Oxycodone + Ketamine

Total Page:16

File Type:pdf, Size:1020Kb

Oxycodone + Ketamine Protocol for the use of Oxycodone + Intravenous PCA / NCA Ketamine Use in conjunction with Pain Management Chart and Clinical Practice Guidelines Special Oxycodone is an alternative opioid, which may be used for patients who have a Precautions contra-indication to morphine and fentanyl or as part of an opioid rotation plan. Ketamine should only be prescribed after discussing the patient with an Anaesthetist or the Pain Control Service General instructions No supplementary opioids unless requested by the Anaesthetist or Pain Control Service Line for IV opioids should be exclusive or an anti-reflux valve must be used An anti-syphon line must be used outside ICUs Record observations according to Clinical Practice Guidelines (at least hourly) Assess for pain and potential opioid related side-effects hourly while on NCA/PCA, and for 6 hours after cessation Multi-modal / synergistic analgesia – ensure it is prescribed and administered Treatment of Nausea & vomiting: Give antiemetics as prescribed side-effects: Itching: Chlorphenamine as prescribed Over sedation: See Sedation Scale Respiratory depression: Assess child and if depression is suspected: 1. Stop 2. Follow CEWS 3. Give Naloxone 4. Call Pain Control 5. Document actions in the infusion protocol as prescribed Service child’s records The Pain Control Service can be contacted on Bleep 0577 at any time (24 hours) Intravenous weight drug and dose solution concentration Up to 50 kg Oxycodone 1 mg/kg 1 ml = 20 microgram/kg made up to 50 ml with AND (Max 4 hrly dose: 20 mls) 0.9% sodium chloride or 5% glucose Ketamine 1 or 2 mg/kg 1 ml = 20 or 40 microgram/kg SUGGESTED INITIAL Loading dose Background inf Bolus dose Lockout PROGRAM (ml) (ml/hr) (ml) (mins) PCA standard 2.5 or 5 0 or 0.2 0.5 or 1 5 or 10 NCA standard 2.5 or 5 0, 0.2, 0.5 or 1 0.5 or 1 20 or 30 NCA in ICU areas 2.5 or 5 0, 0.2, 0.5 or 1 0.5 or 1 5 neonates & NCA 1 or 2.5 0 0.5 20 infants < 5 kg weight drug and dose solution concentration Over 50 kg Oxycodone 50 mg 1 ml = 1 mg made up to 50 ml AND (Max 4 hrly dose: 20 mls) 0.9% sodium chloride or 5% glucose Ketamine 50 or 100 mg 1 ml = 1 or 2 mg SUGGESTED INITIAL Loading dose Background inf Bolus dose Lockout PROGRAM (ml) (ml/hr) (ml) (mins) PCA standard 2.5 or 5 0 1 or 2 5 or 10 NCA standard 2.5 or 5 0, 0.2, 0.5 or 1 1 20 or 30 NCA in ICU areas 2.5 or 5 0, 0.2, 0.5 or 1 1 5 DTC Approved Nov 2013 .
Recommended publications
  • Opioid-Induced Hyperalgesia in Humans Molecular Mechanisms and Clinical Considerations
    SPECIAL TOPIC SERIES Opioid-induced Hyperalgesia in Humans Molecular Mechanisms and Clinical Considerations Larry F. Chu, MD, MS (BCHM), MS (Epidemiology),* Martin S. Angst, MD,* and David Clark, MD, PhD*w treatment of acute and cancer-related pain. However, Abstract: Opioid-induced hyperalgesia (OIH) is most broadly recent evidence suggests that opioid medications may also defined as a state of nociceptive sensitization caused by exposure be useful for the treatment of chronic noncancer pain, at to opioids. The state is characterized by a paradoxical response least in the short term.3–14 whereby a patient receiving opioids for the treatment of pain Perhaps because of this new evidence, opioid may actually become more sensitive to certain painful stimuli. medications have been increasingly prescribed by primary The type of pain experienced may or may not be different from care physicians and other patient care providers for the original underlying painful condition. Although the precise chronic painful conditions.15,16 Indeed, opioids are molecular mechanism is not yet understood, it is generally among the most common medications prescribed by thought to result from neuroplastic changes in the peripheral physicians in the United States17 and accounted for 235 and central nervous systems that lead to sensitization of million prescriptions in the year 2004.18 pronociceptive pathways. OIH seems to be a distinct, definable, One of the principal factors that differentiate the use and characteristic phenomenon that may explain loss of opioid of opioids for the treatment of pain concerns the duration efficacy in some cases. Clinicians should suspect expression of of intended use.
