Apollonius' Proems and Eutocius' Commentary Iv 1

Total Page:16

File Type:pdf, Size:1020Kb

Apollonius' Proems and Eutocius' Commentary Iv 1 CHAPTER FOUR APOLLONIUS' PROEMS AND EUTOCIUS' COMMENTARY IV 1 The Proems of Apollonius' Conica Four of the eight books of Apollonius of Perga's Conica are extant in Greek, together with a Commentary by Eutocius of Ascalon. 122 Apollonius is a great mathematician, admired but also criticized by Pappus, who has also preserved information about the books of the Conica lost in Greek and about other lost works, both in the Collectio and in the Commentary on Elements X. 123 The final version of the Conica (in instalments) presumably has to be dated not too long after 200 BCE. Of great interest in our present context are Apollonius' proems to the individual books; these are in the form of letters to the dedicatees: Eudemus, the first teacher of the Epicurean philosopher Philonides,124 for books 1-111, a certain Attalus for books IV-VII (and VIII, I presume) after Eudemus' death. 125 122 Ed. Heiberg (1891-3), including Eutocius' Commentary (for which see Ch. IV 2). Books V-VII are extant in Arabic (book VIII being lost), and are now acccessible in Toomer (1990) which replaces Halleius (1710); note that Toomer's remark at (1990) l.vii that Halleius failed to print the Arabic text is a slip. The Conica belongs with the domain of Analysis, see above Ch. II. On their mathematical contents see Heath (1921) 2.154-75, Toomer (1970) 181-8, and Toomer (1990) l.xiv-v and xxviii-xxxiv esp. for books V-VII. For Apollo­ nius' dates see Toomer (1970) 179-80 and (1990) l.xi-xii: his son and messen­ ger was an adult, and Philonides is allowed to see the work (proem to book II; see below). 123 Reprinted from Hultsch (1876-8)-including the mathematical lem­ mas on the extant books-and Woepke (1856) at Heiberg (1891-3) 2.102-66, together with fragments cited from Eutocius' Commentaries on Archimedes, from Philoponus, Prod us, Hypsicles (i.e. Elem. XIV), Marin us, Ptolemy, Hippolytus, Ptolemaeus Chennus, and the Fragmentum Bobiense. The section derived from Woepke (1856) at 2.120-4 Heiberg should be corrected on the basis of Thomson ( 1930). 124 Pap. Here. 1044 Fr. 25.4-5, see Gallo (1980) 33 and 36. 125 The proems to books I-II and IV-VII are translated and discussed by Heath (1896) lviii-lxxxvi, i.e. those to books I-II and IV are translated from Heiberg's Greek text, that to book V from Nix's Latin (1889), and those to books VI-VII from Halleius' Latin ( 171 0). I have consulted Heath's transl. for books II and IV, that of Toomer ( 1990) for the proems to books V-VIII, as well as Toomer's new translation of the proem to book I at ( 1990) l.xiv-xv. On the APOLLONIUS AND EUTOCIUS 37 In the introduction to book I (1.2-4 Heiberg) he writes to Eudemus that he sends him the revised version of this book, and that the others will follow as soon as they have been revised too. Drafts of books I-VIII already exist: the work was written at the request of the geometer Naucrates when this colleague was staying with Apollonius at Alexandria, and Apollonius (or so he claims) hurriedly (!) jotted down a preliminary version of the whole treatise in eight books and gave this to his friend, who had to leave Alexandria. This remark about an earlier dedicatee (?) and to hurried composition sounds a bit like a topos, but this is by the way. Copies of this preliminary version of books I and II had since also been given to other friends. Eudemus should therefore not be surprised when encountering versions different from the present corrected and polished, i.e. an authorized edition. The preliminary version therefore cannot have been very rudimentary. Revision must have been a matter of style, of adding prefaces, etc. Apollonius then meticulously informs Eudemus (and so the general public) beforehand about the contents of the whole treatise. Books I to IV deal with the elementary instruction; next, the contents of each book are announced and summarized (m::ptEXEt ... 'tO 7tponov [scil., ~t~A.iov], ... 'tO Se{m:pov, etc.) The first book deals with matters that have been already treated by others (no names given), but according to the author it does so in a fuller and more general i.e. systematic way. Nevertheless, what we have here is a reference to the history of the subject. The specific utility (yEvtK'i)v l((lt avayK:aiav xpciav) of the contents of book II is emphasized. Book III contains a great number of theorems which are useful (xpflcrq.ta) for the synthesis of solid loci etc. 126 Most of these are new, that is to say have been found by Apollonius himself, or so he claims. Greek mathematicians are not averse to the idea of progress! Euclid's treatment of a specific issue, for instance, is said to be both incomplete and unsystematic-an affirmation which produced an interesting controversy.127 The contents of book IV, he tells us, are for the most part original. final section of the proem to book I see Friderici (1911) 43-4. 126 Cf. above, n. 26 and text thereto; below, p. 123, complementary note 26. 127 Cf. above n. 19, below text ton. 131, and n. 139 and text thereto. Toomer (1970) 180 and 186-7 argues that Apollonius in books I-IV for the most part systematized the findings of his predecessors, among whom Archimedes (whom he fails to mention by name in the preface to book I). So this part of his work would be of the same nature as most of Euclid's Elements. .
