Using the Propensity Score Method to Estimate Causal Effects: a Review

Total Page:16

File Type:pdf, Size:1020Kb

Using the Propensity Score Method to Estimate Causal Effects: a Review Organizational Research Methods 00(0) 1-39 ª The Author(s) 2012 Using the Propensity Score Reprints and permission: sagepub.com/journalsPermissions.nav Method to Estimate Causal DOI: 10.1177/1094428112447816 http://orm.sagepub.com Effects: A Review and Practical Guide Mingxiang Li1 Abstract Evidence-based management requires management scholars to draw causal inferences. Researchers generally rely on observational data sets and regression models where the independent variables have not been exogenously manipulated to estimate causal effects; however, using such models on observational data sets can produce a biased effect size of treatment intervention. This article introduces the propensity score method (PSM)—which has previously been widely employed in social science disciplines such as public health and economics—to the management field. This research reviews the PSM literature, develops a procedure for applying the PSM to estimate the cau- sal effects of intervention, elaborates on the procedure using an empirical example, and discusses the potential application of the PSM in different management fields. The implementation of the PSM in the management field will increase researchers’ ability to draw causal inferences using observational data sets. Keywords causal effect, propensity score method, matching Management scholars are interested in drawing causal inferences (Mellor & Mark, 1998). One example of a causal inference that researchers might try to determine is whether a specific manage- ment practice, such as group training or a stock option plan, increases organizational performance. Typically, management scholars rely on observational data sets to estimate causal effects of the management practice. Yet, endogeneity—which occurs when a predictor variable correlates with the error term—prevents scholars from drawing correct inferences (Antonakis, Bendahan, Jacquart, & Lalive, 2010; Wooldridge, 2002). Econometricians have proposed a number of techniques to deal 1Department of Management and Human Resources, University of Wisconsin-Madison, Madison, WI, USA Corresponding Author: Mingxiang Li, Department of Management and Human Resources, University of Wisconsin-Madison, 975 University Avenue, 5268 Grainger Hall, Madison, WI 53706, USA Email: [email protected] Downloaded from orm.sagepub.com at Vrije Universiteit 34820 on January 30, 2014 2 Organizational Research Methods 00(0) with endogeneity—including selection models, fixed effects models, and instrumental variables, all of which have been used by management scholars. In this article, I introduce the propensity score method (PSM) as another technique that can be used to calculate causal effects. In management research, many scholars are interested in evidence-based management (Rynes, Giluk, & Brown, 2007), which ‘‘derives principles from research evidence and translates them into practices that solve organizational problems’’ (Rousseau, 2006, p. 256). To contribute to evidence- based management, scholars must be able to draw correct causal inferences. Cox (1992) defined a cause as an intervention that brings about a change in the variable of interest, compared with the baseline control model. A causal effect can be simply defined as the average effect due to a certain intervention or treatment. For example, researchers might be interested in the extent to which train- ing influences future earnings. While field experiment is one approach that can be used to correctly estimate causal effects, in many situations field experiments are impractical. This has prompted scholars to rely on observational data, which makes it difficult for scholars to gauge unbiased causal effects. The PSM is a technique that, if used appropriately, can increase scholars’ ability to draw causal inferences using observational data. Though widely implemented in other social science fields, the PSM has generally been over- looked by management scholars. Since it was introduced by Rosenbaum and Rubin (1983), the PSM has been widely used by economists (Dehejia & Wahba, 1999) and medical scientists (Wolfe & Michaud, 2004) to estimate the causal effects. Recently, financial scholars (Campello, Graham, & Harvey, 2010), sociologists (Gangl, 2006; Grodsky, 2007), and political scientists (Arceneaux, Gerber, & Green, 2006) have implemented