Data Collection Technologies for Multiple Corpus-Based Approaches Hernani Costa (ESR3)
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Machine-Translation Inspired Reordering As Preprocessing for Cross-Lingual Sentiment Analysis
Master in Cognitive Science and Language Master’s Thesis September 2018 Machine-translation inspired reordering as preprocessing for cross-lingual sentiment analysis Alejandro Ramírez Atrio Supervisor: Toni Badia Abstract In this thesis we study the effect of word reordering as preprocessing for Cross-Lingual Sentiment Analysis. We try different reorderings in two target languages (Spanish and Catalan) so that their word order more closely resembles the one from our source language (English). Our original expectation was that a Long Short Term Memory classifier trained on English data with bilingual word embeddings would internalize English word order, resulting in poor performance when tested on a target language with different word order. We hypothesized that the more the word order of any of our target languages resembles the one of our source language, the better the overall performance of our sentiment classifier would be when analyzing the target language. We tested five sets of transformation rules for our Part of Speech reorderings of Spanish and Catalan, extracted mainly from two sources: two papers by Crego and Mariño (2006a and 2006b) and our own empirical analysis of two corpora: CoStEP and Tatoeba. The results suggest that the bilingual word embeddings that we are training our Long Short Term Memory model with do not improve any English word order learning by part of the model when used cross-lingually. There is no improvement when reordering the Spanish and Catalan texts so that their word order more closely resembles English, and no significant drop in result score even when applying a random reordering to them making them almost unintelligible, neither when classifying between 2 options (positive-negative) nor between 4 (strongly positive, positive, negative, strongly negative). -
International Computer Science Institute Activity Report 2007
International Computer Science Institute Activity Report 2007 International Computer Science Institute, 1947 Center Street, Suite 600, Berkeley, CA 94704-1198 USA phone: (510) 666 2900 (510) fax: 666 2956 [email protected] http://www.icsi.berkeley.edu PRINCIPAL 2007 SPONSORS Cisco Defense Advanced Research Projects Agency (DARPA) Disruptive Technology Offi ce (DTO, formerly ARDA) European Union (via University of Edinburgh) Finnish National Technology Agency (TEKES) German Academic Exchange Service (DAAD) Google IM2 National Centre of Competence in Research, Switzerland Microsoft National Science Foundation (NSF) Qualcomm Spanish Ministry of Education and Science (MEC) AFFILIATED 2007 SPONSORS Appscio Ask AT&T Intel National Institutes of Health (NIH) SAP Volkswagen CORPORATE OFFICERS Prof. Nelson Morgan (President and Institute Director) Dr. Marcia Bush (Vice President and Associate Director) Prof. Scott Shenker (Secretary and Treasurer) BOARD OF TRUSTEES, JANUARY 2008 Prof. Javier Aracil, MEC and Universidad Autónoma de Madrid Prof. Hervé Bourlard, IDIAP and EPFL Vice Chancellor Beth Burnside, UC Berkeley Dr. Adele Goldberg, Agile Mind, Inc. and Pharmaceutrix, Inc. Dr. Greg Heinzinger, Qualcomm Mr. Clifford Higgerson, Walden International Prof. Richard Karp, ICSI and UC Berkeley Prof. Nelson Morgan, ICSI (Director) and UC Berkeley Dr. David Nagel, Ascona Group Prof. Prabhakar Raghavan, Stanford and Yahoo! Prof. Stuart Russell, UC Berkeley Computer Science Division Chair Mr. Jouko Salo, TEKES Prof. Shankar Sastry, UC Berkeley, Dean -
A Resource of Corpus-Derived Typed Predicate Argument Structures for Croatian