Recommended publications
  • Mathematicians
    MATHEMATICIANS [MATHEMATICIANS] Authors: Oliver Knill: 2000 Literature: Started from a list of names with birthdates grabbed from mactutor in 2000. Abbe [Abbe] Abbe Ernst (1840-1909) Abel [Abel] Abel Niels Henrik (1802-1829) Norwegian mathematician. Significant contributions to algebra and anal- ysis, in particular the study of groups and series. Famous for proving the insolubility of the quintic equation at the age of 19. AbrahamMax [AbrahamMax] Abraham Max (1875-1922) Ackermann [Ackermann] Ackermann Wilhelm (1896-1962) AdamsFrank [AdamsFrank] Adams J Frank (1930-1989) Adams [Adams] Adams John Couch (1819-1892) Adelard [Adelard] Adelard of Bath (1075-1160) Adler [Adler] Adler August (1863-1923) Adrain [Adrain] Adrain Robert (1775-1843) Aepinus [Aepinus] Aepinus Franz (1724-1802) Agnesi [Agnesi] Agnesi Maria (1718-1799) Ahlfors [Ahlfors] Ahlfors Lars (1907-1996) Finnish mathematician working in complex analysis, was also professor at Harvard from 1946, retiring in 1977. Ahlfors won both the Fields medal in 1936 and the Wolf prize in 1981. Ahmes [Ahmes] Ahmes (1680BC-1620BC) Aida [Aida] Aida Yasuaki (1747-1817) Aiken [Aiken] Aiken Howard (1900-1973) Airy [Airy] Airy George (1801-1892) Aitken [Aitken] Aitken Alec (1895-1967) Ajima [Ajima] Ajima Naonobu (1732-1798) Akhiezer [Akhiezer] Akhiezer Naum Ilich (1901-1980) Albanese [Albanese] Albanese Giacomo (1890-1948) Albert [Albert] Albert of Saxony (1316-1390) AlbertAbraham [AlbertAbraham] Albert A Adrian (1905-1972) Alberti [Alberti] Alberti Leone (1404-1472) Albertus [Albertus] Albertus Magnus
    [Show full text]
  • Babylonian Astral Science in the Hellenistic World: Reception and Transmission
    CAS® e SERIES Nummer 4 / 2010 Francesca Rochberg (Berkeley) Babylonian Astral Science in the Hellenistic World: Reception and Transmission Herausgegeben von Ludwig-Maximilians-Universität München Center for Advanced Studies®, Seestr. 13, 80802 München www.cas.lmu.de/publikationen/eseries Nummer 4 / 2010 Babylonian Astral Science in the Hellenistic World: Reception and Transmission Francesca Rochberg (Berkeley) In his astrological work the Tetrabiblos, the astronomer such as in Strabo’s Geography, as well as in an astrono- Ptolemy describes the effects of geography on ethnic mical text from Oxyrhynchus in the second century of character, claiming, for example, that due to their specific our era roughly contemporary with Ptolemy [P.Oxy. geographical location „The ...Chaldeans and Orchinians 4139:8; see Jones 1999, I 97-99 and II 22-23]. This have familiarity with Leo and the sun, so that they are astronomical papyrus fragment refers to the Orchenoi, simpler, kindly, addicted to astrology.” [Tetr. 2.3] or Urukeans, in direct connection with a lunar parameter Ptolemy was correct in putting the Chaldeans and identifiable as a Babylonian period for lunar anomaly Orchinians together geographically, as the Chaldeans, or preserved on cuneiform tablets from Uruk. The Kaldayu, were once West Semitic tribal groups located Babylonian, or Chaldean, literati, including those from in the parts of southern and western Babylonia known Uruk were rightly famed for astronomy and astrology, as Kaldu, and the Orchinians, or Urukayu, were the „addicted,” as Ptolemy put it, and eventually, in Greco- inhabitants of the southern Babylonian city of Uruk. He Roman works, the term Chaldean came to be interchan- was also correct in that he was transmitting a tradition geable with „astrologer.” from the Babylonians themselves, which, according to a Hellenistic Greek writers seeking to claim an authorita- Hellenistic tablet from Uruk [VAT 7847 obv.