    [Show full text]
  • Ong Edmund W 201703 Phd.Pdf (5.844Mb)
    INVESTIGATING THE EFFECTS OF PROLONGED MU OPIOID RECEPTOR ACTIVATION UPON OPIOID RECEPTOR HETEROMERIZATION by Edmund Wing Ong A thesis submitted to the Graduate Program in Pharmacology & Toxicology in the Department of Biomedical and Molecular Sciences In conformity with the requirements for the degree of Doctor of Philosophy Queen’s University Kingston, Ontario, Canada March, 2017 Copyright © Edmund Wing Ong, 2017 Abstract Opioid receptors are the sites of action for morphine and most other clinically-used opioid drugs. Abundant evidence now demonstrates that different opioid receptor types can physically associate to form heteromers. Owing to their constituent monomers’ involvement in analgesia, mu/delta opioid receptor (M/DOR) heteromers have been a particular focus of attention. Understandings of the physiological relevance of M/DOR formation remain limited in large part due to the reliance of existing M/DOR findings upon contrived heterologous systems. This thesis investigated the physiological relevance of M/DOR generation following prolonged MOR activation. To address M/DOR in endogenous tissues, suitable model systems and experimental tools were established. This included a viable dorsal root ganglion (DRG) neuron primary culture model, antisera specifically directed against M/DOR, a quantitative immunofluorescence colocalizational analysis method, and a floxed-Stop, FLAG-tagged DOR conditional knock-in mouse model. The development and implementation of such techniques make it possible to conduct experiments addressing the nature of M/DOR heteromers in systems with compelling physiological relevance. Seeking to both reinforce and extend existing findings from heterologous systems, it was first necessary to demonstrate the existence of M/DOR heteromers. Using antibodies directed against M/DOR itself as well as constituent monomers, M/DOR heteromers were identified in endogenous tissues and demonstrated to increase in abundance following prolonged mu opioid receptor (MOR) activation by morphine.
    [Show full text]
  • Case Discussions in Palliative Medicine Levorphanol For
    JOURNAL OF PALLIATIVE MEDICINE Volume 21, Number 3, 2018 Case Discussions in Palliative Medicine ª Mary Ann Liebert, Inc. DOI: 10.1089/jpm.2017.0475 Feature Editor: Craig D. Blinderman Levorphanol for Treatment of Intractable Neuropathic Pain in Cancer Patients Akhila Reddy, MD,1,* Amy Ng, MD,1,* Tarun Mallipeddi,2 and Eduardo Bruera, MD1 Abstract Neuropathic pain in cancer patients is often difficult to treat, requiring a combination of several different pharmacological therapies. We describe two patients with complex neuropathic pain syndromes in the form of phantom limb pain and Brown-Sequard syndrome who did not respond to conventional treatments but re- sponded dramatically to the addition of levorphanol. Levorphanol is a synthetic strong opioid that is a potent N- methyl-d-aspartate receptor antagonist, mu, kappa, and delta opioid receptor agonist, and reuptake inhibitor of serotonin and norepinephrine. It bypasses hepatic first-pass metabolism and thereby not subjected to numerous drug interactions. Levorphanol’s unique profile makes it a potentially attractive opioid in cancer pain man- agement. Keywords: Brown-Sequard syndrome; cancer; cancer pain; levorphanol; neuropathic pain; phantom limb pain Introduction changes, structural reorganization of spinal cord and primary somatosensory cortex, and increased sensitization of spinal ne-third of cancer patients who experience pain cord may be the neurological basis for PLP.8,9 Because the Oalso experience neuropathic pain1 and about half the pathophysiology of PLP is not clearly understood, the treat- patients with cancer who suffer from neuropathic pain also ment options are mainly based on clinical experience.9 There have nociceptive pain.2 Most neuropathic pain exists as are case series showing that tramadol and methadone may be mixed pain in combination with nociceptive pain.