CROATPAS: A Resource of Corpus-derived Typed Predicate Argument Structures for Croatian Costanza Marini Elisabetta Ježek University of Pavia University of Pavia Department of Humanities Department of Humanities costanza.marini01@ [email protected] universitadipavia.it Abstract 2014). The potential uses and purposes of the resource range from multilingual The goal of this paper is to introduce pattern linking between compatible CROATPAS, the Croatian sister project resources to computer-assisted language of the Italian Typed-Predicate Argument learning (CALL). Structure resource (TPAS1, Ježek et al. 2014). CROATPAS is a corpus-based 1 Introduction digital collection of verb valency structures with the addition of semantic Nowadays, we live in a time when digital tools type specifications (SemTypes) to each and resources for language technology are argument slot, which is currently being constantly mushrooming all around the world. developed at the University of Pavia. However, we should remind ourselves that some Salient verbal patterns are discovered languages need our attention more than others if following a lexicographical methodology they are not to face – to put it in Rehm and called Corpus Pattern Analysis (CPA, Hegelesevere’s words – “a steadily increasing Hanks 2004 & 2012; Hanks & and rather severe threat of digital extinction” Pustejovsky 2005; Hanks et al. 2015), (2018: 3282). According to the findings of initiatives such as whereas SemTypes – such as [HUMAN], [ENTITY] or [ANIMAL] – are taken from a the META-NET White Paper Series (Tadić et al. shallow ontology shared by both TPAS 2012; Rehm et al. 2014), we can state that and the Pattern Dictionary of English Croatian is unfortunately among the 21 out of 24 Verbs (PDEV2, Hanks & Pustejovsky official languages of the European Union that are 2005; El Maarouf et al. -
Student Research Workshop Associated with RANLP 2011, Pages 1–8, Hissar, Bulgaria, 13 September 2011
RANLPStud 2011 Proceedings of the Student Research Workshop associated with The 8th International Conference on Recent Advances in Natural Language Processing (RANLP 2011) 13 September, 2011 Hissar, Bulgaria STUDENT RESEARCH WORKSHOP ASSOCIATED WITH THE INTERNATIONAL CONFERENCE RECENT ADVANCES IN NATURAL LANGUAGE PROCESSING’2011 PROCEEDINGS Hissar, Bulgaria 13 September 2011 ISBN 978-954-452-016-8 Designed and Printed by INCOMA Ltd. Shoumen, BULGARIA ii Preface The Recent Advances in Natural Language Processing (RANLP) conference, already in its eight year and ranked among the most influential NLP conferences, has always been a meeting venue for scientists coming from all over the world. Since 2009, we decided to give arena to the younger and less experienced members of the NLP community to share their results with an international audience. For this reason, further to the first successful and highly competitive Student Research Workshop associated with the conference RANLP 2009, we are pleased to announce the second edition of the workshop which is held during the main RANLP 2011 conference days on 13 September 2011. The aim of the workshop is to provide an excellent opportunity for students at all levels (Bachelor, Master, and Ph.D.) to present their work in progress or completed projects to an international research audience and receive feedback from senior researchers. We have received 31 high quality submissions, among which 6 papers have been accepted as regular oral papers, and 18 as posters. Each submission has been reviewed by -
3 Corpus Tools for Lexicographers
Comp. by: pg0994 Stage : Proof ChapterID: 0001546186 Date:14/5/12 Time:16:20:14 Filepath:d:/womat-filecopy/0001546186.3D31 OUP UNCORRECTED PROOF – FIRST PROOF, 14/5/2012, SPi 3 Corpus tools for lexicographers ADAM KILGARRIFF AND IZTOK KOSEM 3.1 Introduction To analyse corpus data, lexicographers need software that allows them to search, manipulate and save data, a ‘corpus tool’. A good corpus tool is the key to a comprehensive lexicographic analysis—a corpus without a good tool to access it is of little use. Both corpus compilation and corpus tools have been swept along by general technological advances over the last three decades. Compiling and storing corpora has become far faster and easier, so corpora tend to be much larger than previous ones. Most of the first COBUILD dictionary was produced from a corpus of eight million words. Several of the leading English dictionaries of the 1990s were produced using the British National Corpus (BNC), of 100 million words. Current lexico- graphic projects we are involved in use corpora of around a billion words—though this is still less than one hundredth of one percent of the English language text available on the Web (see Rundell, this volume). The amount of data to analyse has thus increased significantly, and corpus tools have had to be improved to assist lexicographers in adapting to this change. Corpus tools have become faster, more multifunctional, and customizable. In the COBUILD project, getting concordance output took a long time and then the concordances were printed on paper and handed out to lexicographers (Clear 1987). -
