Top Authors in Simulation - Microsoft …

Total Page:16

File Type:pdf, Size:1020Kb

Top Authors in Simulation - Microsoft … 26/09/2010 Top authors in Simulation - Microsoft … Advanced Search Top authors in Simulation Filter: Simulation All Years Author In Domain Author Publication Citations Conference Richard M. Fujimoto Georgia Institute of Technology Journal 1 Publications: 210 | Citations: 3939 | G-Index: 56 | H-Index: 29 1578 Organization Averill M. Law 2 Publications: 102 | Citations: 2657 | G-Index: 51 | H-Index: 17 942 W. David Kelton University of Cincinnati 3 Publications: 86 | Citations: 2605 | G-Index: 50 | H-Index: 15 896 Barry L. Nelson Purdue University 4 Publications: 158 | Citations: 1772 | G-Index: 38 | H-Index: 20 852 Bernard Zeigler University of Arizona 5 Publications: 200 | Citations: 2401 | G-Index: 45 | H-Index: 18 792 David M. Nicol University of Illinois Urbana Champaign 6 Publications: 229 | Citations: 2706 | G-Index: 43 | H-Index: 25 697 David R. Jefferson University of California Los Angeles 7 Publications: 54 | Citations: 2024 | G-Index: 44 | H-Index: 22 681 Philip Heidelberger IBM 8 Publications: 116 | Citations: 2201 | G-Index: 43 | H-Index: 25 603 James R. Wilson Rochester Institute of Technology 9 Publications: 194 | Citations: 1113 | G-Index: 24 | H-Index: 18 586 Lee W. Schruben University of California Berkeley 10 Publications: 102 | Citations: 862 | G-Index: 25 | H-Index: 16 544 Peter W. Glynn Publications: 183 | Citations: 2291 | G-Index: 41 | H-Index: 23 11 527 Stanford University Robert Sargent Publications: 101 | Citations: 1136 | G-Index: 30 | H-Index: 19 12 521 Syracuse University …microsoft.com/…/author_category_2… 1/35 26/09/2010 Top authors in Simulation - Microsoft … Osman Balci Publications: 78 | Citations: 782 | G-Index: 23 | H-Index: 16 13 454 Virginia Polytechnic Institute and State University Jayadev Misra Publications: 136 | Citations: 3325 | G-Index: 56 | H-Index: 26 14 453 University of Texas Austin Rajive Bagrodia Publications: 175 | Citations: 3160 | G-Index: 51 | H-Index: 24 15 435 University of California Los Angeles Richard E. Nance Publications: 101 | Citations: 743 | G-Index: 22 | H-Index: 15 16 420 Virginia Polytechnic Institute and State University Pierre L'Ecuyer Publications: 158 | Citations: 1706 | G-Index: 35 | H-Index: 23 17 414 Université de Montreal 18 A. Alan. B. Pritsker Publications: 48 | Citations: 600 | G-Index: 24 | H-Index: 11 407 Jerry Banks Publications: 52 | Citations: 1187 | G-Index: 34 | H-Index: 11 19 406 Georgia Institute of Technology Bruce W. Schmeiser Publications: 97 | Citations: 765 | G-Index: 24 | H-Index: 14 20 404 Purdue University K. Mani Chandy Publications: 184 | Citations: 5615 | G-Index: 73 | H-Index: 32 21 396 University of Texas Austin John S. III carson Publications: 33 | Citations: 967 | G-Index: 31 | H-Index: 10 22 386 Georgia Institute of Technology George S. Fishman Publications: 47 | Citations: 699 | G-Index: 26 | H-Index: 14 23 375 University of North Carolina Chapel Hill David Goldsman Publications: 88 | Citations: 595 | G-Index: 21 | H-Index: 15 24 367 Georgia Institute of Technology 25 Donald L. Iglehart Publications: 35 | Citations: 713 | G-Index: 26 | H-Index: 15 357 David Botstein Publications: 220 | Citations: 18926 | G-Index: 136 | H-Index: 57 26 352 Princeton University Paul Glasserman Publications: 97 | Citations: 1892 | G-Index: 41 | H-Index: 22 27 324 