboAAwewTN4BW/Gk/FivBsf89aKUc4cgj8wPn8Ar36YBg== hm ⇡ f

• Order-of-magnitude improvement on formation redshift constraints:

z > 7.8 106 (95% C.L.) AAACEHicbVC7TgJBFJ3FF+Jr1dJmIiFis9nFB9gYIo2FBSbySNiVzA6zMGH2kZlZE9zwCTb+io2Fxtha2vk3DrCFoie5yck59+bee9yIUSFN80vLLCwuLa9kV3Nr6xubW/r2TlOEMcekgUMW8raLBGE0IA1JJSPtiBPku4y03GFt4rfuCBc0DG7kKCKOj/oB9ShGUkld/eC+68FzWDYqtqQ+EdAyb09tWDw7sQs2tLmf1IwrY3zY1fOmYU4B/xIrJXmQot7VP+1eiGOfBBIzJETHMiPpJIhLihkZ5+xYkAjhIeqTjqIBUsudZPrQGBaU0oNeyFUFEk7VnxMJ8oUY+a7q9JEciHlvIv7ndWLpVZyEBlEsSYBni7yYQRnCSTqwRznBko0UQZhTdSvEA8QRlirDnArBmn/5L2mWDOvIKF0f56sXaRxZsAf2QRFYoAyq4BLUQQNg8ACewAt41R61Z+1Ne5+1ZrR0Zhf8gvbxDRYfmXg= f ⇥ Das & Nadler in prep Fuzzy DM Constraints

• Fuzzy DM can be approximately Armengaud et al. 2017 mapped to WDM:

0.7 21 Mhm m =1.3 10 eV 109 M AAACTHicbVBNa9swGJbTrU2zj2bdsRfRMMgOM3ZaaHcohO7SS6GD5QPiLMiKnIhKlpFeF4LwD+xlh936K3rZYaUUKic+dMleEDw8H7yvnjgT3EAQ3Hm1rVevt3fqu403b9+932t+2O8blWvKelQJpYcxMUzwlPWAg2DDTDMiY8EG8fW3Uh/cMG24Sn/AImNjSWYpTzgl4KhJk8qJjbI5L/AZDv2jCLhkBofBT/ulExYRjs75rB0lmlB76Zxa2rksisKWjq9Or8hITRU4vrR/dtnAPynDTmH9YtJsBX6wHLwJwgq0UDVXk+bvaKpoLlkKVBBjRmGQwdgSDZwKVjSi3LCM0GsyYyMHU+JuHttlGQX+5JgpTpR2LwW8ZF8mLJHGLGTsnJLA3KxrJfk/bZRDcjq2PM1yYCldLUpygUHhslk85ZpREAsHCNXc3YrpnLjmwPXfcCWE61/eBP2OHx75ne/Hre55VUcdHaBD1EYhOkFddIGuUA9RdIvu0V/04P3y/niP3tPKWvOqzEf0z9S2nwFCf7L3 ⇥ ⇣ ⌘ • If ultra-light axions are the DM, 5 detecting a 10 M☉ halo is a measurement of physics below the GUT scale:

M 0.2 f =1.7 1017 ⌦1/2 hm GeV 109 M AAACWHicbVFBSxwxGM1MterWtqs9egldCnqZzmyF1UNB7KFeRAvuKmzWJZPN7AaTyZB8U1hC/mTBg/0rvTSzzqFVPwg83vvel3wveSWFhTR9iOJXa+uvNza3Om+23757393ZHVldG8aHTEttbnJquRQlH4IAyW8qw6nKJb/O7741+vVPbqzQ5RUsKz5RdF6KQjAKgZp2dYG/4iwZEBCKW5ylty4beILJheJzOnWkWggfuM99j8mpmO+TwlDmzoNilFso771rTMfB05JEzzQEvmk/uHVp0m/mBeE7H/lpt5cm6arwc5C1oIfaupx2f5GZZrXiJTBJrR1naQUTRw0IJrnvkNryirI7OufjAEsa1pi4VTAefwrMDBfahFMCXrH/OhxV1i5VHjoVhYV9qjXkS9q4huJo4kRZ1cBL9nhRUUsMGjcp45kwnIFcBkCZEeGtmC1oSA7CX3RCCNnTlZ+DUT/JviT9H4e9k9M2jk20hz6ifZShATpBZ+gSDRFD9+hPtBatR79jFG/EW4+tcdR6PqD/Kt79C0Pcsqs= ⇥ ⇣ ⌘ 21 m > 4.6 10 eV (95% C.L.) AAACIXicbVDLTgIxFO3gC/GFunTTSEhw4WQGUXFjiGxcuMBEHgmDpFMKNLQzk7ZjQibzK278FTcuNIad8WcsAwsFT9Lk9Jx7c+89bsCoVJb1ZaRWVtfWN9Kbma3tnd297P5BQ/qhwKSOfeaLloskYdQjdUUVI61AEMRdRpruqDr1m09ESOp7D2ockA5HA4/2KUZKS91smXcjJxjSGF7DknnhKMqJhLb1GJ0W7Rg6gkekETuwcHXu5J3kXzXvzPikm81ZppUALhN7TnJgjlo3O3F6Pg458RRmSMq2bQWqEyGhKGYkzjihJAHCIzQgbU09pBfpRMmFMcxrpQf7vtDPUzBRf3dEiEs55q6u5EgN5aI3Ff/z2qHqlzsR9YJQEQ/PBvVDBpUPp3HBHhUEKzbWBGFB9a4QD5FAWOlQMzoEe/HkZdIomvaZWbwv5So38zjS4AgcgwKwwSWogFtQA3WAwTN4Be/gw3gx3oxPYzIrTRnznkPwB8b3D4fyoJ8= ⇥ Self-Interacting DM