ALW2), Pages 1–10 Brussels, Belgium, October 31, 2018
EMNLP 2018 Second Workshop on Abusive Language Online Proceedings of the Workshop, co-located with EMNLP 2018 October 31, 2018 Brussels, Belgium Sponsors Primary Sponsor Platinum Sponsors Gold Sponsors Silver Sponsors Bronze Sponsors ii c 2018 The Association for Computational Linguistics Order copies of this and other ACL proceedings from: Association for Computational Linguistics (ACL) 209 N. Eighth Street Stroudsburg, PA 18360 USA Tel: +1-570-476-8006 Fax: +1-570-476-0860 [email protected] ISBN 978-1-948087-68-1 iii Introduction Interaction amongst users on social networking platforms can enable constructive and insightful conversations and civic participation; however, on many sites that encourage user interaction, verbal abuse has become commonplace. Abusive behavior such as cyberbullying, hate speech, and scapegoating can poison the social climates within online communities. The last few years have seen a surge in such abusive online behavior, leaving governments, social media platforms, and individuals struggling to deal with the consequences. As a field that works directly with computational analysis of language, the NLP community is uniquely positioned to address the difficult problem of abusive language online; encouraging collaborative and innovate work in this area is the goal of this workshop. The first year of the workshop saw 14 papers presented in a day-long program including interdisciplinary panels and active discussion. In this second edition, we have aimed to build on the success of the first year, maintaining a focus on computationally detecting abusive language and encouraging interdisciplinary work. Reflecting the growing research focus on this topic, the number of submissions received more than doubled from 22 in last year’s edition of the workshop to 48 this year. -
Using Morphemes from Agglutinative Languages Like Quechua and Finnish to Aid in Low-Resource Translation
Using Morphemes from Agglutinative Languages like Quechua and Finnish to Aid in Low-Resource Translation John E. Ortega [email protected] Dept. de Llenguatges i Sistemes Informatics, Universitat d’Alacant, E-03071, Alacant, Spain Krishnan Pillaipakkamnatt [email protected] Department of Computer Science, Hofstra University, Hempstead, NY 11549, USA Abstract Quechua is a low-resource language spoken by nearly 9 million persons in South America (Hintz and Hintz, 2017). Yet, in recent times there are few published accounts of successful adaptations of machine translation systems for low-resource languages like Quechua. In some cases, machine translations from Quechua to Spanish are inadequate due to error in alignment. We attempt to improve previous alignment techniques by aligning two languages that are simi- lar due to agglutination: Quechua and Finnish. Our novel technique allows us to add rules that improve alignment for the prediction algorithm used in common machine translation systems. 1 Introduction The NP-complete problem of translating natural languages as they are spoken by humans to machine readable text is a complex problem; yet, is partially solvable due to the accuracy of machine language translations when compared to human translations (Kleinberg and Tardos, 2005). Statistical machine translation (SMT) systems such as Moses 1, require that an algo- rithm be combined with enough parallel corpora, text from distinct languages that can be com- pared sentence by sentence, to build phrase translation tables from language models. For many European languages, the translation task of bringing words together in a sequential sentence- by-sentence format for modeling, known as word alignment, is not hard due to the abundance of parallel corpora in large data sets such as Europarl 2. -
A Massively Parallel Corpus: the Bible in 100 Languages