Columbia University Webb C. Miller Publications: 222 | Citations: 22140 | G-Index: 148 | H-Index: 34 28 311 Pennsylvania State University Jack P. C. Kleijnen Publications: 121 | Citations: 1050 | G-Index: 28 | H-Index: 17 29 301 Università degli Studi di Siena Paul A. Fishwick Publications: 119 | Citations: 969 | G-Index: 26 | H-Index: 15 30 298 University of Florida Robert E. Shannon Publications: 25 | Citations: 574 | G-Index: 23 | H-Index: 8 31 295 Texas A&M University Michael C. Fu Publications: 133 | Citations: 995 | G-Index: 26 | H-Index: 17 32 292 University of Maryland Claude Dennis Pegden Publications: 33 | Citations: 442 | G-Index: 21 | H-Index: 9 33 290 Pennsylvania State University Perwez Shahabuddin Publications: 65 | Citations: 1358 | G-Index: 35 | H-Index: 17 34 288 Columbia University David J. Lipman Publications: 38 | Citations: 21684 | G-Index: 38 | H-Index: 21 35 282 National Institutes of Health Yi-bing Lin ( 林一平) Publications: 241 | Citations: 1833 | G-Index: 36 | H-Index: 23 36 277 National Chiao Tung University Stephen F. Altschul Publications: 46 | Citations: 20327 | G-Index: 46 | H-Index: 23 37 274 National Institutes of Health Paul F. Reynolds Publications: 77 | Citations: 617 | G-Index: 20 | H-Index: 11 38 271 University of Virginia Patrick O. Brown Publications: 165 | Citations: 17379 | G-Index: 131 | H-Index: 52 39 268 Stanford University Samir Ranjan Das Publications: 110 | Citations: 6699 | G-Index: 81 | H-Index: 29 40 260 Stony Brook University Mel Slater Publications: 201 | Citations: 2777 | G-Index: 48 | H-Index: 31 41 252 University College London …microsoft.com/…/author_category_2… 2/35 26/09/2010 Top authors in Simulation - Microsoft … Stephen E. Chick Publications: 67 | Citations: 496 | G-Index: 20 | H-Index: 12 41 252 National Institute for Health and Clinical Excellence Boris Lubachevsky Publications: 56 | Citations: 819 | G-Index: 27 | H-Index: 16 43 241 Bell Labs (Lucent Technologies Inc.) Thomas Schriber Publications: 80 | Citations: 391 | G-Index: 18 | H-Index: 11 44 240 University of Michigan 45 James O. Henriksen Publications: 57 | Citations: 357 | G-Index: 15 | H-Index: 10 236 Yu-chi Ho Publications: 119 | Citations: 1116 | G-Index: 29 | H-Index: 17 46 235 Harvard University Frederick P. Wieland Publications: 40 | Citations: 458 | G-Index: 21 | H-Index: 11 47 232 National Aeronautics and Space Administration Stephen John Turner Publications: 169 | Citations: 710 | G-Index: 20 | H-Index: 13 48 227 Nanyang Technological University Sean R. Eddy Publications: 68 | Citations: 8029 | G-Index: 68 | H-Index: 36 49 225 Howard Hughes Medical Institute Gabriel A. Wainer Publications: 173 | Citations: 571 | G-Index: 19 | H-Index: 12 50 217 Carleton University Brian W. Unger Publications: 68 | Citations: 577 | G-Index: 21 | H-Index: 14 51 216 University of Calgary 52 Peter D. Welch Publications: 30 | Citations: 472 | G-Index: 21 | H-Index: 11 213 Deborah Estrin Publications: 416 | Citations: 24388 | G-Index: 151 | H-Index: 73 53 211 University of California Los Angeles Tag-gon Kim ( ᣵ㭶យ) Publications: 86 | Citations: 895 | G-Index: 29 | H-Index: 8 54 205 Korea Advanced Institute of Science & Technology Edward Lazowska Publications: 144 | Citations: 4761 | G-Index: 67 | H-Index: 37 55 204 University of Washington Reuven Y. Rubinstein Publications: 58 | Citations: 1295 | G-Index: 35 | H-Index: 15 56 201 Technion Israel Institute of Technology