    [Show full text]
  • Contents (WELCOME)
    Contents (WELCOME) ................................................................................................................................................ 2 (TERMINOLOGY) ....................................................................................................................................... 4 (SAFETY) ..................................................................................................................................................... 7 (GOLDEN RULES NOT TO BREAK) ...................................................................................................... 11 (PATIENT ASSESSMENT) ....................................................................................................................... 13 (PAIN RELIEF VS FUNCTION/ADL) ..................................................................................................... 15 (ADJUVANT THERAPIES) ...................................................................................................................... 16 (MEDICATION SIDE EFFECTS) ............................................................................................................. 18 (ONGOING THERAPY AND MONITORING) ....................................................................................... 24 (MEDICATION SAFE STORAGE AND DISPOSAL) ............................................................................. 26 (DISCONTINUING OPIOID THERAPY) ................................................................................................ 28 (CO-USE WITH
    [Show full text]
  • Quantitative Drug Test Menu Section 2
    1 Guthrie Square, Sayre, PA 18840 Bill To: Client GMG Toxicology Laboratory Requisition Toll Free Phone (844) 617-4719 Insurance Request Date: _____/______/______ Medical Director: Hani Hojjati, MD Fax (570) 887-4729 Patient PATIENT INFORMATION (PLEASE PRINT IN BLACK INK) INSURANCE BILLING INFORMATION (PLEASE PRINT IN BLACK INK) Pt Last Name First M I PRIMARY Medicare Medicaid Other Ins. Self Spouse Child __ Subscriber Last Name First M Address Birth Date Sex M F Beneficiary/Member # Group # City Pt. SS# or MRN Claims Name and Address City ST ZIP ST ZIP Home Phone (Attach a copy of the patient's insurance card and information) SECONDARY Medicare Medicaid Other Ins. Self Spouse Child Employer Work Phone Subscriber Last Name First M Work Address City ST ZIP Beneficiary/Member # Group # __ CLIENT INFORMATION - REFERRING PHYSICIAN Claims Name and Address City ST ZIP Client Address: (Atttach a copy of the patient's insurance card and information) COLLECTION / REPORTING INFORMATION Copy to: FAX Results to __ CALL Results to Phone: Fax: Date Collected: Time Collected: AM PM Specimen Type: Urine Saliva Other ___________________ Physician Signature (legible - No Stamp) For Lab Use Only (Required for Medicare & Medicaid patient orders) Signed ABN Obtained Place Lab Label Here Contact Laboratory Medical Director (570-887-4719) with questions concerning medical necessity PHYSICIAN When ordering tests, the physician is required to make an independent medical necessity decision with regard to each test thelaboratory will bill. The physician also understands he or she is required NOTICE to (1) submit ICD-10 diagnosis supported in the patient's medical record as documentation of the medical necessity or (2) explain and have the patient sign an ABN.