the PSM in their empirical studies. A Google Scholar search in early 2012 showed that over 7,300 publications cited Rosenbaum and Rubin’s classic 1983 article that introduced the PSM. An additional Web of Science analysis indicated that over 3,000 academic articles cited this influential article. Of these citations, 20% of the publications were in economics, 14% were in statistics, 10% were in methodological journals, and the remain- ing 56% were in health-related fields. Despite the widespread use of the PSM across a variety of disciplines, it has not been employed by management scholars, prompting Gerhart’s (2007) con- clusion that ‘‘to date, there appear to be no applications of propensity score in the management literature’’ (p. 563). This article begins with an overview of a counterfactual model, experiment, regression, and endo- geneity. This section illustrates why the counterfactual model is important for estimating causal effects and why regression models sometimes cannot successfully reconstruct counterfactuals. This is followed by a short review of the PSM and a discussion of the reasons for using the PSM. The third section employs a detailed example to illustrate how a treatment effect can be estimated using the PSM. The following section presents a short summary on the empirical studies that used the PSM in other social science fields, along with a description of potential implementation of the PSM in the management field. Finally, this article concludes with a discussion of the pros and cons of using the PSM to estimate causal effects. Estimating Causal Effects Without the Propensity Score Method Evidence-based practices use quantitative methods to find reliable effects that can be implemen- ted by practitioners and administrators to develop and adopt effective policy interventions. Because the application of specific recommendations derived from evidence-based research is not costless, it is crucial for social scientists to draw correct causal inferences. As pointed out by King, Keohane, and Verba (1994), ‘‘we should draw causal inferences where they seem appro- priate but also provide the reader with the best and most honest estimate of the uncertainty of that inference’’ (p. 76). Downloaded from orm.sagepub.com at Vrije Universiteit 34820 on January 30, 2014 Li 3 Counterfactual Model To better understand causal effect, it is important to discuss counterfactuals. In Rubin’s causal model (see Rubin, 2004, for a summary), Y1i and Y0i are potential earnings for individual i when i receives (Y1i) or does not receive training (Y0iÞ. The fundamental problem of making a causal inference is how to reconstruct the outcomes that are not observed, sometimes called counterfactuals, because they are not what happened. Conceptually, either the treatment or the nontreatment is not observed and hence is ‘‘missing’’ (Morgan & Winship, 2007). Specifically, if i received training at time t,the earnings for i at t þ 1isY1i. But if i also did not receive training at time t, the potential earnings for i at t þ 1isY0i. Then the effect of training can be simply expressed as Y1i À Y0i. Yet, because it is impossible for i to simultaneously receive (Y1i) and not receive (Y0iÞ the training, scholars need to find other ways to overcome this fundamental problem. One can also understand this fundamental issue as the ‘‘what-if’’ problem. That is, what if individual i does not receive training? Hence, recon- structing the counterfactuals is crucial to estimate unbiased causal effects. The counterfactual model shows that it is impossible to calculate individual-level treatment effects, and therefore scholars have to calculate aggregated treatment effects (Morgan & Winship, 2007). There are two major versions of aggregated treatment effects: the average treatment effect (ATE) and the average treatment effect on the treated group (ATT). A simple definition of the ATE can be written as ATE ¼ EYðÞÀ1ijTi ¼ 1; 0 EðY0ijTi ¼ 1; 0Þ; ð1:1aÞ where E(.) represents the expectation in the population. Ti denotes the treatment with the value of 1 for the treated group and the value of 0 for the control group. In other words, the ATE can be defined as the average effect that would be observed if everyone in the treated and the control groups received treatment, compared with if no one in both groups received treatment (Harder, Stuart, & Anthony, 2010). The definition of ATT can be expressed as ATT ¼ EYðÞÀ1ijTi ¼ 1 EðY0ijTi ¼ 1Þ: ð1:1bÞ In contrast to the ATE, the ATT refers