Thomas L. Madden Publications: 21 | Citations: 11268 | G-Index: 21 | H-Index: 16 57 198 National Institutes of Health Mario Gerla Publications: 704 | Citations: 10775 | G-Index: 88 | H-Index: 46 58 197 University of California Los Angeles Rolf Apweiler Publications: 124 | Citations: 5608 | G-Index: 74 | H-Index: 35 59 196 European Bioinformatics Institute EMBL Philip A. Wilsey Publications: 129 | Citations: 548 | G-Index: 17 | H-Index: 11 60 193 University of Cincinnati Walter Willinger Publications: 153 | Citations: 8754 | G-Index: 93 | H-Index: 39 60 193 AT&T Labs Research Amos Bairoch Publications: 90 | Citations: 6234 | G-Index: 78 | H-Index: 37 62 188 Swiss Institute of Bioinformatics Bennett L. Fox Publications: 23 | Citations: 759 | G-Index: 23 | H-Index: 9 63 186 Digital Equipment Corp. (DEC) Peer Bork Publications: 204 | Citations: 7464 | G-Index: 81 | H-Index: 44 64 185 European Molecular Biology Laboratory Herbert Praehofer Publications: 34 | Citations: 846 | G-Index: 29 | H-Index: 7 65 182 Johannes Kepler Universität Linz Harald Niederreiter Publications: 151 | Citations: 1902 | G-Index: 41 | H-Index: 13 65 182 National University of Singapore George F. Riley Publications: 95 | Citations: 989 | G-Index: 28 | H-Index: 18 67 174 Georgia Institute of Technology Robert J. Tibshirani Publications: 172 | Citations: 16719 | G-Index: 129 | H-Index: 44 68 171 Stanford University 69 A. W. Law Publications: 4 | Citations: 404 | G-Index: 4 | H-Index: 3 170 Chun-hung Chen Publications: 70 | Citations: 361 | G-Index: 17 | H-Index: 10 70 168 George Mason University …microsoft.com/…/author_category_2… 3/35 26/09/2010 Top authors in Simulation - Microsoft … Kalyan S. Perumalla Publications: 70 | Citations: 550 | G-Index: 21 | H-Index: 14 71 165 Georgia Institute of Technology Benjamin Melamed Publications: 77 | Citations: 1005 | G-Index: 28 | H-Index: 18 72 164 AT&T Labs Research 73 Richard Durbin Publications: 103 | Citations: 8340 | G-Index: 91 | H-Index: 43 163 Christopher D. Carothers Publications: 58 | Citations: 402 | G-Index: 18 | H-Index: 10 74 162 Rensselaer Polytechnic Institute Randall P. Sadowski Publications: 13 | Citations: 293 | G-Index: 13 | H-Index: 4 75 161 Pennsylvania State University Ward Whitt Publications: 247 | Citations: 3979 | G-Index: 50 | H-Index: 34 76 159 Columbia University Andrew F. Seila Publications: 48 | Citations: 227 | G-Index: 13 | H-Index: 9 76 159 University of Georgia 76 Richard M. Weatherly Publications: 26 | Citations: 471 | G-Index: 21 | H-Index: 11 159 79 D. M. Goldsman Publications: 12 | Citations: 215 | G-Index: 12 | H-Index: 8 157 Sally Floyd Publications: 200 | Citations: 18433 | G-Index: 135 | H-Index: 57 80 156 University of California Berkeley Marvin K. Nakayama Publications: 60 | Citations: 277 | G-Index: 13 | H-Index: 10 80 156 New Jersey Institute of Technology Chris Sander Publications: 127 | Citations: 7282 | G-Index: 84 | H-Index: 39 82 154 Sloan Kettering Memorial Cancer Center Bruno R. Preiss Publications: 48 | Citations: 430 | G-Index: 20 | H-Index: 11 82 154 University of Waterloo Jinghui Zhang Publications: 15 | Citations: 10823 | G-Index: 15 | H-Index: 6 82 154 Saint Jude Children's Research Hospital Gavin Sherlock Publications: 55 | Citations: 5348 | G-Index: 55 | H-Index: 22 82 154 Stanford University Paul Bratley Publications: 23 | Citations: 621 | G-Index: 23 | H-Index: 6 86 153 University of Edinburgh Eric S.