    [Show full text]
  • Page 1 of 17 10/11/2017 File:///C:/Users/Henadzi.Sobal/Documents
    Page 1 of 17 GOT18-0018. Impact of Clinical Pharmacist Analysis to Clinical Decision-Making for Drug Therapy Management in the Hospital Care Setting Background A deeper understanding of pharmacist clinical decision-making should provide the influence that pharmacists have on patient health care, should guide pharmacy policy and education, should contribute to educating less experienced pharmacists on decision-making processes, should promote more interprofessional work, and should encourage pharmacist decision-making toward the wisest selections of patients’ medication therapy. Purpose The overarching objective of this research study was to document drug therapy decision-making processes of clinical pharmacists in the hostital care setting. The specific aims of this study were to examine the current clinical decision-making of clinical pharmacists in the context of the hospital care clinic setting, to compare and contrast pharmacist clinical decision-making with current decision-making models. Material and methods We used a quasi-randomized design to evaluate a quality improvement project in three hospitals in Kazakhstan. Three audio-taped data collection methods of participant observation and semi-structured interview were utilized and exactly transcribed to provide textual data for analysis. Thematic analysis provided emerging themes of clinical pharmacist-led medication and clinical decision-making which were further subdivided into subsuming themes after much reflection and interpretation of the entire study data. Results Other health professions have identified experienced clinical decision-aking to encompass the Decision Analysis, intuition and pattern recognition. Clinical pharmacists’ clinical decision-making processes are considered in light of other health professionals’ decision-making techniques; however the results show that clinical pharmacists use a different model of clinical decision-making using constant dialogue between two different types of knowledge (objective and context-related).
    [Show full text]
  • Recommended Methods for the Identification and Analysis of Fentanyl and Its Analogues in Biological Specimens
    Recommended methods for the Identification and Analysis of Fentanyl and its Analogues in Biological Specimens MANUAL FOR USE BY NATIONAL DRUG ANALYSIS LABORATORIES Laboratory and Scientific Section UNITED NATIONS OFFICE ON DRUGS AND CRIME Vienna Recommended Methods for the Identification and Analysis of Fentanyl and its Analogues in Biological Specimens MANUAL FOR USE BY NATIONAL DRUG ANALYSIS LABORATORIES UNITED NATIONS Vienna, 2017 Note Operating and experimental conditions are reproduced from the original reference materials, including unpublished methods, validated and used in selected national laboratories as per the list of references. A number of alternative conditions and substitution of named commercial products may provide comparable results in many cases. However, any modification has to be validated before it is integrated into laboratory routines. ST/NAR/53 Original language: English © United Nations, November 2017. All rights reserved. The designations employed and the presentation of material in this publication do not imply the expression of any opinion whatsoever on the part of the Secretariat of the United Nations concerning the legal status of any country, territory, city or area, or of its authorities, or concerning the delimitation of its frontiers or boundaries. Mention of names of firms and commercial products does not imply the endorse- ment of the United Nations. This publication has not been formally edited. Publishing production: English, Publishing and Library Section, United Nations Office at Vienna. Acknowledgements The Laboratory and Scientific Section of the UNODC (LSS, headed by Dr. Justice Tettey) wishes to express its appreciation and thanks to Dr. Barry Logan, Center for Forensic Science Research and Education, at the Fredric Rieders Family Founda- tion and NMS Labs, United States; Amanda L.A.
    [Show full text]
  • PEOLC Provincial Guideline for Treatment Opioid Neurotoxicity
    Guideline for the Treatment of Opioid Neurotoxicity Definition Patients on chronic opioids can develop neuroexcitatory side effects: hyperalgesia (increased sensitivity to pain), cognitive changes (disordered attention and impaired short-term memory), delirium with hallucinations, myoclonus. Etiology This can be due to an opioid dose which is too high for the patient, dehydration and/or renal failure. General Approach Review the medical record (pattern of opioid use and dose escalation, other medications, the presence of electrolyte abnormalities and major organ dysfunction). Whenever medically appropriate, easily treatable causes or exacerbating factors should be corrected (e.g., correct hypomagnesemia). Treatment Strategies 1. Opioid dose reduction. Make sure you are not reducing the opioid dose solely to control side effects at the expense of good pain control. Consider changing the frequency if renal function is impaired (i.e., from q4h to q6h) 2. Rotate to a dissimilar opioid. Rotating to a lower dosage of a structurally dissimilar opioid will often reduce neuroexcitatory effects within 24 – 48 hours, while achieving comparable pain control. Rotation is especially important in patients with opioid-induced hyperalgesia. Decrease the morphine equianalgesic dose by 25 – 50% when switching to a new opioid (to account for incomplete cross tolerance). Use immediate release formulations until a new stable dose is achieved. To rotate a patient to a new opioid, use the following equianalgesic ratios (see chart on page 3): Oral Routes: Morphine 10 mg = Oxycodone 5 mg = Codeine 100 mg = Hydromorphone 2 mg Oral to Subcutaneous Routes: Ratio (PO) 2:1 (IV/SC) i.e., Morphine 10mg PO = Morphine 5mg IV/subcut or Hydromorphone 10mg PO = Hydromorphone 5mg IV/subcut April 22, 2020 Seniors Health, Palliative and End of Life Care A Caregiver’s Resource for Caring for your Loved One at Home during COVID-19 • 2 Transdermal Fentanyl/ Fentanyl infusion: There are various accepted methods.