80 w10 w200 CDM 10 w10 w200 w100 w500 w w 100 500 60 ) vir ] 1

40

g 1 < r/R 2 ( N [cm 20 /m

T 0.1 0 Ultra-Faint Satellites 2 CDM

/N 1 Classical Satellites

0.01 MW Host Halo SIDM

10 20 30 50 100 300 N 0 0 0.2 0.4 0.6 0.8 1.0 1 v [km s ] r/Rvir

S. Adhikari, A. Banerjee, Y.-Y. Mao, EN, R. Wechsler in prep. Future Work

• Joint models and constraints of DM properties (plus baryons!), marginalizing over uncertainties in DM models

• Example: warm + self-interacting DM constrained by satellite abundances and dynamics

LSST Dark Matter White Paper Drlica-Wagner et al. 2019 Future Work Gilman et al. 2019

• Combine DM models and small- scale probes, marginalizing over uncertainties in DM models and baryonic physics

• Example: joint constraints from satellites and strong lensing

MAAAB8nicbVBNS8NAEN3Ur1q/qh69LBbBU0mqoMeiFy9CBfsBaSib7aZdupsNuxOhhPwMLx4U8eqv8ea/cdvmoK0PBh7vzTAzL0wEN+C6305pbX1jc6u8XdnZ3ds/qB4edYxKNWVtqoTSvZAYJnjM2sBBsF6iGZGhYN1wcjvzu09MG67iR5gmLJBkFPOIUwJW8u8HWV/LbCzzfFCtuXV3DrxKvILUUIHWoPrVHyqaShYDFcQY33MTCDKigVPB8ko/NSwhdEJGzLc0JpKZIJufnOMzqwxxpLStGPBc/T2REWnMVIa2UxIYm2VvJv7n+SlE10HG4yQFFtPFoigVGBSe/Y+HXDMKYmoJoZrbWzEdE00o2JQqNgRv+eVV0mnUvYt64+Gy1rwp4iijE3SKzpGHrlAT3aEWaiOKFHpGr+jNAefFeXc+Fq0lp5g5Rn/gfP4Azg6RmA== hm Thanks!

Susmita Adhikari, Arka Banerjee, Keith Bechtol, Kimberly Boddy, Francis-Yan Cyr-Racine, Subinoy Das, Alex Drlica-Wagner, Vera Gluscevic, Greg Green, Yao-Yuan Mao, Sidney Mau Mitch McNanna, Risa Wechsler Baryonic Subhalo Disruption

CDM CDM + BARYONS

Garrison-Kimmel et al. 2017 Baryonic Subhalo Disruption

• Five subhalo features encode ~90% of disruption

• Predicted subhalo populations consistent with FIRE Baryonic Subhalo Disruption

Nadler et al. 2018 Artificial Subhalo Disruption

van den Bosch & Ogiya 2018 Artificial Subhalo Disruption

• Track and reinsert disrupted subhalos by modeling host potential, tidal stripping

500 r<300 kpc

100 ) ) max V ( N

N 10 Halo 937 16K + Orphans Halo 937 16K 1 Vacc > 10 km s Halo 937 + Orphans 1 Halo 937 Vmax > 10 km s 1 10 20 30 40 20 30 50 100 300

2 16K Resolution

orphan Fiducial Resolution 1

N/N 0.5 10 20 30 40 20 30 50 100 300 1 r [kpc] Vmax [km s ] Nadler et al. 2018 Satellite Population Likelihood

• Assume that mock and observed satellites are Poisson distributed

• Marginalize over unknown rate i

i =1 i =5 i = 10 1.0

) Nˆ = 10 Nˆ = 10 Nˆ = 10 } i ˆ n

|{ 0.5 i n ( P 0.0 1.0

) Nˆ = 1000 Nˆ = 1000 Nˆ = 1000 } i ˆ n

|{ 0.5 i Poisson n ( This Work P Jethwa 2018 0.0 0 1 2 3 4 5 0 3 6 9 12 15 0 4 8 12 16 20 ni ni ni Predicted Luminosity Functions

Observed Satellites Observed Satellites No LMC No LMC 20 Fiducial (with LMC) 20 Fiducial (with LMC)

