Identification and Characterization of Phenolic Compounds in Black
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Inhibitory Properties of Saponin from Eleocharis Dulcis Peel Against Α-Glucosidase
RSC Advances View Article Online PAPER View Journal | View Issue Inhibitory properties of saponin from Eleocharis dulcis peel against a-glucosidase† Cite this: RSC Adv.,2021,11,15400 Yipeng Gu, a Xiaomei Yang,b Chaojie Shang,a Truong Thi Phuong Thaoa and Tomoyuki Koyama*a The inhibitory properties towards a-glucosidase in vitro and elevation of postprandial glycemia in mice by the saponin constituent from Eleocharis dulcis peel were evaluated for the first time. Three saponins were isolated by silica gel and HPLC, identified as stigmasterol glucoside, campesterol glucoside and daucosterol by NMR spectroscopy. Daucosterol presented the highest content and showed the strongest a-glucosidase inhibitory activity with competitive inhibition. Static fluorescence quenching of a-glucosidase was caused by the formation of the daucosterol–a-glucosidase complex, which was mainly derived from hydrogen bonds and van der Waals forces. Daucosterol formed 7 hydrogen bonds with 4 residues of the active site Received 19th March 2021 and produced hydrophobic interactions with 3 residues located at the exterior part of the binding Accepted 9th April 2021 pocket. The maltose-loading test results showed that daucosterol inhibited elevation of postprandial Creative Commons Attribution-NonCommercial 3.0 Unported Licence. DOI: 10.1039/d1ra02198b glycemia in ddY mice. This suggests that daucosterol from Eleocharis dulcis peel can potentially be used rsc.li/rsc-advances as a food supplement for anti-hyperglycemia. 1. Introduction a common hydrophytic vegetable that -
Effect of Bioactive Compound of Aronia Melanocarpa on Cardiovascular System in Experimental Hypertension
Hindawi Oxidative Medicine and Cellular Longevity Volume 2017, Article ID 8156594, 8 pages https://doi.org/10.1155/2017/8156594 Research Article Effect of Bioactive Compound of Aronia melanocarpa on Cardiovascular System in Experimental Hypertension 1 1 1,2 1 Martina Cebova, Jana Klimentova, Pavol Janega, and Olga Pechanova 1Institute of Normal and Pathological Physiology, Slovak Academy of Sciences, Bratislava, Slovakia 2Department of Pathology, Faculty of Medicine, Comenius University, Bratislava, Slovakia Correspondence should be addressed to Martina Cebova; [email protected] Received 4 August 2017; Revised 10 October 2017; Accepted 18 October 2017; Published 30 November 2017 Academic Editor: Victor M. Victor Copyright © 2017 Martina Cebova et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Aronia melanocarpa has attracted scientific interest due to its dense contents of different polyphenols. We aimed to analyse effects of Aronia melanocarpa (AME) extract on blood pressure (BP), lipid peroxidation, cytokine level, total NOS activity in the left ventricle (LV), and aorta of L-NAME-induced hypertensive rats. 12-week-old male WKY rats were assigned to the control group and groups treated with AME extract (57.90 mg/kg/day), L-NAME (40 mg/kg/day), or combination of L-NAME (40 mg/kg/day) and AME (57.90 mg/kg/day) in tap water for 3 weeks. NOS activity, eNOS protein expression, and conjugated diene (CD) concentration were determined in the LV and aorta. After 3 weeks of L-NAME treatment, BP was increased by 28% and concomitant treatment with AME reduced it by 21%. -
Monocyclic Phenolic Acids; Hydroxy- and Polyhydroxybenzoic Acids: Occurrence and Recent Bioactivity Studies
Molecules 2010, 15, 7985-8005; doi:10.3390/molecules15117985 OPEN ACCESS molecules ISSN 1420-3049 www.mdpi.com/journal/molecules Review Monocyclic Phenolic Acids; Hydroxy- and Polyhydroxybenzoic Acids: Occurrence and Recent Bioactivity Studies Shahriar Khadem * and Robin J. Marles Natural Health Products Directorate, Health Products and Food Branch, Health Canada, 2936 Baseline Road, Ottawa, Ontario K1A 0K9, Canada * Author to whom correspondence should be addressed; E-Mail: [email protected]; Tel.: +1-613-954-7526; Fax: +1-613-954-1617. Received: 19 October 2010; in revised form: 3 November 2010 / Accepted: 4 November 2010 / Published: 8 November 2010 Abstract: Among the wide diversity of naturally occurring phenolic acids, at least 30 hydroxy- and polyhydroxybenzoic acids have been reported in the last 10 years to have biological activities. The chemical