    [Show full text]
  • Drug Fact Sheet: Oxycodone
    Oxycodone WHAT IS OXYCODONE? What is its effect on the mind? Oxycodone is a semi-synthetic narcotic analgesic Euphoria and feelings of relaxation are the most and historically has been a popular drug of abuse common effects of oxycodone on the brain, which among the narcotic abusing population. explains its high potential for abuse. WHAT IS ITS ORIGIN? What is its effect on the body? Oxycodone is synthesized from thebaine, a Physiological effects of oxycodone include: constituent of the poppy plant. • Pain relief, sedation, respiratory depression, constipation, papillary constriction, and cough What are common street names? suppression. Extended or chronic use of oxycodone Common street names include: containing acetaminophen may cause severe liver • Hillbilly Heroin, Kicker, OC, Ox, Roxy, Perc, and Oxy damage What does it look like? What are its overdose effects? Oxycodone is marketed alone as OxyContin® in Overdose effects include: 10, 20, 40 and 80 mg extended-release tablets • Extreme drowsiness, muscle weakness, confusion, cold and other immediate-release capsules like 5 and clammy skin, pinpoint pupils, shallow breathing, mg OxyIR®. It is also marketed in combination slow heart rate, fainting, coma, and possible death products with aspirin such as Percodan® or acetaminophen such as Roxicet®. Which drugs cause similar effects? Drugs that cause similar effects to Oxycodone How is it abused? include: Oxycodone is abused orally or intravenously. • Opium, codeine, heroin, methadone, hydrocodone, The tablets are crushed and sniffed or dissolved fentanyl, and morphine in water and injected. Others heat a tablet that has been placed on a piece of foil then inhale the What is its legal status in the United States? vapors.
    [Show full text]
  • Opioid Tolerance and Hyperalgesia
    Med Clin N Am 91 (2007) 199–211 Opioid Tolerance and Hyperalgesia Grace Chang, MD, MPH, Lucy Chen, MD, Jianren Mao, MD, PhD* Massachusetts General Hospital Pain Center, Division of Pain Medicine, Department of Anesthesia and Critical Care, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA Opioids are well recognized as the analgesics of choice, in many cases, for treating severe acute and chronic pain. Exposure to opioids, however, can lead to two seemingly unrelated cellular processes, the development of opi- oid tolerance and the development of opioid-induced pain sensitivity (hyper- algesia). The converging effects of these two phenomena can significantly reduce opioid analgesic efficacy, as well as contribute to the challenges of opioid management. This article will review the definitions of opioid toler- ance (particularly to the analgesic effects) and opioid-induced hyperalgesia, examine both the animal and human study evidence of these two phenom- ena, and discuss their clinical implications. The article will also differentiate the phenomena from other aspects related to opioid therapy, including physical dependence, addiction, pseudoaddiction, and abuse. Opioid tolerance and opioid-induced hyperalgesia Opioid tolerance is a phenomenon in which repeated exposure to an opi- oid results in decreased therapeutic effect of the drug or need for a higher dose to maintain the same effect [1]. There are several aspects of tolerance relevant to this issue [2]: Innate tolerance is the genetically determined sensitivity, or lack thereof, to an opioid that is observed during the first administration. Acquired tolerance can be divided into pharmacodynamic, pharmacokinetic, and learned tolerance [3]. Pharmacodynamic tolerance refers to adaptive changes that occur within systems affected by the opioid, such as opioid-induced changes in receptor density or desensitization of opioid receptors, such that response to a given * Corresponding author.