to the average difference that would be found if everyone in the treated group received treatment compared with if none of these individuals in the treated group received treatment. The value for the ATE will be the same as that for the ATT when the research design is experimental.1 Experiment There are different ways to estimate treatment effects other than PSM. Of these, the experiment is the gold standard (Antonakis et al., 2010). If the participants are randomly assigned to the treated or the control group, then the treatment effect can simply be estimated by comparing the mean differ- ence between these two groups. Experimental data can generate an unbiased estimator for causal effects because the randomized design ensures
Recommended publications
  • A Simple Sample Size Formula for Analysis of Covariance in Randomized Clinical Trials George F
    Journal of Clinical Epidemiology 60 (2007) 1234e1238 ORIGINAL ARTICLE A simple sample size formula for analysis of covariance in randomized clinical trials George F. Borma,*, Jaap Fransenb, Wim A.J.G. Lemmensa aDepartment of Epidemiology and Biostatistics, Radboud University Nijmegen Medical Centre, Geert Grooteplein 21, PO Box 9101, NL-6500 HB Nijmegen, The Netherlands bDepartment of Rheumatology, Radboud University Nijmegen Medical Centre, Geert Grooteplein 21, PO Box 9101, NL-6500 HB Nijmegen, The Netherlands Accepted 15 February 2007 Abstract Objective: Randomized clinical trials that compare two treatments on a continuous outcome can be analyzed using analysis of covari- ance (ANCOVA) or a t-test approach. We present a method for the sample size calculation when ANCOVA is used. Study Design and Setting: We derived an approximate sample size formula. Simulations were used to verify the accuracy of the for- mula and to improve the approximation for small trials. The sample size calculations are illustrated in a clinical trial in rheumatoid arthritis. Results: If the correlation between the outcome measured at baseline and at follow-up is r, ANCOVA comparing groups of (1 À r2)n subjects has the same power as t-test comparing groups of n subjects. When on the same data, ANCOVA is usedpffiffiffiffiffiffiffiffiffiffiffiffiffi instead of t-test, the pre- cision of the treatment estimate is increased, and the length of the confidence interval is reduced by a factor 1 À r2. Conclusion: ANCOVA may considerably reduce the number of patients required for a trial. Ó 2007 Elsevier Inc. All rights reserved. Keywords: Power; Sample size; Precision; Analysis of covariance; Clinical trial; Statistical test 1.
    [Show full text]
  • Efficiency of Average Treatment Effect Estimation When the True
    econometrics Article Efficiency of Average Treatment Effect Estimation When the True Propensity Is Parametric Kyoo il Kim Department of Economics, Michigan State University, 486 W. Circle Dr., East Lansing, MI 48824, USA; [email protected]; Tel.: +1-517-353-9008 Received: 8 March 2019; Accepted: 28 May 2019; Published: 31 May 2019 Abstract: It is well known that efficient estimation of average treatment effects can be obtained by the method of inverse propensity score weighting, using the estimated propensity score, even when the true one is known. When the true propensity score is unknown but parametric, it is conjectured from the literature that we still need nonparametric propensity score estimation to achieve the efficiency. We formalize this argument and further identify the source of the efficiency loss arising from parametric estimation of the propensity score. We also provide an intuition of why this overfitting is necessary. Our finding suggests that, even when we know that the true propensity score belongs to a parametric class, we still need to estimate the propensity score by a nonparametric method in applications. Keywords: average treatment effect; efficiency bound; propensity score; sieve MLE JEL Classification: C14; C18; C21 1. Introduction Estimating treatment effects of a binary treatment or a policy has been one of the most important topics in evaluation studies. In estimating treatment effects, a subject’s selection into a treatment may contaminate the estimate, and two approaches are popularly used in the literature to remove the bias due to this sample selection. One is regression-based control function method (see, e.g., Rubin(1973) ; Hahn(1998); and Imbens(2004)) and the other is matching method (see, e.g., Rubin and Thomas(1996); Heckman et al.(1998); and Abadie and Imbens(2002, 2006)).
