Research Accomplishments (Dinshaw J. Patel Laboratory) This Document Summarizes Research Accomplishments from the Dinshaw J
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
P110α and P110β Isoforms of PI3K Are Involved in Protection Against H 2O2 Induced Oxidative Stress in Cancer Cells
Breast Cancer (2019) 26:378–385 https://doi.org/10.1007/s12282-018-0933-x ORIGINAL ARTICLE p110α and p110β isoforms of PI3K are involved in protection against H2O2 induced oxidative stress in cancer cells Paramjeet Singh1,2 · Nasima Bano1,2 · Md Mehedi Hossain1,2 · Rafia Basit1,2 · Mohd Jamal Dar1,2 Received: 17 July 2018 / Accepted: 15 November 2018 / Published online: 29 November 2018 © The Japanese Breast Cancer Society 2018 Abstract Purpose Phosphatidylinositol-3 kinases (PI3Ks) are involved in regulating cell growth, proliferation, differentiation, apop- tosis and survival. p110α and p110β, two ubiquitously expressed isoforms of PI3K signalling, are involved in growth factor mediated signaling and survival by generating second messengers. Earlier, we have generated GFP-fusion proteins of p110α and p110β and expressed them in normal and cancer cell-lines to investigate their subcellular localization and their role in various activities. Here, we sought to examine the role of p110α and p110β isoforms in protecting MCF-7 breast cancer cells against oxidative stress. Material methods We performed cytotoxicity assays, DNA transfection, Plasmid DNA preparation, western blotting, flour- scence microscopy and statistical analysis. Results To know whether p110α and p110β are involved in protecting MCF-7 breast cancer cells against oxidative stress, we subjected MCF-7 cells to H2O2 treatment and observed a dose dependent decrease in cell viability and a marked increase in the levels of pro-apoptotic markers which include PARP, Bcl-2, Bax and procaspase-9. We then over-expressed recombinant GFP-fusion p110α and p110β proteins in MCF-7 cells and observed a significant decrease in apoptosis and a concomitant increase in pAkt levels. -
Nuclear PI3K Signaling in Cell Growth and Tumorigenesis
REVIEW published: 13 April 2015 doi: 10.3389/fcell.2015.00024 Nuclear PI3K signaling in cell growth and tumorigenesis William J. Davis, Peter Z. Lehmann and Weimin Li * College of Medical Sciences, Washington State University, Spokane, WA, USA The PI3K/Akt signaling pathway is a major driving force in a variety of cellular functions. Dysregulation of this pathway has been implicated in many human diseases including cancer. While the activity of the cytoplasmic PI3K/Akt pathway has been extensively studied, the functions of these molecules and their effector proteins within the nucleus are poorly understood. Harboring key cellular processes such as DNA replication and repair as well as nascent messenger RNA transcription, the nucleus provides a unique compartmental environment for protein–protein and protein–DNA/RNA interactions required for cell survival, growth, and proliferation. Here we summarize recent advances made toward elucidating the nuclear PI3K/Akt signaling cascade and its key components within the nucleus as they pertain to cell growth and tumorigenesis. This review covers Edited by: the spatial and temporal localization of the major nuclear kinases having PI3K activities Massimo Mattia Santoro, and the counteracting phosphatases as well as the role of nuclear PI3K/Akt signaling in University of Leuven, Belgium mRNA processing and exportation, DNA replication and repair, ribosome biogenesis, cell Reviewed by: Emilio Hirsch, survival, and tumorigenesis. University of Torino, Italy Keywords: nuclear signaling, PI3K/Akt/mTOR, cell growth, tumorigenesis, ribosome biogenesis, cell survival, DNA Andrea Graziani, damage, mRNA processing and export Università VIta-Salute San Raffaele, Italy *Correspondence: Introduction Weimin Li, College of Medical Sciences, Washington State University, 412 E In the late 1970s and early 1980s, the existence of a nuclear phosphatidylinositol (PtdIns) cycle Spokane Falls Blvd., Spokane 99202 was proposed (Manzoli et al., 1978, 1982). -
Evidence for a Unique DNA-Dependent RNA Polymerase in Cereal Crops