Recommended publications
  • Proquest Dissertations
    Automated learning of protein involvement in pathogenesis using integrated queries Eithon Cadag A dissertation submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy University of Washington 2009 Program Authorized to Offer Degree: Department of Medical Education and Biomedical Informatics UMI Number: 3394276 All rights reserved INFORMATION TO ALL USERS The quality of this reproduction is dependent upon the quality of the copy submitted. In the unlikely event that the author did not send a complete manuscript and there are missing pages, these will be noted. Also, if material had to be removed, a note will indicate the deletion. UMI Dissertation Publishing UMI 3394276 Copyright 2010 by ProQuest LLC. All rights reserved. This edition of the work is protected against unauthorized copying under Title 17, United States Code. uest ProQuest LLC 789 East Eisenhower Parkway P.O. Box 1346 Ann Arbor, Ml 48106-1346 University of Washington Graduate School This is to certify that I have examined this copy of a doctoral dissertation by Eithon Cadag and have found that it is complete and satisfactory in all respects, and that any and all revisions required by the final examining committee have been made. Chair of the Supervisory Committee: Reading Committee: (SjLt KJ. £U*t~ Peter Tgffczy-Hornoch In presenting this dissertation in partial fulfillment of the requirements for the doctoral degree at the University of Washington, I agree that the Library shall make its copies freely available for inspection. I further agree that extensive copying of this dissertation is allowable only for scholarly purposes, consistent with "fair use" as prescribed in the U.S.
    [Show full text]
  • Trancep: Predicting Transmembrane Transport Proteins Using Composition, Evolutionary, and Positional Information
    bioRxiv preprint doi: https://doi.org/10.1101/293159; this version posted April 2, 2018. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. TranCEP: Predicting transmembrane transport proteins using composition, evolutionary, and positional information Munira Alballa1, Faizah Aplop2, Gregory Butler1,3* 1 Department of Computer Science and Software Engineering, Concordia University, Montr´eal, Qu´ebec, Canada 2 School of Informatics and Applied Mathematics, Universiti Malaysia Terengganu, Malaysia 3 Centre for Structural and Functional Genomics, Concordia University, Montr´eal,Qu´ebec, Canada * [email protected] Abstract Transporters mediate the movement of compounds across the membranes that separate the cell from its environment, and across inner membranes surrounding cellular compartments. It is estimated that one third of a proteome consists of membrane proteins, and many of these are transport proteins. Given the increase in the number of genomes being sequenced, there is a need for computation tools that predict the substrates which are transported by the transmembrane transport proteins. In this paper, we present TranCEP, a predictor of the type of substrate transported by a transmembrane transport protein. TranCEP combines the traditional use of the amino acid composition of the protein, with evolutionary information captured in a multiple sequence alignment, and restriction to important positions of the alignment that play a role in determining specificity of the protein. Our experimental results show that TranCEP significantly outperforms the state of the art.
    [Show full text]
  • Algorithms for Computational Biology 8Th International Conference, Alcob 2021 Missoula, MT, USA, June 7–11, 2021 Proceedings
    Lecture Notes in Bioinformatics 12715 Subseries of Lecture Notes in Computer Science Series Editors Sorin Istrail Brown University, Providence, RI, USA Pavel Pevzner University of California, San Diego, CA, USA Michael Waterman University of Southern California, Los Angeles, CA, USA Editorial Board Members Søren Brunak Technical University of Denmark, Kongens Lyngby, Denmark Mikhail S. Gelfand IITP, Research and Training Center on Bioinformatics, Moscow, Russia Thomas Lengauer Max Planck Institute for Informatics, Saarbrücken, Germany Satoru Miyano University of Tokyo, Tokyo, Japan Eugene Myers Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany Marie-France Sagot Université Lyon 1, Villeurbanne, France David Sankoff University of Ottawa, Ottawa, Canada Ron Shamir Tel Aviv University, Ramat Aviv, Tel Aviv, Israel Terry Speed Walter and Eliza Hall Institute of Medical Research, Melbourne, VIC, Australia Martin Vingron Max Planck Institute for Molecular Genetics, Berlin, Germany W. Eric Wong University of Texas at Dallas, Richardson, TX, USA More information about this subseries at http://www.springer.com/series/5381 Carlos Martín-Vide • Miguel A. Vega-Rodríguez • Travis Wheeler (Eds.) Algorithms for Computational Biology 8th International Conference, AlCoB 2021 Missoula, MT, USA, June 7–11, 2021 Proceedings 123 Editors Carlos Martín-Vide Miguel A. Vega-Rodríguez Rovira i Virgili University University of Extremadura Tarragona, Spain Cáceres, Spain Travis Wheeler University of Montana Missoula, MT, USA ISSN 0302-9743 ISSN 1611-3349 (electronic) Lecture Notes in Bioinformatics ISBN 978-3-030-74431-1 ISBN 978-3-030-74432-8 (eBook) https://doi.org/10.1007/978-3-030-74432-8 LNCS Sublibrary: SL8 – Bioinformatics © Springer Nature Switzerland AG 2021 This work is subject to copyright.