Lang Resources & Evaluation DOI 10.1007/s10579-014-9287-y ORIGINAL PAPER A massively parallel corpus: the Bible in 100 languages Christos Christodouloupoulos • Mark Steedman Ó The Author(s) 2014. This article is published with open access at Springerlink.com Abstract We describe the creation of a massively parallel corpus based on 100 translations of the Bible. We discuss some of the difficulties in acquiring and processing the raw material as well as the potential of the Bible as a corpus for natural language processing. Finally we present a statistical analysis of the corpora collected and a detailed comparison between the English translation and other English corpora. Keywords Parallel corpus Á Multilingual corpus Á Comparative corpus linguistics 1 Introduction Parallel corpora are a valuable resource for linguistic research and natural language processing (NLP) applications. One of the main uses of the latter kind is as training material for statistical machine translation (SMT), where large amounts of aligned data are standardly used to learn word alignment models between the lexica of two languages (for example, in the Giza?? system of Och and Ney 2003). Another interesting use of parallel corpora in NLP is projected learning of linguistic structure. In this approach, supervised data from a resource-rich language is used to guide the unsupervised learning algorithm in a target language. Although there are some techniques that do not require parallel texts (e.g. Cohen et al. 2011), the most successful models use sentence-aligned corpora (Yarowsky and Ngai 2001; Das and Petrov 2011). C. Christodouloupoulos (&) Department of Computer Science, UIUC, 201 N. -
A Corpus-Based Study of Unaccusative Verbs and Auxiliary Selection
To be or not to be: A corpus-based study of unaccusative verbs and auxiliary selection Master's Thesis Presented to The Faculty of the Graduate School of Arts and Sciences Brandeis University Department of Computer Science James Pustejovsky, Advisor In Partial Fulfillment of the Requirements for Master's Degree By Richard A. Brutti Jr. May 2012 c Copyright by Richard A. Brutti Jr. 2012 All Rights Reserved ABSTRACT To be or not to be: A corpus-based study of unaccusative verbs and auxiliary selection A thesis presented to the Department of Computer Science Graduate School of Arts and Sciences Brandeis University Waltham, Massachusetts Richard A. Brutti Jr. Since the introduction of the Unaccusative Hypothesis (Perlmutter, 1978), there have been many further attempts to explain the mechanisms behind the division in intransitive verbs. This paper aims to analyze and test some of theories of unac- cusativity using computational linguistic tools. Specifically, I focus on verbs that exhibit split intransitivity, that is, verbs that can appear in both unaccusative and unergative constructions, and in determining the distinguishing features that make this alternation possible. Many formal linguistic theories of unaccusativity involve the interplay of semantic roles and temporal event markers, both of which can be analyzed using statistical computational linguistic tools, including semantic role labelers, semantic parses, and automatic event classification. I use auxiliary verb selection as a surface-level indicator of unaccusativity in Italian and Dutch, and iii test various classes of verbs extracted from the Europarl corpus (Koehn, 2005). Additionally, I provide some historical background for the evolution of this dis- tinction, and analyze how my results fit into the larger theoretical framework. -
The Translation Equivalents Database (Treq) As a Lexicographer’S Aid
The Translation Equivalents Database (Treq) as a Lexicographer’s Aid Michal Škrabal, Martin Vavřín Institute of the Czech National Corpus, Charles University, Czech Republic E-mail: [email protected], [email protected] Abstract The aim of this paper is to introduce a tool that has recently been developed at the Institute of the Czech National Corpus, the Treq (Translation Equivalents) database, and to explore its possible uses, especially in the field of lexicography. Equivalent candidates offered by Treq can also be considered as potential equivalents in a bilingual dictionary (we will focus on the Latvian–Czech combination in this paper). Lexicographers instantly receive a list of candidates for target language counterparts and their frequencies (expressed both in absolute numbers and percentages) that suggest the probability that a given candidate is functionally equivalent. A significant advantage is the possibility to click on any one of these candidates and immediately verify their individual occurrences in a given context; and thus more easily distinguish the relevant translation candidates from the misleading ones. This utility, which is based on data stored in the