structures, natural occurrence throughout the plant, algal, bacterial, fungal and animal kingdoms, and recently described bioactivities of these phenolic and polyphenolic acids are reviewed to illustrate their wide distribution, biological and ecological importance, and potential as new leads for the development of pharmaceutical and agricultural products to improve human health and nutrition. Keywords: polyphenols; phenolic acids; hydroxybenzoic acids; natural occurrence; bioactivities 1. Introduction Phenolic compounds exist in most plant tissues as secondary metabolites, i.e. they are not essential for growth, development or reproduction but may play roles as antioxidants and in interactions between the plant and its biological environment. Phenolics are also important components of the human diet due to their potential antioxidant activity [1], their capacity to diminish oxidative stress- induced tissue damage resulted from chronic diseases [2], and their potentially important properties such as anticancer activities [3-5]. -
Effect of Salicylic Acid Application on Biochemical Changes in Ginger (Zingiber Officinale Roscoe)
Journal of Medicinal Plants Research Vol. 6(5), pp. 790-795, 9 February, 2012 Available online at http://www.academicjournals.org/JMPR DOI: 10.5897/JMPR11.1459 ISSN 1996-0875 ©2012 Academic Journals Full Length Research Paper Effect of salicylic acid application on biochemical changes in ginger (Zingiber officinale Roscoe) Ali Ghasemzadeh1* and Hawa Z. E. Jaafar2 1Department of Agronomy, Science and Research Branch, Islamic Azad University, Tehran, Iran. 2Department of Crop Science, Faculty of Agriculture, University Putra Malaysia, 43400 University Putra Malaysia (UPM) Serdang, Selangor, Malaysia. Accepted 18 November, 2011 Salicylic acid (SA) belonging to plant phenolics group is found in some plant species and is capable of enhancing plant growth and yield. Effects of SA application (10−3 and 10−5 M) on synthesis of total soluble carbohydrate (TSC), total flavonoids (TF) and total phenolics (TP) were studied out in two ginger varieties (Halia Bentong and Halia Bara) under greenhouse conditions. In treated plants as the level of SA increased (from 10−5M to 10−3M) the production of TF increased while synthesis of TP decreased. SA induced production of TSC content in both varieties. Halia Bara exhibited a higher content of TSC (7.98 mg/g dry weight) compared to Halia Bentong (7.59 mg/g dry weight) when sprayed with low concentration (10−5M) of SA. The result of high performance liquid chromatography (HPLC) analysis showed that concentration of the some majority flavonoids (quercetin, catechin and kaempferol) decreased significantly in plants when treated with different concentration of SA. Accordingly, high concentrations of these flavonoids were found in control plants. -
Plant Phenolics: Bioavailability As a Key Determinant of Their Potential Health-Promoting Applications
antioxidants Review Plant Phenolics: Bioavailability as a Key Determinant of Their Potential Health-Promoting Applications Patricia Cosme , Ana B. Rodríguez, Javier Espino * and María Garrido * Neuroimmunophysiology and Chrononutrition Research Group, Department of Physiology, Faculty of Science, University of Extremadura, 06006 Badajoz, Spain; [email protected] (P.C.); [email protected] (A.B.R.) * Correspondence: [email protected] (J.E.); [email protected] (M.G.); Tel.: +34-92-428-9796 (J.E. & M.G.) Received: 22 October 2020; Accepted: 7 December 2020; Published: 12 December 2020 Abstract: Phenolic compounds are secondary metabolites widely spread throughout the plant kingdom that can be categorized as flavonoids and non-flavonoids. Interest in phenolic compounds has dramatically increased during the last decade due to their biological effects and promising therapeutic applications. In this review, we discuss the importance of phenolic compounds’ bioavailability to accomplish their physiological functions, and highlight main factors affecting such parameter throughout metabolism of phenolics, from absorption to excretion. Besides, we give an updated overview of the health benefits of phenolic compounds, which are mainly linked to both their direct (e.g., free-radical scavenging ability) and indirect (e.g., by stimulating activity of antioxidant enzymes) antioxidant properties. Such antioxidant actions reportedly help them to prevent chronic and oxidative stress-related disorders such as cancer, cardiovascular and neurodegenerative diseases, among others. Last, we comment on development of cutting-edge delivery systems intended to improve bioavailability and enhance stability of phenolic compounds in the human body. Keywords: antioxidant activity; bioavailability; flavonoids; health benefits; phenolic compounds 1. Introduction Phenolic compounds are secondary metabolites widely spread throughout the plant kingdom with around 8000 different phenolic structures [1]. -