    [Show full text]
  • Revisiting Old Friends: Update on Opioid Pharmacology
    VOLUME 37 : NUMBER 2 : APRIL 2014 ARTICLE Revisiting old friends: update on opioid pharmacology Ben Snyder Advanced trainee SUMMARY General medicine and clinical pharmacology Opioids are commonly prescribed for pain due to malignant and non-malignant diseases. They are effective, but have potentially fatal toxicities. Key words Opioid analgesics act as agonists at the mu opioid receptor. Some products combine a mu analgesia, codeine, agonist and antagonist, but there are limitations to their use. morphine, naloxone, pharmacogenetics Genetic variations may explain why people respond differently to opioids. Some patients have an inadequate response to codeine because they poorly metabolise it to morphine. Aust Prescr 2014;37:56–60 Switching from one opioid to another is sometimes necessary, but must be done carefully. Use conversion tables as a reference, but be aware of their limitations. Introduction These cellular events can inhibit neuronal firing and Opioid drugs are prescribed for acute and chronic neurotransmitter release. pain of moderate or severe intensity arising from both All of the opioid analgesics act as agonists at the mu malignant and non-malignant diseases (see Table).1,2 receptor. Mu activation inhibits the ascending pain They benefit many patients, but there are increasing pathway, which includes neurons passing through the numbers of unintentional fatal overdoses.3 A clinician dorsal horn of the spinal cord, brainstem, thalamus weighing up the potential benefits and harms of and cortex. Mu agonists also activate the inhibitory opioids is also confronted with an array of newly descending pain pathway, which involves sites in the available drugs and formulations. Understanding the brainstem.
    [Show full text]
  • Ultra Low Dose Naltrexone - for Lower Opiate Tolerance - Res
    Ultra Low Dose Naltrexone - For Lower Opiate Tolerance - Res... https://www.khemcorp.com/ultra-low-dose-naltrexone-for-lowe... SHOPPING CART You have 0 items Home Online Shop ∠ Learn & How To ∠ Contact Us – You – ∠ About Us & FAQ ∠ Search Ultra Low Dose Naltrexone – For Lower Opiate Tolerance – Research Products Summary Oxytocin Nasal Spray Posted by Anonymous on November 04, 2015 / Posted in Khemcorp Originals, Reverse Tolerance 60ml 6500 IU V2.0 (For Autism, Social Anxiety and Empathy) $49.99 Synaptic Focus 6000mg (For ADHD, Procrastination, Brain Fog) $49.99 What is Naltrexone? OASIS Pro (CES Contents [hide] Device) (Electric Stimulation Therapy) Naltrexone is described as a 1 What is Naltrexone? $450.00 substituted oxymorphone, it’s 2 What is Ultra Low Dose Naltrexone? active metabolites are antagonists 3 How Does Ultra Low Dose Naltrexone Potentiate Opioids? at the u-opioid receptor (MOR), 4 How Does ULDN Work to Reverse Opiate tolerance or tolerances of Other Drugs? Q-wiz Suite k-opioid receptor (KOR), and the 5 Why Ultra Low Dose Naltrexone, rather than Low Dose or even just Naltrexone? $2,795.00 $2,515.50 o-opioid receptor (DOR). 6 What’s the Dosage and How Should It Be Taken? 7 What’s the Upper Ceiling? Naltrexone’s primary use (in 8 Potential Interactions and Risks to Watch Out normal doses) is in the 9 Bonus Information management of opioid and 10 Research References Q-wiz Elemental alcohol dependency. It is also 11 Related Posts often used to reduce $995.00 $895.50 Benzodiazepine withdrawal symptoms as both Benzodiazepines and alcohol rely on agonizing GABA receptors, which is also why addiction to alcohol or benzodiazepines are also notoriously difficult to treat.
    [Show full text]