bioRxiv preprint doi: https://doi.org/10.1101/272708; this version posted February 28, 2018. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. 1 Evidence for a unique DNA-dependent RNA polymerase in cereal crops 2 Joshua T. Trujillo1, Arun S. Seetharam2, Matthew B. Hufford3, Mark A. Beilstein1,4, and 3 Rebecca A. Mosher1,4,* 4 5 1 Department of Molecular & Cellular Biology, The University of Arizona, Tucson, AZ 6 85721, USA 7 2 Genome Informatics Facility, Iowa State University, Ames, IA 50011, USA 8 3 Department of Ecology, Evolution, and Organismal Biology, Iowa State University, 9 Ames, IA 50011, USA 10 4 The School of Plant Sciences, The University of Arizona, Tucson, AZ 85721, USA 11 12 * Corresponding author: Dr. Rebecca Mosher, 520-626-4185, 13 [email protected] 14 15 ORCiDs: 0000-0001-9817-4161 (JTT), 0000-0002-6789-9298 (ASS), 0000-0001-6379- 16 1899 (MBH), 0000-0002-3392-1389 (MAB), 0000-0003-2195-0825 (RAM) 17 18 Keywords: DNA-dependent RNA polymerase V, RNA-directed DNA methylation, gene 19 duplication, Poaceae 1 bioRxiv preprint doi: https://doi.org/10.1101/272708; this version posted February 28, 2018. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. -
Non-Coding Rnas As Regulators of Transcription and Genome Organization Katalin Fejes Toth and Greg Hannon
| 311 13 Non-Coding RNAs as Regulators of Transcription and Genome Organization Katalin Fejes Toth and Greg Hannon 13.1 Introduction “Junk DNA” was used as the provisional label for the portions of a genome for which no discernible function had been identified [1]. In a 1980 review in Nature Leslie Orgel and Francis Crick described junk DNA as having “little specificity and conveying little or no selective advantage to the organism” [2]. For decades, sci- entist considered the non-protein-coding portions of the genome as dispensable. Protein-coding genes comprise an astonishingly small part of eukaryotic genomes (less than 2% in humans, corresponding to roughly 20 000 genes; Chapter 1). However, as less complex eukaryotes, such as Caenorhabditis elegans, have a very similar number of protein-coding genes, it is clear that the developmental and physiological complexity of humans cannot be explained solely by the number of protein-coding genes. Alternative splicing and post-translational modification of proteins increase the diversity and functionality of the proteome likely explaining at least part of its increased complexity. However, it seems evident that much of the regulatory complexity that may contribute to the development of more complex organisms can be established by non-coding RNAs (ncRNAs), as discussed in further detail in Chapter 14. In accord with the notion that much of the genome represents an evolutionary junk heap, many non-coding transcripts have been proposed to result from leaky or pervasive non-specific transcription. Recent high throughput studies indicate that the transcription of our genomes extends far beyond the limited sequences comprising protein-coding genes, with almost the every base in the genome appearing in non-coding RNAs or ncRNAs. -
Sensing the Epigenome
Review Special Issue: Noncoding and small RNAs Sensing the epigenome Jay B. Hollick Department of Plant and Microbial Biology, 111 Koshland Hall, University of California, Berkeley, CA 94720-3102, USA Recent studies of plant development and environmental DRD1 : Arabidopsis gene DEFECTIVE IN RNA-DIRECTED DNA METHYLATION1, stress responses have converged on the roles of RNA encoding a Rad54-type ATPase necessary for RNA-directed DNA methylation. and its metabolism as primary regulators of gene action. En/Spm : a well-characterized autonomous TIR CACTA-type DNA transposon, Enhancer/Suppressor-mutator, described in maize. This RNA-based system appears to represent a versatile FCA : Arabidopsis gene FLOWERING TIME CONTROL PROTEIN, encoding a platform both for maintaining epigenetic memory and RNA-binding protein regulating flower development. FLC : Arabidopsis gene FLOWERING LOCUS C, encoding a MADS-type protein for reprogramming gene control in response to external that acts as a repressor of flowering. signals. The fast-paced research reviewed here high- FLD : Arabidopsis gene FLOWERING LOCUS D, encoding a histone deacetylase lights exciting new trends in plant research relating to that acts to promote flower development. FPA : Arabidopsis gene (At2g43410), encoding a RNA-binding protein regulat- mechanisms and roles of the RNA-dependent epigen- ing flower development. ome in both development and evolution. Imprinted module : a set of neighboring genes showing differential action depending on parent-of-origin transmission. Emerging regulatory roles of RNA lbl1 : maize locus leafbladeless1, expressing a SGS3-type protein required for tasiRNA production. Barbara McClintock was the first to surmise that the LINE : eukaryotic retrotransposon of the long-interspersed nuclear element activation of previously silenced transposons was related class. -