Plant Extracts Rich in Polyphenols: Antibacterial Agents and Natural Preservatives for Meat and Meat Products
Critical Reviews in Food Science and Nutrition ISSN: 1040-8398 (Print) 1549-7852 (Online) Journal homepage: https://www.tandfonline.com/loi/bfsn20 Plant extracts rich in polyphenols: antibacterial agents and natural preservatives for meat and meat products Magdalena Efenberger-Szmechtyk, Agnieszka Nowak & Agata Czyzowska To cite this article: Magdalena Efenberger-Szmechtyk, Agnieszka Nowak & Agata Czyzowska (2020): Plant extracts rich in polyphenols: antibacterial agents and natural preservatives for meat and meat products, Critical Reviews in Food Science and Nutrition, DOI: 10.1080/10408398.2020.1722060 To link to this article: https://doi.org/10.1080/10408398.2020.1722060 Published online: 11 Feb 2020. Submit your article to this journal Article views: 104 View related articles View Crossmark data Full Terms & Conditions of access and use can be found at https://www.tandfonline.com/action/journalInformation?journalCode=bfsn20 CRITICAL REVIEWS IN FOOD SCIENCE AND NUTRITION https://doi.org/10.1080/10408398.2020.1722060 REVIEW Plant extracts rich in polyphenols: antibacterial agents and natural preservatives for meat and meat products Magdalena Efenberger-Szmechtyk, Agnieszka Nowak, and Agata Czyzowska Institute of Fermentation Technology and Microbiology, Lodz University of Technology, Lodz, Poland ABSTRACT KEYWORDS Plant extracts contain large amounts of bioactive compounds, mainly polyphenols. Polyphenols Polyphenols; plant extracts; inhibit the growth of microorganisms, especially bacteria. Their mechanism of action is still not antibacterial activity; meat fully understood but may be related to their chemical structure. They can cause morphological changes in microorganisms, damage bacterial cell walls and influence biofilm formation. Polyphenols also influence protein biosynthesis, change metabolic processes in bacteria cells and inhibit ATP and DNA synthesis (suppressing DNA gyrase). -
Dcaeee2e425a50757de5fd8dedf
http://dx.doi.org/10.5935/0100-4042.20160063 Quim. Nova, Vol. 39, No. 4, 530-533, 2016 UNREMITTING PROBLEMS WITH CHLOROGENIC ACID NOMENCLATURE: A REVIEW Daniel Kremr, Tomáš Bajer, Petra Bajerová*, Silvie Surmová, and Karel Ventura University of Pardubice, Faculty of Chemical Technology, Department of Analytical Chemistry, Studentská 573, 532 10 Pardubice, Czech Republic Recebido em 08/12/2015; aceito em 12/01/2016; publicado na web em 12/04/2016 Assuntos Gerais This paper summarizes a problematic nomenclature of isomers belonging to chlorogenic acid family since its first occurrence until present. During decades, there have been a high number of articles dealing with the family. Unfortunately, researchers who want to get knowledge about this topic may be strongly confused after reading a few articles. Due to gradual discoveries and isolations of the individual isomers from plenty of matrices and because of the changing system of terminology after these discoveries, discrepancies among articles are common. The cause of this confusion is that the main compound of the family, 5-caffeoylquinic acid (also well- known as chlorogenic acid), was truly called as 3-caffeoylquinic acid before 1976, when new rules for nomenclature were published. Many researchers and also chemicals suppliers, however, keep using the “pre-IUPAC” nomenclature and wrongly call 3-caffeoylquinic acid as chlorogenic acid, the main substituent of the family. Despite there have been some works struggling with this issue, the problem is still appearing. Therefore, the present work was written. Keywords: chlorogenic acid; neochlorogenic acid; nomenclature; coffee. INTRODUCTION nomenclature is still very common, thus the present paper focuses on a possibility of making this problem clear, thus helping further As is well known nowadays, chlorogenic acids (CGAs) are natu- authors to overcome potential misunderstandings of the nomencla- rally occurring compounds found in all higher plants. -