    [Show full text]
  • Class 1: Overview of the Course; Ptolemaic Astronomy
    a. But marked variations within this pattern, and hence different loops from one occasion to another: e.g. 760 days one time, 775 another, etc. b. Planetary speeds vary too: e.g. roughly 40 percent variation in apparent longitudinal motion per day of Mars from one extreme to another while away from retrograde 4. Each of the five planets has its own distinct basic pattern of periods of retrograde motion, and its own distinct pattern of variations on this basic pattern a. Can be seen in examples of Mars and Jupiter, where loops vary b. An anomaly on top of the anomaly of retrograde motion c. Well before 300 B.C. the Babylonians had discovered “great cycles” in which the patterns of retrograde loops and timings of stationary points repeat: e.g. 71 years for Jupiter (see Appendix for others) 5. The problem of the planets: give an account ('logos') of retrograde motion, including basic pattern, size of loops, and variations for each of the five planets a. Not to predict longitude and latitude every day b. Focus instead on salient events – i.e. phenomena: conjunctions, oppositions, stationary points, longitudinal distance between them c. For the Babylonians, just predict; for the Greeks, to give a geometric representation of the constituent motions giving rise to the patterns 6. Classical designations: "the first inequality": variation in mean daily angular speed, as in 40 percent variation for Mars and smaller variation for Sun; "the second inequality": retrograde motion, as exhibited by the planets, but not the sun and moon D. Classical Greek Solutions 1.
    [Show full text]
  • Hypatia of Alexandria
    Hypathia of Alexandria Doina Ionescu Astronomical Institute of the Romanian Academy, E–mail: [email protected] Introduction - Born in 350-355/370; - Lived and learned in Alexandria, Roman Egypt; - The daughter of Theon, the last director of the Museum of Alexandria; - Trained by her father in physical education, mathematics, astronomy, philosophy, arts, literature, the principles of teaching, oratory; - Died in 415, killed by a Christian mob who blamed her for religious turmoil. The Musaeum of Alexandria - Founded in the 3rd century BCE by Ptolemy I Soter or his son Ptolemy II; - Comprised gardens, a room for shared dining, a reading room, lecture halls, meetings rooms and a library; - The Library of Alexandria: an acquisitions department and a cataloguing department; - The Mouseion (“The House of the Muses”) – an institution that brought together the best scholars of the Hellenistic world, a university; - Destruction of the Mouseion and Library of Alexandria: 1. Julius Caesar’s Fire in the Alexandrian War, 48 BC; 2. The attack of Aurelian in the 3rd century AD; 3. The decree of Theophilus in AD 391; 4. The Muslim conquest in AD 642 and thereafter. Theon (b: 335 – d. early 5th century) - Most of the references on him and on Hypathia : Suda, the 10th century Byzantine encyclopedia; - Highly educated scholar, mathematician and astronomer; - A member and possibly the last director of the Alexandrian Museion, on public payroll. - Devoted his scholarship to the study of his predecessors Euclid and Ptolemy; his recensions were designed for students; - Euclid’s Elements; - Thirteen books of Ptolemy’ Almagest ; Handy Tables : The Great Commentary, in five books, and The Little Commentary , in one; - He worked together with scholar and student associates and with his daughter, Hypathia - A treatise “On the Small Astrolabe” ; - On Signs and the examination of Birds and the Croaking of Ravens: two essays on the function of the star Syrius and the influence of the planetary spheres on the Nile; - 364 AD: predicted eclipses of the Sun and Moon in Alexandria.