    [Show full text]
  • Bonnie Berger Named ISCB 2019 ISCB Accomplishments by a Senior
    F1000Research 2019, 8(ISCB Comm J):721 Last updated: 09 APR 2020 EDITORIAL Bonnie Berger named ISCB 2019 ISCB Accomplishments by a Senior Scientist Award recipient [version 1; peer review: not peer reviewed] Diane Kovats 1, Ron Shamir1,2, Christiana Fogg3 1International Society for Computational Biology, Leesburg, VA, USA 2Blavatnik School of Computer Science, Tel Aviv University, Tel Aviv, Israel 3Freelance Writer, Kensington, USA First published: 23 May 2019, 8(ISCB Comm J):721 ( Not Peer Reviewed v1 https://doi.org/10.12688/f1000research.19219.1) Latest published: 23 May 2019, 8(ISCB Comm J):721 ( This article is an Editorial and has not been subject https://doi.org/10.12688/f1000research.19219.1) to external peer review. Abstract Any comments on the article can be found at the The International Society for Computational Biology (ISCB) honors a leader in the fields of computational biology and bioinformatics each year with the end of the article. Accomplishments by a Senior Scientist Award. This award is the highest honor conferred by ISCB to a scientist who is recognized for significant research, education, and service contributions. Bonnie Berger, Simons Professor of Mathematics and Professor of Electrical Engineering and Computer Science at the Massachusetts Institute of Technology (MIT) is the 2019 recipient of the Accomplishments by a Senior Scientist Award. She is receiving her award and presenting a keynote address at the 2019 Joint International Conference on Intelligent Systems for Molecular Biology/European Conference on Computational Biology in Basel, Switzerland on July 21-25, 2019. Keywords ISCB, Bonnie Berger, Award This article is included in the International Society for Computational Biology Community Journal gateway.
    [Show full text]
  • Department of Energy Office of Health and Environmental Research SEQUENCING the HUMAN GENOME Summary Report of the Santa Fe Workshop March 3-4, 1986
    Department of Energy Office of Health and Environmental Research SEQUENCING THE HUMAN GENOME Summary Report of the Santa Fe Workshop March 3-4, 1986 Los Alamos National Laboratory Los Alamos Los Alamos, New Mexico 87545 Los Alamos National Laboratory is operated by the University of California for the United States Department of Energy under contract W-7405-ENG-36. DEPARTMENT OF ENERGY OFFICE OF HEALTH AND ENVIRONMENTAL RESEARCH SEQUENCING THE HUMAN GENOME SUMMARY REPORT ON THE SANTA FE WORKSHOP (MARCH 3-4, 1986) Executive Summary. The following is a summary of the Santa Fe Workshop held on March 3 and 4, 1986. The workshop was sponsored by the Office of Health and Environmental Research (OHER) and Los Alamos National Laboratory (LANL) and dedicated to examining the feasibility, advisability, and approaches to sequencing the human genome. The workshop considered four principal topics: I. Technologies to be employed. II. Expected benefits. III. Architecture of the enterprise. IV. Participants and funding. I . Technology The participants of the workshop foresaw extraordinary and continuing progress in the efficiency and accuracy of mapping, ordering , and sequencing technologies. They suggested that a coordinated analysis of the human genome begin with the task of ordering overlapping recombinant DNA fragments obtained from purified human chromosomes that would provide an infrastructure for sequencing activity. At the same time, they support in-depth evaluation of current and developing strategies for sequencing including possible applications of automation and robotics that would minimize the time and cost of sequencing. II. Benefits The socio-political and health benefits, and the benefit:cost ratio were seen as highly favorable not only for human health, but in addition for the development of new diagnostic, preventative and therapeutic tools, jobs, and industries.
    [Show full text]
  • Mapping Our Genes—Genome Projects: How Big? How Fast?
