Investigating the Nuclear Structure of the Neutron-Rich Odd-Mass Fe
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Stable Isotopes of Cobalt Properties of Cobalt
Stable Isotopes of Cobalt Isotope Z(p) N(n) Atomic Mass Natural Abundance Nuclear Spin Co-59 27 32 58.93320 100.00% 7/2- Cobalt was discovered in 1735 by Georg Brandt. Its name derives from the German word kobald, meaning "goblin" or "evil spirit." Minerals containing cobalt were used by the early civilizations of Egypt and Mesopotamia for coloring glass deep blue. Cobalt oxide is used today to add a pink or blue color to glass. It is also an important trace element in soils and necessary for animal nutrition. The most important modern use of cobalt is in the manufacture of various wear-resistant and superalloys. Its alloys have shown high resistance to corrosion and oxidation at high temperatures. Radioactive Cobalt-60 is used in radiography and in the sterilization of food. A silvery-white, shining, hard, ductile, somewhat malleable metal, cobalt is also ferromagnetic, with permeability two-thirds that of iron. It has exceptional magnetic properties in alloys. It is attached by dilute hydrochloric and sulfuric acids. It corrodes readily in air, and it has unusual coordinating properties, especially the trivalent ion. It is noncombustible except in powder form. Cobalt occurs in two allotropic modifications over a wide range of temperatures: the crystalline close-packed- hexagonal form is known as the alpha form, which turns into the beta (or gamma) form above 417 ºC. In finely powdered form, cobalt ignites spontaneously in air. Reactions with acetylene and bromine pentafluoride proceed to incandescence and can become violent. The metal is moderately toxic by ingestion. Inhalation of dusts can damage lungs. -
Ep 0548157 B1
Patentamt Europaisches || || 1 1| || || 1 1 1| || 1 1| || || (19) J European Patent Office Office europeen des brevets (1 1 ) EP 0 548 157 B1 (12) EUROPEAN PATENT SPECIFICATION (45) Date of publicationation and mention (51) |nt. CI.6: A61 K 47/48, A61 K 49/00 of the grant of the patent: 20.05.1998 Bulletin 1998/21 (86) International application number: PCT/EP91/01780 (21) Application number: 91916129.9 (87) International publication number: (22) Date of filing : 1 3.09.1 991 WO 92/04916 (02.04.1992 Gazette 1992/08) (54) USE OF PARTICULATE AGENTS VERWENDUNG VON SUBSTANZEN IN PARTIKELFORM UTILISATION D' AGENTS SOUS FORME DE PARTICULES (84) Designated Contracting States: (72) Inventor: FILLER, Aaron, Gershon AT BE CH DE DK ES FR GB GR IT LI LU NL SE London SW20 ONE (GB) (30) Priority: 14.09.1990 GB 9020075 (74) Representative: 30.10.1990 GB 9023580 Perry, Robert Edward et al 17.12.1990 GB 9027293 GILL JENNINGS & EVERY 07.01.1991 GB 9100233 Broadgate House 16.01.1991 GB 9100981 7 Eldon Street 31.01.1991 GB 9102146 London EC2M 7LH (GB) 20.05.1991 GB 9110876 30.07.1991 GB 9116373 (56) References cited: 19.08.1991 GB 9117851 WO-A-86/01112 WO-A-88/00060 30.08.1991 GB 9118676 WO-A-89/09625 WO-A-90/01295 (43) Date of publication of application: STN File Server, File Medline, accession no. 30.06.1993 Bulletin 1993/26 87239688; J.E. GALLAGHER et al.: "Sialic acid mediates the initial binding of positively charged (60) Divisional application: inorganic particles to alveolar macrophage 97119199.4 membranes" STN File Server, File Medline, accession no. -
Annual Report 1951 National Bureau of Standards
Annual Report 1951 National Bureau of Standards Miscellaneous Publication 204 UNITED STATES DEPARTMENT OF COMMERCE Charles Sawyer, Secretary NATIONAL BUREAU OF STANDARDS A. V. Astint, Director Annual Report 1951 National Bureau of Standards For sale by the Superintendent of Documents, U. S. Government Printing Office Washington 2 5, D. C. Price 50 cents CONTENTS Page 1. General Review 1 2. Electricity 16 Beam intensification in a high-voltage oscillograph 17, Low-temperature dry cells 17, High-rate batteries 17, Battery additives 18. 3. Optics and Metrology 18 The kinorama 19, Measurement of visibility for aircraft 20, Antisubmarine aircraft searchlights 20, Resolving power chart 20, Refractivity 21, Thermal expansivity of aluminum alloys 21. 4. Heat and Power . 