Human Induced Pluripotent Stem Cell–Derived Podocytes Mature Into Vascularized Glomeruli Upon Experimental Transplantation
BASIC RESEARCH www.jasn.org Human Induced Pluripotent Stem Cell–Derived Podocytes Mature into Vascularized Glomeruli upon Experimental Transplantation † Sazia Sharmin,* Atsuhiro Taguchi,* Yusuke Kaku,* Yasuhiro Yoshimura,* Tomoko Ohmori,* ‡ † ‡ Tetsushi Sakuma, Masashi Mukoyama, Takashi Yamamoto, Hidetake Kurihara,§ and | Ryuichi Nishinakamura* *Department of Kidney Development, Institute of Molecular Embryology and Genetics, and †Department of Nephrology, Faculty of Life Sciences, Kumamoto University, Kumamoto, Japan; ‡Department of Mathematical and Life Sciences, Graduate School of Science, Hiroshima University, Hiroshima, Japan; §Division of Anatomy, Juntendo University School of Medicine, Tokyo, Japan; and |Japan Science and Technology Agency, CREST, Kumamoto, Japan ABSTRACT Glomerular podocytes express proteins, such as nephrin, that constitute the slit diaphragm, thereby contributing to the filtration process in the kidney. Glomerular development has been analyzed mainly in mice, whereas analysis of human kidney development has been minimal because of limited access to embryonic kidneys. We previously reported the induction of three-dimensional primordial glomeruli from human induced pluripotent stem (iPS) cells. Here, using transcription activator–like effector nuclease-mediated homologous recombination, we generated human iPS cell lines that express green fluorescent protein (GFP) in the NPHS1 locus, which encodes nephrin, and we show that GFP expression facilitated accurate visualization of nephrin-positive podocyte formation in -
Sharmin Supple Legend 150706
Supplemental data Supplementary Figure 1 Generation of NPHS1-GFP iPS cells (A) TALEN activity tested in HEK 293 cells. The targeted region was PCR-amplified and cloned. Deletions in the NPHS1 locus were detected in four clones out of 10 that were sequenced. (B) PCR screening of human iPS cell homologous recombinants (C) Southern blot screening of human iPS cell homologous recombinants Supplementary Figure 2 Human glomeruli generated from NPHS1-GFP iPS cells (A) Morphological changes of GFP-positive glomeruli during differentiation in vitro. A different aggregate from the one shown in Figure 2 is presented. Lower panels: higher magnification of the areas marked by rectangles in the upper panels. Note the shape changes of the glomerulus (arrowheads). Scale bars: 500 µm. (B) Some, but not all, of the Bowman’s capsule cells were positive for nephrin (48E11 antibody: magenta) and GFP (green). Scale bars: 10 µm. Supplementary Figure 3 Histology of human podocytes generated in vitro (A) Transmission electron microscopy of the foot processes. Lower magnification of Figure 4H. Scale bars: 500 nm. (B) (C) The slit diaphragm between the foot processes. Higher magnification of the 1 regions marked by rectangles in panel A. Scale bar: 100 nm. (D) Absence of mesangial or vascular endothelial cells in the induced glomeruli. Anti-PDGFRβ and CD31 antibodies were used to detect the two lineages, respectively, and no positive signals were observed in the glomeruli. Podocytes are positive for WT1. Nuclei are counterstained with Nuclear Fast Red. Scale bars: 20 µm. Supplementary Figure 4 Cluster analysis of gene expression in various human tissues (A) Unbiased cluster analysis across various human tissues using the top 300 genes enriched in GFP-positive podocytes. -
Structural Disorder in Plant Proteins : Where Plasticity Meets Sessility