    Mapping Our Genes—Genome Projects: How Big? How Fast? April 1988 NTIS order #PB88-212402 Recommended Citation: U.S. Congress, Office of Technology Assessment, Mapping Our Genes-The Genmne Projects.’ How Big, How Fast? OTA-BA-373 (Washington, DC: U.S. Government Printing Office, April 1988). Library of Congress Catalog Card Number 87-619898 For sale by the Superintendent of Documents U.S. Government Printing Office, Washington, DC 20402-9325 (order form can be found in the back of this report) Foreword For the past 2 years, scientific and technical journals in biology and medicine have extensively covered a debate about whether and how to determine the function and order of human genes on human chromosomes and when to determine the sequence of molecular building blocks that comprise DNA in those chromosomes. In 1987, these issues rose to become part of the public agenda. The debate involves science, technol- ogy, and politics. Congress is responsible for ‘(writing the rules” of what various Federal agencies do and for funding their work. This report surveys the points made so far in the debate, focusing on those that most directly influence the policy options facing the U.S. Congress, The House Committee on Energy and Commerce requested that OTA undertake the project. The House Committee on Science, Space, and Technology, the Senate Com- mittee on Labor and Human Resources, and the Senate Committee on Energy and Natu- ral Resources also asked OTA to address specific points of concern to them. Congres- sional interest focused on several issues: ● how to assess the rationales for conducting human genome projects, ● how to fund human genome projects (at what level and through which mech- anisms), ● how to coordinate the scientific and technical programs of the several Federal agencies and private interests already supporting various genome projects, and ● how to strike a balance regarding the impact of genome projects on international scientific cooperation and international economic competition in biotechnology.
    [Show full text]
  • Microblogging the ISMB: a New Approach to Conference Reporting
    Message from ISCB Microblogging the ISMB: A New Approach to Conference Reporting Neil Saunders1*, Pedro Beltra˜o2, Lars Jensen3, Daniel Jurczak4, Roland Krause5, Michael Kuhn6, Shirley Wu7 1 School of Molecular and Microbial Sciences, University of Queensland, St. Lucia, Brisbane, Queensland, Australia, 2 Department of Cellular and Molecular Pharmacology, University of California San Francisco, San Francisco, California, United States of America, 3 Novo Nordisk Foundation Center for Protein Research, Panum Institute, Copenhagen, Denmark, 4 Department of Bioinformatics, University of Applied Sciences, Hagenberg, Freistadt, Austria, 5 Max-Planck-Institute for Molecular Genetics, Berlin, Germany, 6 European Molecular Biology Laboratory, Heidelberg, Germany, 7 Stanford Medical Informatics, Stanford University, Stanford, California, United States of America Cameron Neylon entitled FriendFeed for Claire Fraser-Liggett opened the meeting Scientists: What, Why, and How? (http:// with a review of metagenomics and an blog.openwetware.org/scienceintheopen/ introduction to the human microbiome 2008/06/12/friendfeed-for-scientists-what- project (http://friendfeed.com/search?q = why-and-how/) for an introduction. room%3Aismb-2008+microbiome+OR+ We—a group of science bloggers, most fraser). The subsequent Q&A session of whom met in person for the first time at covered many of the exciting challenges The International Conference on Intel- ISMB 2008—found FriendFeed a remark- for those working in this field. Clearly, ligent Systems for Molecular Biology
    [Show full text]
  • Characterizing the Dna-Binding Site Specificities of Cis2his2 Zinc Fingers
    MQP-ID-DH-UM1 C H A R A C T E RI Z IN G T H E DN A-BINDIN G SI T E SPE C I F I C I T I ES O F C IS2H IS2 Z IN C F IN G E RS A Major Qualifying Project Report Submitted to the Faculty of the WORCESTER POLYTECHNIC INSTITUTE in partial fulfillment of the requirements for the Degrees of Bachelor of Science in Biochemistry and Biology and Biotechnology by _________________________ Heather Bell April 26, 2012 APPROVED: ____________________ ____________________ ____________________ Scot Wolfe, PhD Destin Heilman, PhD David Adams, PhD Gene Function and Exp. Biochemistry Biology and Biotech UMass Medical School WPI Project Advisor WPI Project Advisor MAJOR ADVISOR A BST R A C T The ability to modularly assemble Zinc Finger Proteins (ZFPs) as well as the wide variety of DNA sequences they can recognize, make ZFPs an ideal framework to design novel DNA-binding proteins. However, due to the complexity of the interactions between residues in the ZF recognition helix and the DNA-binding site there is currently no comprehensive recognition code that would allow for the accurate prediction of the DNA ZFP binding motifs or the design of novel ZFPs for a desired target site. Through the analysis of the DNA-binding site specificities of 98 ZFP clones, determined through a bacterial one-hybrid selection system, a predictive model was created that can accurately predict the binding site motifs of novel ZFPs. 2 T A B L E O F C O N T E N TS Signature Page ««««««««««««««««««««««««««« $EVWUDFW«««««««««««««««««««««««««««««« 7DEOHRI&RQWHQWV«««««««««««««««««««««««««« $FNQRZOHGJHPHQWV««««««««««««««««««««««««« %DFNJURXQG«««««««««««««««««««««««««««« Project Purpose «««««««««««««««««««««««««««15 0HWKRGV««««««««««««««««««««««««««««««16 5HVXOWV««««««««««««««««««««««««««««««21 'LVFXVVLRQ«««««««««««««««««««««««««««««28 Bibliograph\«««««««««««««««««««««««««««« 6XSSOHPHQWDO««««««««««««««««««««««««««« 3 A C K N O W L E D G E M E N TS I would like to thank Dr.