21 Thermodynamic properties of materials 22, Synthetic rubber and other high polymers 23, Combustors for jet engines 24, Temperature and composition of flames 25, Engine "knock" 25, Low-temperature physics 26, Medical physics instrumentation 28. 5. Atomic and Radiation Physics 28 Atomic standard of length 29, Magnetic moment of the proton 29, Spectra of artificial elements 31, Photoconductivity of semiconductors 31, Radiation detecting instruments 32, Protection against radiation 32, X-ray equipment 33, Atomic and molecular ions 35, Electron physics 35, Tables of nuclear data 35, Atomic energy levels 36. 6. Chemistry 36 Radioactive carbohydrates 36, Dextran as a substitute for blood plasma 37, Acidity and basicity in organic solvents 37, Interchangeability of fuel gases 38, Los Angeles "smog" 39, Infrared spectra of alcohols 39, Electrodeposi- tion 39, Development of analytical methods 40, Physical constants 42. 7. Mechanics 42 Turbulent flow 43, Turbulence at supersonic speeds 43, Dynamic properties of materials 43, High-frequency vibrations 44, Hearing loss 44, Physical properties by sonic methods 44, Water waves 46, Density currents 46, Precision weighing 46, Viscosity of gases 46, Evaporated thin films 47. -
Manganese-52M, a New Short-Lived,Generator-Produced Radionuclide: a Potential Tracer for Positron Tomography
Manganese-52m, A New Short-Lived,Generator-Produced Radionuclide: A Potential Tracer for Positron Tomography RobertW. ArnoldM.Friedman,JohnA. Huizenga,G.V. S. Rayudu,EdwardA. Sliverstein,andDavidA. Turner Argonne NatlonalLaboratory, Argonne, Ililnols, University ofRochester, Rochester, New York, and Rush University Medical Center, Chicago, Ililnols A new generator system has been developed using the Fe-52 —@Mn-52m par ent-daughter pair. Fe-52, half-lIfe 8.3 hr, is Isolated on an anion-exchange column, and Mn-52m is eluted in hydrochloric acid. Breakthrough is less than 0.01 % and the yield is 75%. The 21.1-mm half life of Mn-52m is ideal for use In sequential studies,butislongenoughtopermftradlochemlcaImanipulationstocontrolblodis tribution.AnImalstudiesIndIcatethat Mn-52mis an Idealnuclidefor myocardial Imaging, combining rapid blood clearance and high concentration in the myocar dlum. An added advantage is that Mn-52m decays 98 % by positron emission and Is useful for posftron computer tomography. J NuciMed 21: 565—569,1980 Interest in the use of nuclear medicine techniques ton (99.2%). Mn-52m decays by positron emission for dynamic or sequential studies has pointed out the (98.3%) with a 21.1-mm half-life. The positron energy limitations of Tc-99m. Its relatively long (6 hn) half-life, is 2.631 MeV. In addition to the annihilation radiation, reduces its applicability for studies in which the tracer Mn-52m emits a l434-keV gamma (98.3%). The re has a biological half-time on the order of minutes. mainder of the decay is by isomenictransition to Mn-52, The recent advances in three-dimensional imaging which has a 5.59 day half-life (Fig. -
Chapter 2 Atoms, Molecules and Ions
Chapter 2 Atoms, Molecules and Ions PRACTICING SKILLS Atoms:Their Composition and Structure 1. Fundamental Particles Protons Electrons Neutrons Electrical Charges +1 -1 0 Present in nucleus Yes No Yes Least Massive 1.007 u 0.00055 u 1.007 u 3. Isotopic symbol for: 27 (a) Mg (at. no. 12) with 15 neutrons : 27 12 Mg 48 (b) Ti (at. no. 22) with 26 neutrons : 48 22 Ti 62 (c) Zn (at. no. 30) with 32 neutrons : 62 30 Zn The mass number represents the SUM of the protons + neutrons in the nucleus of an atom. The atomic number represents the # of protons, so (atomic no. + # neutrons)=mass number 5. substance protons neutrons electrons (a) magnesium-24 12 12 12 (b) tin-119 50 69 50 (c) thorium-232 90 142 90 (d) carbon-13 6 7 6 (e) copper-63 29 34 29 (f) bismuth-205 83 122 83 Note that the number of protons and electrons are equal for any neutral atom. The number of protons is always equal to the atomic number. The mass number equals the sum of the numbers of protons and neutrons. Isotopes 7. Isotopes of cobalt (atomic number 27) with 30, 31, and 33 neutrons: 57 58 60 would have symbols of 27 Co , 27 Co , and 27 Co respectively. Chapter 2 Atoms, Molecules and Ions Isotope Abundance and Atomic Mass 9. Thallium has two stable isotopes 203 Tl and 205 Tl. The more abundant isotope is:___?___ The atomic weight of thallium is 204.4 u. The fact that this weight is closer to 205 than 203 indicates that the 205 isotope is the more abundant isotope. -