Identification and Characterization of Phenolics from Ethanolic Extracts of Phyllanthus Species by HPLC-ESI-QTOF-MS/MS
Author’s Accepted Manuscript Identification and characterization of phenolics from ethanolic extracts of Phyllanthus species by HPLC-ESI-QTOF-MS/MS Sunil Kumar, Awantika Singh, Brijesh Kumar www.elsevier.com/locate/jpa PII: S2095-1779(17)30016-3 DOI: http://dx.doi.org/10.1016/j.jpha.2017.01.005 Reference: JPHA347 To appear in: Journal of Pharmaceutical Analysis Received date: 25 June 2016 Revised date: 13 January 2017 Accepted date: 17 January 2017 Cite this article as: Sunil Kumar, Awantika Singh and Brijesh Kumar, Identification and characterization of phenolics from ethanolic extracts of Phyllanthus species by HPLC-ESI-QTOF-MS/MS, Journal of Pharmaceutical Analysis, http://dx.doi.org/10.1016/j.jpha.2017.01.005 This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting galley proof before it is published in its final citable form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain. Identification and characterization of phenolics from ethanolic extracts of Phyllanthus species by HPLC-ESI-QTOF-MS/MS Sunil Kumara, Awantika Singha,b, Brijesh Kumara,b* aSophisticated Analytical Instrument Facility, CSIR-Central Drug Research Institute, Lucknow- 226031, Uttar Pradesh, India bAcademy of Scientific and Innovative Research (AcSIR), New Delhi-110025, India [email protected] [email protected] *Corresponding author at: Sophisticated Analytical Instrument Facility, CSIR-Central Drug Research Institute, Lucknow-226031. -
Neuroprotective Mechanisms of Three Natural Antioxidants on a Rat Model of Parkinson's Disease: a Comparative Study
antioxidants Article Neuroprotective Mechanisms of Three Natural Antioxidants on a Rat Model of Parkinson’s Disease: A Comparative Study Lyubka P. Tancheva 1,*, Maria I. Lazarova 2 , Albena V. Alexandrova 3, Stela T. Dragomanova 1,4, Ferdinando Nicoletti 5 , Elina R. Tzvetanova 3, Yordan K. Hodzhev 6, Reni E. Kalfin 2, Simona A. Miteva 1, Emanuela Mazzon 7 , Nikolay T. Tzvetkov 8 and Atanas G. Atanasov 2,9,10,11,* 1 Department of Behavior Neurobiology, Institute of Neurobiology, Bulgarian Academy of Sciences, Sofia 1113, Bulgaria; [email protected] (S.T.D.); [email protected] (S.A.M.) 2 Department of Synaptic Signaling and Communications, Institute of Neurobiology, Bulgarian Academy of Sciences, Sofia 1113, Bulgaria; [email protected] (M.I.L.); reni_kalfi[email protected] (R.E.K.) 3 Department Biological Effects of Natural and Synthetic Substances, Institute of Neurobiology, Bulgarian Academy of Sciences, Sofia 1113, Bulgaria; [email protected] (A.V.A.); [email protected] (E.R.T.) 4 Department of Pharmacology, Toxicology and Pharmacotherapy, Faculty of Pharmacy, Medical University, Varna 9002, Bulgaria 5 Department of Biomedical and Biotechnological Sciences, University of Catania, Via S. Sofia 89, 95123 Catania, Italy; [email protected] 6 Department of Sensory Neurobiology, Institute of Neurobiology, Bulgarian Academy of Sciences, Sofia 1113, Bulgaria; [email protected] 7 IRCCS Centro Neurolesi “Bonino-Pulejo”, Via Provinciale Palermo, Contrada Casazza, 98124 Messina, Italy; [email protected] 8 Department of Biochemical -
Content of the Cyanogenic Glucoside Amygdalin in Almond Seeds Related
Content of the cyanogenic glucoside amygdalin in almond seeds related to the bitterness genotype Contenido del glucósido cianogénico amigdalina en semillas de almendra con relación al genotipo con sabor amargo Guillermo Arrázola1, Raquel Sánchez P.2, Federico Dicenta2, and Nuria Grané3 ABSTRACT RESUMEN Almond kernels can be sweet, slightly bitter or bitter. Bitterness Las semillas de almendras pueden ser dulces, ligeramente ama- in almond (Prunus dulcis Mill.) and other Prunus species is rgas y amargas. El amargor en almendro (Prunus dulcis Mill.) related to the content of the cyanogenic diglucoside amygdalin. y en otras especies de Prunus se relaciona con el contenido de When an almond containing amygdalin is chopped, glucose, la amígdalina diglucósido cianogénico. Cuando una almendra benzaldehyde (bitter flavor) and hydrogen cyanide (which que contiene amigdalina se tritura, produce glucosa, benzal- is toxic) are released. This two-year-study with 29 different dehído (sabor amargo) y ácido cianihídrico (que es tóxico). El almond cultivars for bitterness