    [Show full text]
  • DREAM: a Dialogue on Reverse Engineering Assessment And
    DREAM:DREAM: aa DialogueDialogue onon ReverseReverse EngineeringEngineering AssessmentAssessment andand MethodsMethods Andrea Califano: MAGNet: Center for the Multiscale Analysis of Genetic and Cellular Networks C2B2: Center for Computational Biology and Bioinformatics ICRC: Irving Cancer RResearchesearch Center Columbia University 1 ReverseReverse EngineeringEngineering • Inference of a predictive (generative) model from data. E.g. argmax[P(Data|Model)] • Assumptions: – Model variables (E.g., DNA, mRNA, Proteins, cellular sub- structures) – Model variable space: At equilibrium, temporal dynamics, spatio- temporal dynamics, etc. – Model variable interactions: probabilistics (linear, non-linear), explicit kinetics, etc. – Model topology: known a-priori, inferred. • Question: – Model ~= Reality? ReverseReverse EngineeringEngineering Data Biological System Expression Proteomics > NFAT ATGATGGATG CTCGCATGAT CGACGATCAG GTGTAGCCTG High-throughput GGCTGGA Structure Sequence Biology … Biochemical Model Validation Control X-Y- Control X+Y+ Y X Z X+Y- X-Y+ Control Control Specific Prediction SomeSome ReverseReverse EngineeringEngineering MethodsMethods • Optimization: High-Dimensional objective function max corresponds to best topology – Liang S, Fuhrman S, Somogyi (REVEAL) – Gat-Viks and R. Shamir (Chain Functions) – Segal E, Shapira M, Regev A, Pe’er D, Botstein D, KolKollerler D, and Friedman N (Prob. Graphical Models) – Jing Yu, V. Anne Smith, Paul P. Wang, Alexander J. Hartemink, Erich D. Jarvis (Dynamic Bayesian Networks) – … • Regression: Create a general model of biochemical interactions and fit the parameters – Gardner TS, di Bernardo D, Lorentz D, and Collins JJ (NIR) – Alberto de la Fuente, Paul Brazhnik, Pedro Mendes – Roven C and Bussemaker H (REDUCE) – … • Probabilistic and Information Theoretic: Compute probability of interaction and filter with statistical criteria – Atul Butte et al. (Relevance Networks) – Gustavo Stolovitzky et al. (Co-Expression Networks) – Andrea CaCalifanolifano et al.
    [Show full text]
  • Assigning Folds to the Proteins Encoded by the Genome of Mycoplasma Genitalium (Protein Fold Recognition͞computer Analysis of Genome Sequences)
    Proc. Natl. Acad. Sci. USA Vol. 94, pp. 11929–11934, October 1997 Biophysics Assigning folds to the proteins encoded by the genome of Mycoplasma genitalium (protein fold recognitionycomputer analysis of genome sequences) DANIEL FISCHER* AND DAVID EISENBERG University of California, Los Angeles–Department of Energy Laboratory of Structural Biology and Molecular Medicine, Molecular Biology Institute, University of California, Los Angeles, Box 951570, Los Angeles, CA 90095-1570 Contributed by David Eisenberg, August 8, 1997 ABSTRACT A crucial step in exploiting the information genitalium (MG) (10), as a test of the capabilities of our inherent in genome sequences is to assign to each protein automatic fold recognition server and as a case study to sequence its three-dimensional fold and biological function. identify the difficulties facing automated fold assignment. Here we describe fold assignment for the proteins encoded by the small genome of Mycoplasma genitalium. The assignment MATERIALS AND METHODS was carried out by our computer server (http:yywww.doe- mbi.ucla.eduypeopleyfrsvryfrsvr.html), which assigns folds to The MG Sequences. The 468 MG sequences were obtained amino acid sequences by comparing sequence-derived predic- from The Institute for Genome Research (TIGR) through its tions with known structures. Of the total of 468 protein ORFs, Web address: http:yywww.tigr.orgytdbymdbymgdbymgd- 103 (22%) can be assigned a known protein fold with high b.html. Three types of annotation (based on searches in the confidence, as cross-validated with tests on known structures. sequence database) accompany each TIGR sequence (10): (i) Of these sequences, 75 (16%) show enough sequence similarity functional assignment—a clear sequence similarity with a to proteins of known structure that they can also be detected protein of known function from another organism was found by traditional sequence–sequence comparison methods.