A Retrospective of Cobalt-60 Radiation Therapy: “The Atom Bomb That Saves Lives”
MEDICAL PHYSICS INTERNATIONAL Journal, Special Issue, History of Medical Physics 4, 2020 A RETROSPECTIVE OF COBALT-60 RADIATION THERAPY: “THE ATOM BOMB THAT SAVES LIVES” J. Van Dyk1, J. J. Battista1, and P.R. Almond2 1 Departments of Medical Biophysics and Oncology, Western University, London, Ontario, Canada 2 University of Texas, MD Anderson Cancer Center, Houston, Texas, United States Abstract — The first cancer patients irradiated with CONTENTS cobalt-60 gamma rays using external beam I. INTRODUCTION radiotherapy occurred in 1951. The development of II. BRIEF HISTORY OF RADIOTHERAPY cobalt-60 machines represented a momentous III. LIMITATIONS OF RADIATION THERAPY breakthrough providing improved tumour control UNTIL THE 1950s and reduced complications, along with much lower skin reactions, at a relatively low cost. This article IV. RADIOACTIVE SOURCE DEVELOPMENT provides a review of the historic context in which the V. THE RACE TO FIRST CANCER TREATMENTS advances in radiation therapy with megavoltage VI. COBALT TRUTHS AND CONSEQUENCES gamma rays occurred and describes some of the VII. COBALT TELETHERAPY MACHINE DESIGNS physics and engineering details of the associated VIII. GROWTH AND DECLINE OF COBALT-60 developments as well as some of the key locations and TELETHERAPY people involved in these events. It is estimated that IX. COBALT VERSUS LINAC: COMPETING over 50 million patients have benefited from cobalt-60 teletherapy. While the early growth in the use of MODALITIES cobalt-60 was remarkable, linear accelerators (linacs) X. OTHER USES OF COBALT-60 provided strong competition such that in the mid- XI. SUMMARY AND CONCLUSIONS 1980s, the number of linacs superseded the number of ACKNOWLEDGEMENTS cobalt machines. -
Separation of Nuclear Isomers for Cancer Therapeutic Radionuclides
www.nature.com/scientificreports OPEN Separation of nuclear isomers for cancer therapeutic radionuclides based on nuclear decay after- Received: 03 November 2016 Accepted: 06 February 2017 effects Published: 13 March 2017 R. Bhardwaj1,2, A. van der Meer1, S. K. Das1, M. de Bruin1, J. Gascon2, H. T. Wolterbeek1, A. G. Denkova1 & P. Serra-Crespo1 177Lu has sprung as a promising radionuclide for targeted therapy. The low soft tissue penetration of its β− emission results in very efficient energy deposition in small-size tumours. Because of this, 177Lu is used in the treatment of neuroendocrine tumours and is also clinically approved for prostate cancer therapy. In this work, we report a separation method that achieves the challenging separation of the physically and chemically identical nuclear isomers, 177mLu and 177Lu. The separation method combines the nuclear after-effects of the nuclear decay, the use of a very stable chemical complex and a chromatographic separation. Based on this separation concept, a new type of radionuclide generator has been devised, in which the parent and the daughter radionuclides are the same elements. The 177mLu/177Lu radionuclide generator provides a new production route for the therapeutic radionuclide 177Lu and can bring significant growth in the research and development of177 Lu based pharmaceuticals. Lutetium-177 (177Lu) has emerged as a promising radionuclide for targeted therapy. The low energy β− emissions, a half-life of 6.64 days and the emission of low energy and low abundance γ-rays has made 177Lu a solid candidate to be the most applied therapeutic radionuclide by 20201. Its low energy β − particles with a tissue penetration of less than 3 mm make it suitable for targeting small primary and metastatic tumours, like prostate, breast, mela- noma, lung and pancreatic tumours, for bone palliation therapy and other chronic diseases2–4. -
Neutron Drip Line Nuclei HUGE D I F F U S E D PA IR ED