was carried out in order to estudio es realizado durante dos años, con 29 variedades de al- relate the concentration of amygdalin in the kernel with the mendra diferentes para la amargura o amargor, se ha realizado phenotype (sweet, slightly bitter or bitter) and the genotype con el fin de relacionar la concentración de la amígdalina en el (homozygous: sweet or bitter or heterozygous: sweet or slightly núcleo con el fenotipo (dulce, ligeramente amargo y amargo) bitter) with an easy analytical test. Results showed that there y el genotipo (homocigota: dulce o amargo o heterocigótico: was a clear difference in the amount of amygdalin between bit- dulce o amarga un poco) por un ensayo de análisis fácil. -
Prevention of Hormonal Mammary Carcinogenesis in Rats by Dietary Berries and Ellagic Acid
University of Kentucky UKnowledge University of Kentucky Doctoral Dissertations Graduate School 2007 PREVENTION OF HORMONAL MAMMARY CARCINOGENESIS IN RATS BY DIETARY BERRIES AND ELLAGIC ACID Harini Sankaran Aiyer University of Kentucky, [email protected] Right click to open a feedback form in a new tab to let us know how this document benefits ou.y Recommended Citation Aiyer, Harini Sankaran, "PREVENTION OF HORMONAL MAMMARY CARCINOGENESIS IN RATS BY DIETARY BERRIES AND ELLAGIC ACID" (2007). University of Kentucky Doctoral Dissertations. 508. https://uknowledge.uky.edu/gradschool_diss/508 This Dissertation is brought to you for free and open access by the Graduate School at UKnowledge. It has been accepted for inclusion in University of Kentucky Doctoral Dissertations by an authorized administrator of UKnowledge. For more information, please contact [email protected]. ABSTRACT OF DISSERTATION Harini Sankaran Aiyer The Graduate School University of Kentucky 2007 PREVENTION OF HORMONAL MAMMARY CARCINOGENESIS IN RATS BY DIETARY BERRIES AND ELLAGIC ACID ABSTRACT OF DISSERTATION A dissertation submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy in Nutritional Sciences at the University of Kentucky By Harini Sankaran Aiyer Louisville, Kentucky Director: Dr. Ramesh C.Gupta, Professor of Preventive Medicine Lexington, Kentucky 2007 Copyright © Harini Sankaran Aiyer, 2007 . ABSTRACT OF DISSERTATION PREVENTION OF HORMONAL MAMMARY-CARCINOGENESIS IN RATS BY DIETARY BERRIES AND ELLAGIC ACID. Breast cancer is the most frequently diagnosed cancer among women around the world. The hormone 17ß-estradiol (E2) is strongly implicated as a causative agent in this cancer. Since estrogen acts as a complete carcinogen, agents that interfere with the carcinogenic actions of E2 are required. -
An Overview of Therapeutic Effects of Vanillic Acid
1 Plant Archives Vol. 20, Supplement 2, 2020 pp. 3053-3059 e-ISSN:2581-6063 (online), ISSN:0972-5210 AN OVERVIEW OF THERAPEUTIC EFFECTS OF VANILLIC ACID Neha Sharma 1,2,3 , Nishtha Tiwari 1, Manish Vyas 1, Navneet Khurana 1, Arunachalam Muthuraman 2,4 , Puneet Utreja 5,* 1School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, Punjab, India, PIN- 144 411 2Akal College of Pharmacy and Technical Education, Gursagar Mastuana Sahib, Sangrur, Punjab, India, PIN- 148001 3I.K. Gujral Punjab Technical University, Kapurthala, Punjab, India, PIN-144603 4Faculty of Pharmacy, AIMST University, Kedah, Malaysia 5Faculty of Pharmaceutical Sciences, PCTE Group of Institutes, Ludhiana, Punjab, India, PIN-142021 *Corresponding author: [email protected] Abstract Vanillic acid (VA) is a derivative of benzoic acid which is used as a flavouring agent, preservative, and food additive in the food industry. VA is phenolic molecule that is oxidized molecule of vanillin. VA is obtained from the several cereals such as whole grains; herbs; fruits; green tea; juices; beers and wines. It is known to have various pharmacological properties such as antioxidant, anti-inflammatory, immuno-stimulating, neuroprotective, hepatoprotective, cardioprotective, and antiapoptotic. It is reported that Vanillic acid have the potential to attenuates A β1-42-induced cognitive impairment and oxidative stress therefore contributes to treatment of Alzheimer's disease. Now days, work is going on to investigate that how the vanillic acid produces neuroprotective effect via acting on oxidative stress. Vanillic acid is found in abundance in Black sesame pigment which is used as a food supplement for the prevention of Alzheimer's Disease. In this review, we reviewed the neurological effects of vanillic acid.