InterCorp parallel corpus, is continually being upgraded and enriched with new functions (the recent integration of multi-word units, adding English as the primary language of the dictionaries, an improved interface, etc.), and the accuracy of the results is growing as the volume of data keeps increasing. Keywords: InterCorp; Treq; translation equivalents; alignment; Latvian–Czech dictionary 1. Introduction The aim of this paper is to introduce one of the tools that has been developed recently at the Institute of the Czech National Corpus (ICNC) and which could be especially helpful to lexicographers: namely, the Treq translation equivalents database1. -
The Pile: an 800GB Dataset of Diverse Text for Language Modeling Leo Gao Stella Biderman Sid Black Laurence Golding
The Pile: An 800GB Dataset of Diverse Text for Language Modeling Leo Gao Stella Biderman Sid Black Laurence Golding Travis Hoppe Charles Foster Jason Phang Horace He Anish Thite Noa Nabeshima Shawn Presser Connor Leahy EleutherAI [email protected] Abstract versity leads to better downstream generalization capability (Rosset, 2019). Additionally, large-scale Recent work has demonstrated that increased training dataset diversity improves general language models have been shown to effectively cross-domain knowledge and downstream gen- acquire knowledge in a novel domain with only eralization capability for large-scale language relatively small amounts of training data from that models. With this in mind, we present the domain (Rosset, 2019; Brown et al., 2020; Carlini Pile: an 825 GiB English text corpus tar- et al., 2020). These results suggest that by mix- geted at training large-scale language mod- ing together a large number of smaller, high qual- els. The Pile is constructed from 22 diverse ity, diverse datasets, we can improve the general high-quality subsets—both existing and newly cross-domain knowledge and downstream general- constructed—many of which derive from aca- demic or professional sources. Our evalua- ization capabilities of the model compared to mod- tion of the untuned performance of GPT-2 and els trained on only a handful of data sources. GPT-3 on the Pile shows that these models struggle on many of its components, such as To address this need, we introduce the Pile: a academic writing. Conversely, models trained 825:18 GiB English text dataset designed for train- on the Pile improve significantly over both ing large scale language models. -
Semantic Role Annotation of a French-English Corpus
Semantic Role Annotation of a French-English Corpus Lonneke van der Plas, James Henderson, Paola Merlo Distribution: Public CLASSiC Computational Learning in Adaptive Systems for Spoken Conversation 216594 Deliverable 6.2 Feb 2010 Project funded by the European Community under the Seventh Framework Programme for Research and Technological Development The deliverable identification sheet is to be found on the reverse of this page. Project ref. no. 216594 Project acronym CLASSiC Project full title Computational Learning in Adaptive Systems for Spoken Conversation Instrument STREP Thematic Priority Cognitive Systems, Interaction, and Robotics Start date / duration 01 March 2008 / 36 Months Security Public Contractual date of delivery M24 = March 2010 Actual date of delivery Feb 2010 Deliverable number 6.2 Deliverable title Semantic Role Annotation of a French-English Corpus Type Report Status & version Draft 1.0 Number of pages 53 (excluding front matter) Contributing WP 2 WP/Task responsible UNIGE Other contributors Author(s) Lonneke van der Plas, James Henderson, Paola Merlo EC Project Officer Philippe Gelin Keywords semantic role annotation corpus French English The partners in CLASSiC are: Heriot-Watt University HWU University of Cambridge UCAM University of Geneva GENE Ecole Superieure d’Electricite SUPELEC France Telecom/ Orange Labs FT University of Edinburgh HCRC EDIN For copies of reports, updates on project activities and other CLASSIC-related information, contact: The CLASSIC Project Co-ordinator: Dr. Oliver Lemon School of Mathematical and Computer Sciences (MACS) Heriot-Watt University Edinburgh EH14 4AS United Kingdom [email protected] Phone +44 (131) 451 3782 - Fax +44 (0)131 451 3327 Copies of reports and other material can also be accessed via the project’s administration homepage, http://www.classic-project.org c 2010, The Individual Authors.