Neutron Drip line nuclei HUGE D i f f u s e d PA IR ED 4He 5He 6He 7He 8He 9He 10He Pairing and binding The Grand Nuclear Landscape (finite nuclei + extended nucleonic matter) superheavy Z=118, A=294 nuclei known up to Z=91 82 126 terra incognita known nuclei protons proton drip line 50 82 neutron stars 28 20 50 stable nuclei neutron drip line 8 28 2 20 probably known only up to oxygen 2 8 neutrons Binding Blocks http://www.york.ac.uk/physics/public-and-schools/schools/secondary/binding-blocks/ http://www.york.ac.uk/physics/public-and-schools/schools/secondary/binding- blocks/interactive/ https://arxiv.org/abs/1610.02296 http://www.nishina.riken.jp/enjoy/kakuzu/kakuzu_web.pdf The limits: Skyrme-DFT Benchmark 2012 120 stable nuclei 288 known nuclei ~3,000 drip line two-proton drip line N=258 80 S2n = 2 MeV Z=82 SV-min two-neutron drip line N=184 Asymptotic freedom ? 110 Z=50 40 N=126 100 proton number Z=28 N=82 proton number Z=20 90 230 244 N=50 232 240 248 256 N=28 Nuclear Landscape 2012 neutron number 0 N=20 0 40 80 120 160 200 240 280 fromneutron B. Sherrill number How many protons and neutrons can be bound in a nucleus? Literature: 5,000-12,000 Erler et al. Skyrme-DFT: 6,900±500 Nature 486, 509 (2012) syst HW: a) Using http://www.nndc.bnl.gov/chart/ find one- and two-nucleon separation energies of 6He, 7He, 8He, 141Ho, and 132Sn. -
Załącznik Nr 3 Do Wniosku O Przeprowadzenie Postępowania Habilitacyjnego
Załącznik nr 3 do wniosku o przeprowadzenie postępowania habilitacyjnego Author's review of his own writings 1. Jan Kurpeta 2. Posiadane dyplomy, stopnie naukowe Degree of Doctor of Philosophy in physics, University of Warsaw, Faculty of Physics, year 1999, title of dissertation: „Properties of the neutron-rich nuclei at the edge of known nuclei area.” Master of Science and Engineering, Warsaw University of Technology, Faculty of Technical Physics and Applied Mathematics, year 1993, title of master's thesis: „Influence of nucleon effective mass on single particle motion in the deformed nuclei.” 3. Informacje o dotychczasowym zatrudnieniu w jednostkach naukowych University of Warsaw, Faculty of Physics, Institute of Experimental Physics, Nuclear Spectroscopy Division, assistant professor since15 February 2001 University of Leuven (Belgium), Instituut voor Kern- en Stralingsfysica, post-doc position from 1 September 1998 to 31 October 1999 University of Jyväskylä (Finland), Faculty of Physics, scholarship from Center for International Mobility, PhD studies from 3 February to 15 December 1995 University of Warsaw, Faculty of Physics, Institute of Experimental Physics, Nuclear Spectroscopy Division, PhD studies from October 1993 to September 1998 Space Research Center Polish Academy of Sciences in Warsaw, Department of Planetary Geodesy, part time job for 6 months in 1993 1 4. Wskazanie osiągnięcia* wynikającego z art. 16 ust. 2 ustawy z dnia 14 marca 2003 r. o stopniach naukowych i tytule naukowym oraz o stopniach i tytule w zakresie sztuki (Dz. U. nr 65, poz. 595 ze zm.): a) tytuł osiągnięcia naukowego Structure of exotic, neutron-rich fission fragments of mass around A = 110. b) Jednotematyczny cykl publikacji przedstawiających osiągnięcie naukowe [A1] J. -
Operation of Finnish Nuclear Power Plants
/if STUK-B-YTO 135 Operation of Finnish nuclear power plants Quarterly report 1st quarter, 1995 Kirsti Tossavainen (Ed.) SEPTEMBER 1995 STUK-B-YTO 135 SEPTEMBER 1995 Operation of Finnish nuclear power plants Quarterly report 1st quarter, 1995 Kirsti Tossavainen (Ed.) Nuclear Safety Department FINNISH CENTRE FOR RADIATION AND NUCLEAR SAFETY P.O.BOX 14, FIN-00881 HELSINKI FINLAND Tel. +358 0 759881 Translation. Original text in Finnish. ISBN 951-712-062-1 ISSN 0781-2884 Painatuskeskus Oy Helsinki 1995 FINNISH CENTRE FOR RADIATION STUK-B-YTO 135 AND NUCLEAR SAFETY TOSSAVAINEN, Kirsti (ed.). Operation of Finnish Nuclear Power Plants. Quarterly Report, 1st quarter. 1995. STUK-B-YTO 135. Helsinki 1995, 24 pp. + apps. 2 pp. ISBN 951-712-062-1 ISSN 0781-2884 Keywords PWR type reactor, BWR type reactor, NPP operating experience ABSTRACT Quarterly Reports on die operation of Finnish nuclear power plants describe events and observations related to nuclear and radiation safety which the Finnish Centre for Radiation and Nuclear Safety (STUK) considers safety significant. Safety improvements at the plants and general matters relating to the use of nuclear energy are also reported. A summary of the radiation safety of plant personnel and of the environment, and tabulated data on the plants' production and load factors are also given. Finnish nuclear power plant units were in power operation in the first quarter of 1995, except for two shutdowns at Loviisa 2, and shutdowns at both TVO units. The shutdowns at Loviisa 2 were due to an abnormal rise in the coolant outlet temperatures of certain fuel bundles. -