    [Show full text]
  • Apollonius of Pergaconics. Books One - Seven
    APOLLONIUS OF PERGACONICS. BOOKS ONE - SEVEN INTRODUCTION A. Apollonius at Perga Apollonius was born at Perga (Περγα) on the Southern coast of Asia Mi- nor, near the modern Turkish city of Bursa. Little is known about his life before he arrived in Alexandria, where he studied. Certain information about Apollonius’ life in Asia Minor can be obtained from his preface to Book 2 of Conics. The name “Apollonius”(Apollonius) means “devoted to Apollo”, similarly to “Artemius” or “Demetrius” meaning “devoted to Artemis or Demeter”. In the mentioned preface Apollonius writes to Eudemus of Pergamum that he sends him one of the books of Conics via his son also named Apollonius. The coincidence shows that this name was traditional in the family, and in all prob- ability Apollonius’ ancestors were priests of Apollo. Asia Minor during many centuries was for Indo-European tribes a bridge to Europe from their pre-fatherland south of the Caspian Sea. The Indo-European nation living in Asia Minor in 2nd and the beginning of the 1st millennia B.C. was usually called Hittites. Hittites are mentioned in the Bible and in Egyptian papyri. A military leader serving under the Biblical king David was the Hittite Uriah. His wife Bath- sheba, after his death, became the wife of king David and the mother of king Solomon. Hittites had a cuneiform writing analogous to the Babylonian one and hi- eroglyphs analogous to Egyptian ones. The Czech historian Bedrich Hrozny (1879-1952) who has deciphered Hittite cuneiform writing had established that the Hittite language belonged to the Western group of Indo-European languages [Hro].
    [Show full text]
  • Polygonal Numbers 1
    Polygonal Numbers 1 Polygonal Numbers By Daniela Betancourt and Timothy Park Project for MA 341 Introduction to Number Theory Boston University Summer Term 2009 Instructor: Kalin Kostadinov 2 Daniela Betancourt and Timothy Park Introduction : Polygonal numbers are number representing dots that are arranged into a geometric figure. Starting from a common point and augmenting outwards, the number of dots utilized increases in successive polygons. As the size of the figure increases, the number of dots used to construct it grows in a common pattern. The most common types of polygonal numbers take the form of triangles and squares because of their basic geometry. Figure 1 illustrates examples of the first four polygonal numbers: the triangle, square, pentagon, and hexagon. Figure 1: http://www.trottermath.net/numthry/polynos.html As seen in the diagram, the geometric figures are formed by augmenting arrays of dots. The progression of the polygons is illustrated with its initial point and successive polygons grown outwards. The basis of polygonal numbers is to view all shapes and sizes of polygons as numerical values. History : The concept of polygonal numbers was first defined by the Greek mathematician Hypsicles in the year 170 BC (Heath 126). Diophantus credits Hypsicles as being the author of the polygonal numbers and is said to have came to the conclusion that the nth a-gon is calculated by 1 the formula /2*n*[2 + (n - 1)(a - 2)]. He used this formula to determine the number of elements in the nth term of a polygon with a sides. Polygonal Numbers 3 Before Hypsicles was acclaimed for defining polygonal numbers, there was evidence that previous Greek mathematicians used such figurate numbers to create their own theories.
    [Show full text]
  • Greek Mathematics Recovered in Books 6 and 7 of Clavius’ Geometria Practica
    Introduction – Clavius and Geometria Practica Book 6 and Greek approaches to duplication of the cube Book 7 and squaring the circle via the quadratrix Conclusions Greek Mathematics Recovered in Books 6 and 7 of Clavius’ Geometria Practica John B. Little Department of Mathematics and CS College of the Holy Cross June 29, 2018 Greek Mathematics in Clavius Introduction – Clavius and Geometria Practica Book 6 and Greek approaches to duplication of the cube Book 7 and squaring the circle via the quadratrix Conclusions I’ve always been interested in the history of mathematics (in addition to my nominal specialty in algebraic geometry/computational methods/coding theory, etc.) Want to be able to engage with original texts on their own terms – you might recall the talks on Apollonius’s Conics I gave at the last Clavius Group meeting at Holy Cross (two years ago) So, I’ve been taking Greek and Latin language courses in HC’s Classics department The subject for today relates to a Latin-to-English translation project I have recently begun – working with the Geometria Practica of Christopher Clavius, S.J. (1538 - 1612, CE) Greek Mathematics in Clavius Introduction – Clavius and Geometria Practica Book 6 and Greek approaches to duplication of the cube Book 7 and squaring the circle via the quadratrix Conclusions Overview 1 Introduction – Clavius and Geometria Practica 2 Book 6 and Greek approaches to duplication of the cube 3 Book 7 and squaring the circle via the quadratrix 4 Conclusions Greek Mathematics in Clavius Introduction – Clavius and Geometria Practica Book 6 and Greek approaches to duplication of the cube Book 7 and squaring the circle via the quadratrix Conclusions Clavius’ Principal Mathematical Textbooks Euclidis Elementorum, Libri XV (first ed.