This is a repository copy of Structural disorder in plant proteins : where plasticity meets sessility. White Rose Research Online URL for this paper: http://eprints.whiterose.ac.uk/152165/ Version: Accepted Version Article: Covarrubias, A.A., Cuevas-Velazquez, C.L., Romero-Pérez, P.S. et al. (2 more authors) (2017) Structural disorder in plant proteins : where plasticity meets sessility. Cellular and Molecular Life Sciences, 74 (17). pp. 3119-3147. ISSN 1420-682X https://doi.org/10.1007/s00018-017-2557-2 This is a post-peer-review, pre-copyedit version of an article published in Cellular and Molecular Life Sciences. The final authenticated version is available online at: http://dx.doi.org/10.1007/s00018-017-2557-2 Reuse Items deposited in White Rose Research Online are protected by copyright, with all rights reserved unless indicated otherwise. They may be downloaded and/or printed for private study, or other acts as permitted by national copyright laws. The publisher or other rights holders may allow further reproduction and re-use of the full text version. This is indicated by the licence information on the White Rose Research Online record for the item. Takedown If you consider content in White Rose Research Online to be in breach of UK law, please notify us by emailing [email protected] including the URL of the record and the reason for the withdrawal request. [email protected] https://eprints.whiterose.ac.uk/ 1 2 3 4 5 STRUCTURAL DISORDER IN PLANT PROTEINS: 6 WHERE PLASTICITY MEETS SESSILITY 7 8 Alejandra A. Covarrubias*, Cesar L. -
Polivb Influences RNA-Directed DNA Methylation Independently of Its Role in Sirna Biogenesis
PolIVb influences RNA-directed DNA methylation independently of its role in siRNA biogenesis Rebecca A. Mosher*, Frank Schwach†, David Studholme, and David C. Baulcombe*‡ Sainsbury Laboratory, Norwich NR4 7UH, United Kingdom Edited by James C. Carrington, Center for Genome Research and Biocomputing, Corvallis, OR, and accepted by the Editorial Board December 31, 2007 (received for review October 10, 2007) DNA-dependent RNA polymerase (Pol)IV in Arabidopsis exists in There are two genes in Arabidopsis encoding the putative two isoforms (PolIVa and PolIVb), with NRPD1a and NRPD1b as largest subunit of PolIV (NRPD1A and NRPD1B), and it is likely their respective largest subunits. Both isoforms are implicated in that they share the second largest subunit (NRPD2A) to gen- production and activity of siRNAs and in RNA-directed DNA meth- erate two PolIV isoforms. Mutations in either of the two NRPD1 ylation (RdDM). Deep sequence analysis of siRNAs in WT Arabi- subunits affect siRNA accumulation, although nrpd1b affects dopsis flowers and in nrpd1a and nrpd1b mutants identified siRNA accumulation at only a subset of the loci affected by >4,200 loci producing siRNAs in a PolIV-dependent manner, with nrpd1a (3, 5, 20, 21). This differential effect prompted the PolIVb reinforcing siRNA production by PolIVa. Transposable ele- proposal that PolIVb acts downstream of PolIVa at repeated ment identity and pericentromeric localization are both features sequence loci to amplify siRNA production and methylate DNA, that predispose a locus for siRNA production via PolIV proteins and whereas, at less repetitive loci, PolIVa functions without PolIVb determine the extent to which siRNA production relies on PolIVb. -
Evolutionary Analysis of Viral Sequences in Eukaryotic Genomes
Evolutionary analysis of viral sequences in eukaryotic genomes Sean Schneider A dissertation submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy University of Washington 2014 Reading Committee: James H. Thomas, Chair Willie Swanson Phil Green Program Authorized to Offer Degree: Genome Sciences ©Copyright 2014 Sean Schneider University of Washington Abstract Evolutionary analysis of viral sequences in eukaryotic genomes Sean Schneider Chair of the supervisory committee: Professor James H. Thomas Genome Sciences The focus of this work is several evolutionary analyses of endogenous viral sequences in eukaryotic genomes. Endogenous viral sequences can provide key insights into the past forms and evolutionary history of viruses, as well as the responses of host organisms they infect. In this work I have examined viral sequences in a diverse assortment of eukaryotic hosts in order to study coevolution between hosts and the organisms that infect them. This research consisted of two major lines of investigation. In the first portion of this work, I outline the hypothesis that the C2H2 zinc