    [Show full text]
  • Analysis of Covariance (ANCOVA) in Randomized Trials: More Precision
    Johns Hopkins University, Dept. of Biostatistics Working Papers 10-19-2018 Analysis of Covariance (ANCOVA) in Randomized Trials: More Precision, Less Conditional Bias, and Valid Confidence Intervals, Without Model Assumptions Bingkai Wang Department of Biostatistics, Johns Hopkins University Elizabeth Ogburn Department of Biostatistics, Johns Hopkins University Michael Rosenblum Department of Biostatistics, Johns Hopkins University, [email protected] Suggested Citation Wang, Bingkai; Ogburn, Elizabeth; and Rosenblum, Michael, "Analysis of Covariance (ANCOVA) in Randomized Trials: More Precision, Less Conditional Bias, and Valid Confidence Intervals, Without Model Assumptions" (October 2018). Johns Hopkins University, Dept. of Biostatistics Working Papers. Working Paper 292. https://biostats.bepress.com/jhubiostat/paper292 This working paper is hosted by The Berkeley Electronic Press (bepress) and may not be commercially reproduced without the permission of the copyright holder. Copyright © 2011 by the authors Analysis of Covariance (ANCOVA) in Randomized Trials: More Precision, Less Conditional Bias, and Valid Confidence Intervals, Without Model Assumptions BINGKAI WANG, ELIZABETH OGBURN, MICHAEL ROSENBLUM∗ Department of Biostatistics, Johns Hopkins Bloomberg School of Public Health, 615 North Wolfe Street, Baltimore, Maryland 21205, USA [email protected] Summary \Covariate adjustment" in the randomized trial context refers to an estimator of the average treatment effect that adjusts for chance imbalances between study arms in baseline variables (called \covariates"). The baseline variables could include, e.g., age, sex, disease severity, and biomarkers. According to two surveys of clinical trial reports, there is confusion about the sta- tistical properties of covariate adjustment. We focus on the ANCOVA estimator, which involves fitting a linear model for the outcome given the treatment arm and baseline variables, and trials with equal probability of assignment to treatment and control.
    [Show full text]
  • Analysis of Covariance (ANCOVA) with Two Groups
    NCSS Statistical Software NCSS.com Chapter 226 Analysis of Covariance (ANCOVA) with Two Groups Introduction This procedure performs analysis of covariance (ANCOVA) for a grouping variable with 2 groups and one covariate variable. This procedure uses multiple regression techniques to estimate model parameters and compute least squares means. This procedure also provides standard error estimates for least squares means and their differences, and computes the T-test for the difference between group means adjusted for the covariate. The procedure also provides response vs covariate by group scatter plots and residuals for checking model assumptions. This procedure will output results for a simple two-sample equal-variance T-test if no covariate is entered and simple linear regression if no group variable is entered. This allows you to complete the ANCOVA analysis if either the group variable or covariate is determined to be non-significant. For additional options related to the T- test and simple linear regression analyses, we suggest you use the corresponding procedures in NCSS. The group variable in this procedure is restricted to two groups. If you want to perform ANCOVA with a group variable that has three or more groups, use the One-Way Analysis of Covariance (ANCOVA) procedure. This procedure cannot be used to analyze models that include more than one covariate variable or more than one group variable. If the model you want to analyze includes more than one covariate variable and/or more than one group variable, use the General Linear Models (GLM) for Fixed Factors procedure instead. Kinds of Research Questions A large amount of research consists of studying the influence of a set of independent variables on a response (dependent) variable.
    [Show full text]
  • Week 10: Causality with Measured Confounding
    Week 10: Causality with Measured Confounding Brandon Stewart1 Princeton November 28 and 30, 2016 1These slides are heavily influenced by Matt Blackwell, Jens Hainmueller, Erin Hartman, Kosuke Imai and Gary King. Stewart (Princeton) Week 10: Measured Confounding November 28 and 30, 2016 1 / 176 Where We've Been and Where We're Going... Last Week I regression diagnostics This Week I Monday: F experimental Ideal F identification with measured confounding I Wednesday: F regression estimation Next Week I identification with unmeasured confounding I instrumental variables Long Run I causality with measured confounding ! unmeasured confounding ! repeated data Questions? Stewart (Princeton) Week 10: Measured Confounding November 28 and 30, 2016 2 / 176 1 The Experimental Ideal 2 Assumption of No Unmeasured Confounding 3 Fun With Censorship 4 Regression Estimators 5 Agnostic Regression 6 Regression and Causality 7 Regression Under Heterogeneous Effects 8 Fun with Visualization, Replication and the NYT 9 Appendix Subclassification Identification under Random Assignment Estimation Under Random Assignment Blocking Stewart (Princeton) Week 10: Measured Confounding November 28 and 30, 2016 3 / 176 Lancet 2001: negative correlation between coronary heart disease mortality and level of vitamin C in bloodstream (controlling for age, gender, blood pressure, diabetes, and smoking) Stewart (Princeton) Week 10: Measured Confounding November 28 and 30, 2016 4 / 176 Lancet 2002: no effect of vitamin C on mortality in controlled placebo trial (controlling for nothing) Stewart (Princeton) Week 10: Measured Confounding November 28 and 30, 2016 4 / 176 Lancet 2003: comparing among individuals with the same age, gender, blood pressure, diabetes, and smoking, those with higher vitamin C levels have lower levels of obesity, lower levels of alcohol consumption, are less likely to grow up in working class, etc.