    [Show full text]
  • A Mathematician Reads Plutarch: Plato's Criticism of Geometers of His Time
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Scholarship@Claremont Journal of Humanistic Mathematics Volume 7 | Issue 2 July 2017 A Mathematician Reads Plutarch: Plato's Criticism of Geometers of His Time John B. Little College of the Holy Cross Follow this and additional works at: https://scholarship.claremont.edu/jhm Part of the Ancient History, Greek and Roman through Late Antiquity Commons, and the Mathematics Commons Recommended Citation Little, J. B. "A Mathematician Reads Plutarch: Plato's Criticism of Geometers of His Time," Journal of Humanistic Mathematics, Volume 7 Issue 2 (July 2017), pages 269-293. DOI: 10.5642/ jhummath.201702.13 . Available at: https://scholarship.claremont.edu/jhm/vol7/iss2/13 ©2017 by the authors. This work is licensed under a Creative Commons License. JHM is an open access bi-annual journal sponsored by the Claremont Center for the Mathematical Sciences and published by the Claremont Colleges Library | ISSN 2159-8118 | http://scholarship.claremont.edu/jhm/ The editorial staff of JHM works hard to make sure the scholarship disseminated in JHM is accurate and upholds professional ethical guidelines. However the views and opinions expressed in each published manuscript belong exclusively to the individual contributor(s). The publisher and the editors do not endorse or accept responsibility for them. See https://scholarship.claremont.edu/jhm/policies.html for more information. A Mathematician Reads Plutarch: Plato's Criticism of Geometers of His Time Cover Page Footnote This essay originated as an assignment for Professor Thomas Martin's Plutarch seminar at Holy Cross in Fall 2016.
    [Show full text]
  • A Short History of Greek Mathematics
    Cambridge Library Co ll e C t i o n Books of enduring scholarly value Classics From the Renaissance to the nineteenth century, Latin and Greek were compulsory subjects in almost all European universities, and most early modern scholars published their research and conducted international correspondence in Latin. Latin had continued in use in Western Europe long after the fall of the Roman empire as the lingua franca of the educated classes and of law, diplomacy, religion and university teaching. The flight of Greek scholars to the West after the fall of Constantinople in 1453 gave impetus to the study of ancient Greek literature and the Greek New Testament. Eventually, just as nineteenth-century reforms of university curricula were beginning to erode this ascendancy, developments in textual criticism and linguistic analysis, and new ways of studying ancient societies, especially archaeology, led to renewed enthusiasm for the Classics. This collection offers works of criticism, interpretation and synthesis by the outstanding scholars of the nineteenth century. A Short History of Greek Mathematics James Gow’s Short History of Greek Mathematics (1884) provided the first full account of the subject available in English, and it today remains a clear and thorough guide to early arithmetic and geometry. Beginning with the origins of the numerical system and proceeding through the theorems of Pythagoras, Euclid, Archimedes and many others, the Short History offers in-depth analysis and useful translations of individual texts as well as a broad historical overview of the development of mathematics. Parts I and II concern Greek arithmetic, including the origin of alphabetic numerals and the nomenclature for operations; Part III constitutes a complete history of Greek geometry, from its earliest precursors in Egypt and Babylon through to the innovations of the Ionic, Sophistic, and Academic schools and their followers.