finger gene family in vertebrates has evolved by birth-death evolution in response to sporadic retroviral infection. The hypothesis suggests an evolutionary model in which newly duplicated zinc finger genes are retained by selection in response to retroviral infection. This hypothesis is supported by a strong association (R2=0.67) between the number of endogenous retroviruses and the number of zinc fingers in diverse vertebrate genomes. Based on this and other evidence, the zinc finger gene family appears to act as a “genomic immune system” against retroviral infections. The other major line of investigation in this work examines endogenous virus sequences utilized by parasitic wasps to disable hosts that they infect. -
Maize RNA Polymerase IV Complexes and Their Control of Gene Function
Maize RNA polymerase IV complexes and their control of gene function by Joy-El Renee Barbour Talbot A dissertation submitted in partial satisfaction of the requirements for the degree of Doctor of Philosophy in Molecular and Cell Biology in the Graduate Division of the University of California, Berkeley Committee in charge: Professor Jay B. Hollick, Co-chair Professor Jasper D. Rine, Co-chair Professor Michael B. Eisen Professor Michael R. Freeling Summer 2015 Maize RNA polymerase IV complexes and their control of gene function Copyright 2015 by Joy-El Renee Barbour Talbot 1 Abstract Maize RNA polymerase IV complexes and their control of gene function by Joy-El Renee Barbour Talbot Doctor of Philosophy in Molecular and Cell Biology University of California, Berkeley Professor Jay B. Hollick, Co-chair Professor Jasper D. Rine, Co-chair Plants have acquired and maintained an expanded suite of DNA-dependent RNA poly- merases (RNAPs) compared to other eukaryotes. Although their exact roles remain unclear, plant-specific RNAPs (Pol IV and Pol V) are involved in epigenetic silencing of transposable elements (TEs). Zea mays (maize) Pol IV is required for proper plant development as well as the establishment and maintenance of paramutations, which are trans-homolog interactions that facilitate heritable gene silencing. Maize has duplications of Pol IV catalytic subunits, which define multiple Pol IV subtypes, and accessory proteins associated with these subtypes define distinct Pol IV complexes. Understanding the roles of Pol IV will require identify- ing the composition and function of these Pol IV subtypes and complexes. In exploring interactions between the genes encoding a Pol IV catalytic subunit and a putative accessory protein, I identified two new alleles of the Pol IV subunit and a family of potential Pol IV accessory proteins conserved in multicellular plants. -
1 SUPPLEMENTAL DATA Figure S1. Poly I:C Induces IFN-Β Expression
SUPPLEMENTAL DATA Figure S1. Poly I:C induces IFN-β expression and signaling. Fibroblasts were incubated in media with or without Poly I:C for 24 h. RNA was isolated and processed for microarray analysis. Genes showing >2-fold up- or down-regulation compared to control fibroblasts were analyzed using Ingenuity Pathway Analysis Software (Red color, up-regulation; Green color, down-regulation). The transcripts with known gene identifiers (HUGO gene symbols) were entered into the Ingenuity Pathways Knowledge Base IPA 4.0. Each gene identifier mapped in the Ingenuity Pathways Knowledge Base was termed as a focus gene, which was overlaid into a global molecular network established from the information in the Ingenuity Pathways Knowledge Base. Each network contained a maximum of 35 focus genes. 1 Figure S2. The overlap of genes regulated by Poly I:C and by IFN. Bioinformatics analysis was conducted to generate a list of 2003 genes showing >2 fold up or down- regulation in fibroblasts treated with Poly I:C for 24 h. The overlap of this gene set with the 117 skin gene IFN Core Signature comprised of datasets of skin cells stimulated by IFN (Wong et al, 2012) was generated using Microsoft Excel. 2 Symbol Description polyIC 24h IFN 24h CXCL10 chemokine (C-X-C motif) ligand 10 129 7.14 CCL5 chemokine (C-C motif) ligand 5 118 1.12 CCL5 chemokine (C-C motif) ligand 5 115 1.01 OASL 2'-5'-oligoadenylate synthetase-like 83.3 9.52 CCL8 chemokine (C-C motif) ligand 8 78.5 3.25 IDO1 indoleamine 2,3-dioxygenase 1 76.3 3.5 IFI27 interferon, alpha-inducible