    [Show full text]
  • Research Report 2006 Max Planck Institute for Molecular Genetics, Berlin Imprint | Research Report 2006
    MAX PLANCK INSTITUTE FOR MOLECULAR GENETICS Research Report 2006 Max Planck Institute for Molecular Genetics, Berlin Imprint | Research Report 2006 Published by the Max Planck Institute for Molecular Genetics (MPIMG), Berlin, Germany, August 2006 Editorial Board Bernhard Herrmann, Hans Lehrach, H.-Hilger Ropers, Martin Vingron Coordination Claudia Falter, Ingrid Stark Design & Production UNICOM Werbeagentur GmbH, Berlin Number of copies: 1,500 Photos Katrin Ullrich, MPIMG; David Ausserhofer Contact Max Planck Institute for Molecular Genetics Ihnestr. 63–73 14195 Berlin, Germany Phone: +49 (0)30-8413 - 0 Fax: +49 (0)30-8413 - 1207 Email: [email protected] For further information about the MPIMG please see our website: www.molgen.mpg.de MPI for Molecular Genetics Research Report 2006 Table of Contents The Max Planck Institute for Molecular Genetics . 4 • Organisational Structure. 4 • MPIMG – Mission, Development of the Institute, Research Concept. .5 Department of Developmental Genetics (Bernhard Herrmann) . 7 • Transmission ratio distortion (Hermann Bauer) . .11 • Signal Transduction in Embryogenesis and Tumor Progression (Markus Morkel). 14 • Development of Endodermal Organs (Heiner Schrewe) . 16 • Gene Expression and 3D-Reconstruction (Ralf Spörle). 18 • Somitogenesis (Lars Wittler). 21 Department of Vertebrate Genomics (Hans Lehrach) . 25 • Molecular Embryology and Aging (James Adjaye). .31 • Protein Expression and Protein Structure (Konrad Büssow). .34 • Mass Spectrometry (Johan Gobom). 37 • Bioinformatics (Ralf Herwig). .40 • Comparative and Functional Genomics (Heinz Himmelbauer). 44 • Genetic Variation (Margret Hoehe). 48 • Cell Arrays/Oligofingerprinting (Michal Janitz). .52 • Kinetic Modeling (Edda Klipp) . .56 • In Vitro Ligand Screening (Zoltán Konthur). .60 • Neurodegenerative Disorders (Sylvia Krobitsch). .64 • Protein Complexes & Cell Organelle Assembly/ USN (Bodo Lange/Thorsten Mielke). .67 • Automation & Technology Development (Hans Lehrach).
    [Show full text]
  • Practical Structure-Sequence Alignment of Pseudoknotted Rnas Wei Wang
    Practical structure-sequence alignment of pseudoknotted RNAs Wei Wang To cite this version: Wei Wang. Practical structure-sequence alignment of pseudoknotted RNAs. Bioinformatics [q- bio.QM]. Université Paris Saclay (COmUE), 2017. English. NNT : 2017SACLS563. tel-01697889 HAL Id: tel-01697889 https://tel.archives-ouvertes.fr/tel-01697889 Submitted on 31 Jan 2018 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. 1 NNT : 2017SACLS563 Thèse de doctorat de l’Université Paris-Saclay préparée à L’Université Paris-Sud Ecole doctorale n◦580 (STIC) Sciences et Technologies de l’Information et de la Communication Spécialité de doctorat : Informatique par M. Wei WANG Alignement pratique de structure-séquence d’ARN avec pseudonœuds Thèse présentée et soutenue à Orsay, le 18 Décembre 2017. Composition du Jury : Mme Hélène TOUZET Directrice de Recherche (Présidente) CNRS, Université Lille 1 M. Guillaume FERTIN Professeur (Rapporteur) Université de Nantes M. Jan GORODKIN Professeur (Rapporteur) University of Copenhagen Mme Johanne COHEN Directrice de Recherche (Examinatrice)
    [Show full text]