Radioactive Decay & Decay Modes
CHAPTER 1 Radioactive Decay & Decay Modes Decay Series The terms ‘radioactive transmutation” and radioactive decay” are synonymous. Many radionuclides were found after the discovery of radioactivity in 1896. Their atomic mass and mass numbers were determined later, after the concept of isotopes had been established. The great variety of radionuclides present in thorium are listed in Table 1. Whereas thorium has only one isotope with a very long half-life (Th-232, uranium has two (U-238 and U-235), giving rise to one decay series for Th and two for U. To distin- guish the two decay series of U, they were named after long lived members: the uranium-radium series and the actinium series. The uranium-radium series includes the most important radium isotope (Ra-226) and the actinium series the most important actinium isotope (Ac-227). In all decay series, only α and β− decay are observed. With emission of an α particle (He- 4) the mass number decreases by 4 units, and the atomic number by 2 units (A’ = A - 4; Z’ = Z - 2). With emission β− particle the mass number does not change, but the atomic number increases by 1 unit (A’ = A; Z’ = Z + 1). By application of the displacement laws it can easily be deduced that all members of a certain decay series may differ from each other in their mass numbers only by multiples of 4 units. The mass number of Th-232 is 323, which can be written 4n (n=58). By variation of n, all possible mass numbers of the members of decay Engineering Aspects of Food Irradiation 1 Radioactive Decay series of Th-232 (thorium family) are obtained. -
Quantum Optics with Gamma Radiation
FEATURES gamma rays of 14.4 keY emitted by the excited 57mFe state (r= 141 ns,I=312), the coherencelength is about 40 m. Forthe 6.2 Quantum optics with keV gammaradiationfrom 181~a ,having alifetime of8.73 flS, the coherence length is 4 km. The appreciable coherence length of these gamma photons allows us to observe the interference gamma radiation between the transition amplitudes from two paths ofthe single , photon, passing through two different samples. In one path the Romain Coussement'·2, Rustem Shahkmoumtov ,3, Gerda Neyens' photon interacts withnuclei ofa reference sample and inthe other and Jos Odeurs1 path it interacts with the nuclei ofa sample under investigation. lInstituut voor Kern- en Stmlingsfysica, Katholieke Universiteit The distance betweenthe samples canbeas large as the coherence Leuven, Celestijnenlaan 200 D, B-3001 Leuven, Belgium length ofthe photon. Interference ofthese two transition ampli 2Optique Nonlineaire Theorique, Universite Libre de Bruxelles, tudes provides spectroscopic CP 231, Bid du Triomphe, B-lOS0 Bruxelles, Belgium information about the hyper- 3Kazan Physico- Technical Institute ofRussian Academy of fine interaction ofthe nuclei in Sciences, 10/7 Sibirsky tmkt, Kazan 420029, Russia the investigated sample, pro vided the hyperfine spectrum Since the discovery of the nuclei in the reference AN one slow down a gamma photon to a group velocity ofa sample is known. Suchinterfer of optical lasers, the Cfew m/s, or can one stop it in a piece ofmaterial only a few ence phenomena have been micron thick and release it? Can one, on command, induce trans explored using synchrotron scientific community parency ofa nuclear resonant absorber for gamma radiation and radiation [5) and are nowadays make a gate? Can one change the index ofrefraction for gamma used as a tool for solid state has been challenged rays in such a way that one could think of optical devices for physics studies.