10 10 ) ) V V

( 5 ( 5 N N

DES PS1 1 1 0 -3 -6 -9 0 -3 -6 -9 MV [Mag] MV [Mag]

Nadler et al. in prep DM-Baryon Scattering Constraints

Evolution of DM density fluctuations:

Evolution of DM temperature: DM-Baryon Scattering Constraints

Evolution of DM density fluctuations:

Evolution of DM temperature:

Momentum transfer rate:

f DM-Baryon Scattering Constraints

Evolution of DM density fluctuations:

Evolution of DM temperature:

Heat transfer rate:

(SI) m (SI) R0 = R m + m p

AAACNnicbVDLSgMxFM34tr6qLt0Ei1gRyowKuhGKbnQh+OoDOnXIpJk2mMwMyR2xDPNVbvwOd924UMStn2BaZ+HrQMjhnHtI7vFjwTXY9sAaG5+YnJqemS3MzS8sLhWXV+o6ShRlNRqJSDV9opngIasBB8GasWJE+oI1/Nvjod+4Y0rzKLyGfszaknRDHnBKwEhe8ezSS13a49nmTVp2gd1DenWabWX4ELuBIjSV3sjOb7yNpRdneQjH2c+UVyzZFXsE/Jc4OSmhHOde8cntRDSRLAQqiNYtx46hnRIFnAqWFdxEs5jQW9JlLUNDIplup6O1M7xhlA4OImVOCHikfk+kRGrdl76ZlAR6+rc3FP/zWgkEB+2Uh3ECLKRfDwWJwBDhYYe4wxWjIPqGEKq4+SumPWLaAtN0wZTg/F75L6nvVJzdin2xV6oe5XXMoDW0jsrIQfuoik7QOaohih7QAL2gV+vRerberPev0TErz6yiH7A+PgFij6xU p DM-Baryon Scattering Constraints

Evolution of DM density fluctuations:

Evolution of DM temperature:

• Find thermal decoupling redshift

• Evolve DM temp. adiabatically to find kinetic decoupling redshift DM-Baryon Scattering Constraints

Evolution of DM density fluctuations:

Evolution of DM temperature:

• Find thermal decoupling redshift

• Evolve DM temp. adiabatically to find kinetic decoupling redshift Modeling Subhalo Suppression

Half-mode mass: scale at which subhalo abundance is suppressed Calibrate subhalo mass function on WDM zoom-in simulations

9 10

MAAACFXicdVBNSwMxEM36bf2qevQSLUIFKbsqag+C6MWLUMHaQreWbJraYLJZklmhLPsbBC/+FS8eLOJV8OYP8W7aKvj5YODx3gwz84JIcAOu++oMDY+Mjo1PTGampmdm57LzC2dGxZqyMlVC6WpADBM8ZGXgIFg10ozIQLBKcHnY8ytXTBuuwlPoRKwuyUXIW5wSsFIju37cSHwtk7ZMU7yHt3zgkhnsuedJMfXxh+urpoI0bWRzbqHoesVtD/8mXsHtI7e/nH/rXvtrpUb2xW8qGksWAhXEmJrnRlBPiAZOBUszfmxYROgluWA1S0Nid9eT/lcpXrVKE7eUthUC7qtfJxIijenIwHZKAm3z0+uJf3m1GFq79YSHUQwspINFrVhgULgXEW5yzSiIjiWEam5vxbRNNKFgg8zYED4/xf+Ts42Ct1lwT2waB2iACbSEVlAeeWgH7aMjVEJlRNENukMPqOvcOvfOo/M0aB1yPmYW0Tc4z+/gkqJT hm =4 10 M MAAACFnicdVC7SgNBFJ31bXxFLW1GRdDCMKvgoxBEGxshgtFANobZySQZnNlZZu4KYdlvsLDxV2wsFLEVOz/E3slD8HngwuGce7n3njCWwgIhb97A4NDwyOjYeG5icmp6Jj87d2Z1YhgvMS21KYfUcikiXgIBkpdjw6kKJT8PLw87/vkVN1bo6BTaMa8q2oxEQzAKTqrl149raWBU2lJZhvfwRgBCcYt9cpH6JAtw3w50XUOW1fLLpLBL/N0tH/8mfoF0sby/uPr+cB2sFWv516CuWaJ4BExSays+iaGaUgOCSZ7lgsTymLJL2uQVRyPqllfT7lsZXnFKHTe0cRUB7qpfJ1KqrG2r0HUqCi370+uIf3mVBBo71VREcQI8Yr1FjURi0LiTEa4LwxnItiOUGeFuxaxFDWXgksy5ED4/xf+Ts42Cv1kgJy6NA9TDGFpAS2gV+Wgb7aMjVEQlxNANukMP6NG79e69J++51zrg9Wfm0Td4Lx9LZKKD hm =2 10 M ⇥ ⇥ Generalized DM Constraints

• Parameterize transfer function in terms of half-mode scale and large/small-scale slopes:

Murgia et al. 2018 • Half-mode constraint translates into generalized DM constraints:

MW Satellite Forecast