Evolving Geographic Patterns of Cenozoic Magmatism in the North
JOURNAL OF GEOPHYSICAL RESEARCH, VOL. 96, NO. B8, PAGES 13,201-13,224, JULY 30, 1991 EvolvingGeographic Patterns of CenozoicMagmatism in the North American Cordillera: The Temporaland Spatial Association of Magmatism and MetamorphicCore Complexes RICHARD LEE ARMSTRONG Departmentof GeologicalSciences, University of British Columbia,Vancouver, Canada U.S. Geological Survey,Menlo Park, California Four maps are presentedhere that show the location and extent of magmaticfields between eastern Alaska and northernMexico during the successivetime intervalsof 55-40, 40-25, 25-10, and 10-0 Ma, and four others show the distributionof metamorphiccore complexesduring the same Cenozoic time intervals. The maps are based on U.S. Geological Survey and Canadian Cordilleran data bases contining about 6000 isotopic dates and extensive literature review. For nearly 60 Ma the developmentof metamorphiccore complexeshas coincided with the locus of areally extensive and voluminousintermediate-composition magmatic fields. The associationis suggestiveof a close link betweenmagmatism and core complexformation, namely that magma directly and indirectly lowers the strengthof the crust. Magmatism thus controlsthe location and timing of core complex formation. The stressesresponsible may be inherited from Mesozoic crustal thickening,locally createdby uplift and magmatic thickeningof the crust, and imposedby the global pattern of plate motions and driving forces. Since the Miocene, rates of magmatism,extension, and core complex formation have declined. The modern Basin and Range province is not a suitable model for the situation that existed during major magmatic culminations. The singular event of early Miocene time, the merging of two large magmatic fields, extinguishing the Laramide magmatic gap, explains several disconnected observations:the hyperextensionepisode of the ColoradoRiver corridor, rapid reorientationof stress patternsacross much of westernNorth America, and subsequentrapid tectonicmovements in California.
[Show full text]