    [Show full text]
  • STATS 361: Causal Inference
    STATS 361: Causal Inference Stefan Wager Stanford University Spring 2020 Contents 1 Randomized Controlled Trials 2 2 Unconfoundedness and the Propensity Score 9 3 Efficient Treatment Effect Estimation via Augmented IPW 18 4 Estimating Treatment Heterogeneity 27 5 Regression Discontinuity Designs 35 6 Finite Sample Inference in RDDs 43 7 Balancing Estimators 52 8 Methods for Panel Data 61 9 Instrumental Variables Regression 68 10 Local Average Treatment Effects 74 11 Policy Learning 83 12 Evaluating Dynamic Policies 91 13 Structural Equation Modeling 99 14 Adaptive Experiments 107 1 Lecture 1 Randomized Controlled Trials Randomized controlled trials (RCTs) form the foundation of statistical causal inference. When available, evidence drawn from RCTs is often considered gold statistical evidence; and even when RCTs cannot be run for ethical or practical reasons, the quality of observational studies is often assessed in terms of how well the observational study approximates an RCT. Today's lecture is about estimation of average treatment effects in RCTs in terms of the potential outcomes model, and discusses the role of regression adjustments for causal effect estimation. The average treatment effect is iden- tified entirely via randomization (or, by design of the experiment). Regression adjustments may be used to decrease variance, but regression modeling plays no role in defining the average treatment effect. The average treatment effect We define the causal effect of a treatment via potential outcomes. For a binary treatment w 2 f0; 1g, we define potential outcomes Yi(1) and Yi(0) corresponding to the outcome the i-th subject would have experienced had they respectively received the treatment or not.
    [Show full text]
  • Parametric ANCOVA Vs. Rank Transform ANCOVA When
    DOCUMENT RESUME ED 231 882 TM 830 499 AUTHOR -01-ejn4-k, Stephen F.; Algina, James TITLE Parametric ANCOVA vs. Rank Transform ANCOVA when Assumptions of Conditional Normality and Homoscedasticity Are Violated4 PUB DATE Apr 83 NOTE 33p.; Paper presented at the Annual Meeting of the American Educational Research Association (67th, Montreal, Quebec, April 11-15, 1983). Table 3 contains small print. PUB TYPE Speeches/Conference Papers (150) -- Reports - Research/Technical (143) EDRS PRICE MF01/PCO2 Plus Postage. DESCRIPTORS *Analysis of Covariance; *Control Groups; *Data Collection; *Error of Measurement; Pretests Posttests; *Research Design; Sample Size; Sampling IDENTIFIERS Computer Simulation; Heteroscedasticity (Statistics); Homoscedasticity (Statistics); *Parametric Analysis; Power (Statistics); *Robustness; Type I Errors ABSTRACT Parametric analysis of covariance was compared to analysis of covariance with data transformed using ranks."Using computer simulation approach the two strategies were compared in terms of the proportion,of TypeI errors made and statistical power s when the conditional distribution of err-ors were: (1) normal and homoscedastic, (2) normal and heteroscedastic, (3) non-normal and homoscedastic, and (4) non-normal and heteroscedastic. The results indicated that parametric ANCOVA was robust to violations of either normality or homoscedasticity. However when both assumptions were violated the observed alpha levels underestimated the nominal 'alpha level when sample sizes were small and alpha=.05. Rank ANCOVA led to a slightly liberal test of the hypothesis when the covariate was non-normal and the errors were heteroscedastic. Practical significant power differences favoring the rank ANCOVA procedure were observed with moderate sample sizes and skewed conditional error distributions. (Author) ************************* *****************************f************** Reproductions supplie by EDRS are the best that can be made from the original document.