    [Show full text]
  • Mathematics Education
    CHAPTER 26 Mathematics Education Nathan Sidoli It is difficult to say much with real certainty about mathematics education in the ancient Greco‐Roman world. When it comes to discussing their education, the mathematicians themselves are all but silent; when discussing the place of mathematics in education in general, philosophical and rhetorical authors are frustratingly vague; and the papyri related to mathematics education have not yet received the same type of overview studies that the papyri related to literary education have (Cribiore 1996, 2001; Morgan 1998). Nevertheless, this chapter provides a survey of what we can say about ancient mathematics education, on the basis of the evidence from the papyrological and literary sources, and guided by analogies from what we now know about literary education. Although it was once commonly held that the mathematical sciences made up a s tandard part of a fairly regular, liberal arts curriculum (Marrou 1948; Clarke 1971), this has been shown to be largely a fanciful characterization (Hadot 2005: 436–443, 252– 253), and in the case of mathematics it is difficult to be certain about precisely what was learned at what age, and to what end. Indeed, the diversity of mathematical practices and cultures that we find represented in the sources gives the impression that mathematical education was even more private and individualized than literary education. In the Greco‐Roman period, the range of activities that was designated by the word mathēmatikē was not identical to those denoted by our understanding of the word mathematics. Although mathematikē ̄ was originally associated with any type of learning, it came to mean those literary disciplines that used mathematical techniques or that investigated mathematical objects—actual or ideal—such as geometry, mechanics, optics, astronomy and astrology, number theory (arithmetike),̄ harmonics, computational methods (logistike ̄ ), spherics (sphairikos), sphere making (sphairopoiïa), sundial theory (gnomonikos̄ ), and so on.
    [Show full text]
  • The Adaptation of Babylonian Methods in Greek Numerical Astronomy
    FIgure 1. A Babylonian tablet (B.M. 37236) listing undated phases of Mars according to the System A scheme. By permission of the Trustees of the British Museum. This content downloaded from 128.122.149.96 on Thu, 04 Jul 2019 12:50:19 UTC All use subject to https://about.jstor.org/terms The Adaptation of Babylonian Methods in Greek Numerical Astronomy By Alexander Jones* THE DISTINCTION CUSTOMARILY MADE between the two chief astro- nomical traditions of antiquity is that Greek astronomy was geometrical, whereas Babylonian astronomy was arithmetical. That is to say, the Babylonian astronomers of the last five centuries B.C. devised elaborate combinations of arithmetical sequences to predict the apparent motions of the heavenly bodies, while the Greeks persistently tried to explain the same phenomena by hypothe- sizing kinematic models compounded out of circular motions. This description is substantially correct so far as it goes, but it conceals a great difference on the Greek side between the methods of, say, Eudoxus in the fourth century B.C. and those of Ptolemy in the second century of our era. Both tried to account for the observed behavior of the stars, sun, moon, and planets by means of combinations of circular motions. But Eudoxus seems to have studied the properties of his models purely through the resources of geometry. The only numerical parameters associated with his concentric spheres in our ancient sources are crude periods of synodic and longitudinal revolution, that is to say, data imposed on the models rather than deduced from them.1 By contrast, Ptolemy's approach in the Alma- 2 gest is thoroughly numerical.
    [Show full text]
  • A Modern Almagest an Updated Version of Ptolemy’S Model of the Solar System
    A Modern Almagest An Updated Version of Ptolemy’s Model of the Solar System Richard Fitzpatrick Professor of Physics The University of Texas at Austin Contents 1 Introduction 5 1.1 Euclid’sElementsandPtolemy’sAlmagest . ......... 5 1.2 Ptolemy’sModeloftheSolarSystem . ..... 5 1.3 Copernicus’sModeloftheSolarSystem . ....... 10 1.4 Kepler’sModeloftheSolarSystem . ..... 11 1.5 PurposeofTreatise .................................. .. 12 2 Spherical Astronomy 15 2.1 CelestialSphere................................... ... 15 2.2 CelestialMotions ................................. .... 15 2.3 CelestialCoordinates .............................. ..... 15 2.4 EclipticCircle .................................... ... 17 2.5 EclipticCoordinates............................... ..... 18 2.6 SignsoftheZodiac ................................. ... 19 2.7 Ecliptic Declinations and Right Ascenesions. ........... 20 2.8 LocalHorizonandMeridian ............................ ... 20 2.9 HorizontalCoordinates.............................. .... 23 2.10 MeridianTransits .................................. ... 24 2.11 Principal Terrestrial Latitude Circles . ......... 25 2.12 EquinoxesandSolstices. ....... 25 2.13 TerrestrialClimes .................................. ... 26 2.14 EclipticAscensions .............................. ...... 27 2.15 AzimuthofEclipticAscensionPoint . .......... 29 2.16 EclipticAltitudeandOrientation. .......... 30 3 Dates 63 3.1 Introduction...................................... .. 63 3.2 Determination of Julian Day Numbers . .... 63 4 Geometric
    [Show full text]