    [Show full text]
  • Analysis of Covariance (ANCOVA)
    PASS Sample Size Software NCSS.com Chapter 591 Analysis of Covariance (ANCOVA) Introduction A common task in research is to compare the averages of two or more populations (groups). We might want to compare the income level of two regions, the nitrogen content of three lakes, or the effectiveness of four drugs. The one-way analysis of variance compares the means of two or more groups to determine if at least one mean is different from the others. The F test is used to determine statistical significance. Analysis of Covariance (ANCOVA) is an extension of the one-way analysis of variance model that adds quantitative variables (covariates). When used, it is assumed that their inclusion will reduce the size of the error variance and thus increase the power of the design. Assumptions Using the F test requires certain assumptions. One reason for the popularity of the F test is its robustness in the face of assumption violation. However, if an assumption is not even approximately met, the significance levels and the power of the F test are invalidated. Unfortunately, in practice it often happens that several assumptions are not met. This makes matters even worse. Hence, steps should be taken to check the assumptions before important decisions are made. The following assumptions are needed for a one-way analysis of variance: 1. The data are continuous (not discrete). 2. The data follow the normal probability distribution. Each group is normally distributed about the group mean. 3. The variances of the populations are equal. 4. The groups are independent. There is no relationship among the individuals in one group as compared to another.
    [Show full text]
  • Efficient Estimation of Average Treatment Effects Using the Estimated Propensity Score
    Econometrica, Vol. 71, No. 4 (July, 2003), 1161-1189 EFFICIENT ESTIMATION OF AVERAGE TREATMENT EFFECTS USING THE ESTIMATED PROPENSITY SCORE BY KiEisuKEHIRANO, GUIDO W. IMBENS,AND GEERT RIDDER' We are interestedin estimatingthe averageeffect of a binarytreatment on a scalar outcome.If assignmentto the treatmentis exogenousor unconfounded,that is, indepen- dent of the potentialoutcomes given covariates,biases associatedwith simple treatment- controlaverage comparisons can be removedby adjustingfor differencesin the covariates. Rosenbaumand Rubin (1983) show that adjustingsolely for differencesbetween treated and controlunits in the propensityscore removesall biases associatedwith differencesin covariates.Although adjusting for differencesin the propensityscore removesall the bias, this can come at the expenseof efficiency,as shownby Hahn (1998), Heckman,Ichimura, and Todd (1998), and Robins,Mark, and Newey (1992). We show that weightingby the inverseof a nonparametricestimate of the propensityscore, rather than the truepropensity score, leads to an efficientestimate of the averagetreatment effect. We provideintuition for this resultby showingthat this estimatorcan be interpretedas an empiricallikelihood estimatorthat efficientlyincorporates the informationabout the propensityscore. KEYWORDS: Propensity score, treatment effects, semiparametricefficiency, sieve estimator. 1. INTRODUCTION ESTIMATINGTHE AVERAGEEFFECT of a binary treatment or policy on a scalar outcome is a basic goal of manyempirical studies in economics.If assignmentto the
    [Show full text]
  • Nber Working Paper Series Regression Discontinuity
    NBER WORKING PAPER SERIES REGRESSION DISCONTINUITY DESIGNS IN ECONOMICS David S. Lee Thomas Lemieux Working Paper 14723 http://www.nber.org/papers/w14723 NATIONAL BUREAU OF ECONOMIC RESEARCH 1050 Massachusetts Avenue Cambridge, MA 02138 February 2009 We thank David Autor, David Card, John DiNardo, Guido Imbens, and Justin McCrary for suggestions for this article, as well as for numerous illuminating discussions on the various topics we cover in this review. We also thank two anonymous referees for their helpful suggestions and comments, and Mike Geruso, Andrew Marder, and Zhuan Pei for their careful reading of earlier drafts. Diane Alexander, Emily Buchsbaum, Elizabeth Debraggio, Enkeleda Gjeci, Ashley Hodgson, Yan Lau, Pauline Leung, and Xiaotong Niu provided excellent research assistance. The views expressed herein are those of the author(s) and do not necessarily reflect the views of the National Bureau of Economic Research. © 2009 by David S. Lee and Thomas Lemieux. All rights reserved. Short sections of text, not to exceed two paragraphs, may be quoted without explicit permission provided that full credit, including © notice, is given to the source. Regression Discontinuity Designs in Economics David S. Lee and Thomas Lemieux NBER Working Paper No. 14723 February 2009, Revised October 2009 JEL No. C1,H0,I0,J0 ABSTRACT This paper provides an introduction and "user guide" to Regression Discontinuity (RD) designs for empirical researchers. It presents the basic theory behind the research design, details when RD is likely to be valid or invalid given economic incentives, explains why it is considered a "quasi-experimental" design, and summarizes different ways (with their advantages and disadvantages) of estimating RD designs and the limitations of interpreting these estimates.
    [Show full text]
  • Targeted Estimation and Inference for the Sample Average Treatment Effect
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Collection Of Biostatistics Research Archive University of California, Berkeley U.C. Berkeley Division of Biostatistics Working Paper Series Year 2015 Paper 334 Targeted Estimation and Inference for the Sample Average Treatment Effect Laura B. Balzer∗ Maya L. Peterseny Mark J. van der Laanz ∗Division of Biostatistics, University of California, Berkeley - the SEARCH Consortium, lb- [email protected] yDivision of Biostatistics, University of California, Berkeley - the SEARCH Consortium, may- [email protected] zDivision of Biostatistics, University of California, Berkeley - the SEARCH Consortium, [email protected] This working paper is hosted by The Berkeley Electronic Press (bepress) and may not be commer- cially reproduced without the permission of the copyright holder. http://biostats.bepress.com/ucbbiostat/paper334 Copyright c 2015 by the authors. Targeted Estimation and Inference for the Sample Average Treatment Effect Laura B. Balzer, Maya L. Petersen, and Mark J. van der Laan Abstract While the population average treatment effect has been the subject of extensive methods and applied research, less consideration has been given to the sample average treatment effect: the mean difference in the counterfactual outcomes for the study units. The sample parameter is easily interpretable and is arguably the most relevant when the study units are not representative of a greater population or when the exposure’s impact is heterogeneous. Formally, the sample effect is not identifiable from the observed data distribution. Nonetheless, targeted maxi- mum likelihood estimation (TMLE) can provide an asymptotically unbiased and efficient estimate of both the population and sample parameters.
    [Show full text]
  • Average Treatment Effects in the Presence of Unknown
    Average treatment effects in the presence of unknown interference Fredrik Sävje∗ Peter M. Aronowy Michael G. Hudgensz October 25, 2019 Abstract We investigate large-sample properties of treatment effect estimators under unknown interference in randomized experiments. The inferential target is a generalization of the average treatment effect estimand that marginalizes over potential spillover ef- fects. We show that estimators commonly used to estimate treatment effects under no interference are consistent for the generalized estimand for several common exper- imental designs under limited but otherwise arbitrary and unknown interference. The rates of convergence depend on the rate at which the amount of interference grows and the degree to which it aligns with dependencies in treatment assignment. Importantly for practitioners, the results imply that if one erroneously assumes that units do not interfere in a setting with limited, or even moderate, interference, standard estima- tors are nevertheless likely to be close to an average treatment effect if the sample is sufficiently large. Conventional confidence statements may, however, not be accurate. arXiv:1711.06399v4 [math.ST] 23 Oct 2019 We thank Alexander D’Amour, Matthew Blackwell, David Choi, Forrest Crawford, Peng Ding, Naoki Egami, Avi Feller, Owen Francis, Elizabeth Halloran, Lihua Lei, Cyrus Samii, Jasjeet Sekhon and Daniel Spielman for helpful suggestions and discussions. A previous version of this article was circulated under the title “A folk theorem on interference in experiments.” ∗Departments of Political Science and Statistics & Data Science, Yale University. yDepartments of Political Science, Biostatistics and Statistics & Data Science, Yale University. zDepartment of Biostatistics, University of North Carolina, Chapel Hill. 1 1 Introduction Investigators of causality routinely assume that subjects under study do not interfere with each other.
    [Show full text]