Unity Freshwater Mud Flat Community

Total Page:16

File Type:pdf, Size:1020Kb

Unity Freshwater Mud Flat Community Freshwater Mud Flat Community State Rank: S4 - Secure Freshwater Mud Flat Communities have size and connectedness. High- energy Riverbank low, sparse annual herbaceous Communities occur along the vegetation on recently exposed muddy shores of fast flowing, high sediments in ponds and streams; energy rivers with sparse plants Species, size, and boundaries change growing in sediment caught seasonally and annually; between rock cobbles. Riverine Pointbar and Beach may include aquatic plants stranded when Communities are along higher the water receded such plants include energy rivers on sand or gravel. yellow water-lily, duckweeds, rushes and Deep and Shallow Emergent FW Mud Flat along the Housatonic River. Photo: bladderworts. Marshes have dense graminoid Michael Batcher. emergent plants on mucky Differentiating from Related sediments, often with standing Description: Freshwater (FW) Mud Communities: Freshwater Mud Flat water at the base of the plants. In tidal Habitat for Associated Fauna: Flat Communities develop over the Communities have low, sparse annual areas mud flats are considered to be parts Many wide ranging animals include summer as water levels go down and herbaceous vegetation on recently of adjacent Freshwater or Brackish Tidal Freshwater Mud Flats as part of their sediments are exposed in low-gradient exposed muddy (fine mixed organic and Marshes. Mud flats in coastal plain ponds habitats. Shore birds such as Spotted and and abandoned stream channels, mineral materials) sediments in rivers and are treated as parts of the Coastal Plain Solitary Sandpipers forage on Freshwater backwaters, and beaver, oxbow, and other ponds where they may include stranded Pondshore Community. Mud flats that Mud Flats throughout their breeding ponds that are usually flooded during aquatic vegetation. Low-energy emerge after human mediated water season and those and additional winters or other times of high water. The Riverbank Communities are on slopes of lowering of lakes or rivers are usually shorebirds such as Greater Yellowlegs mucky, silty mineral soils are poorly river banks composed of a mix of temporary and would develop River and stop at Mud Flats during migration. drained and may remain saturated even relatively fine mineral materials (clay, silt, Lake Drawdown Communities that could when the surface is exposed. Succession or sand). The stream bottoms of Low- be extensions of naturally occurring mud Examples with Public Access: to other communities occurs at all sites energy Riverbanks can merge into FW flats. Hop Brook WMA, Lee. when flooding is removed, particularly Mud Flats; separation depends on patch notable in abandoned beaver ponds. Characteristic Species: Often sparsely vegetated, Freshwater Mud Flat Communities are typically dominated by annuals or herbaceous perennials such as water-purslane, smartweeds, rice cut- grass, swamp-candles, ditch-stonecrop, or little spike-rush. Mudflat spike-rush is restricted to calcareous or circumneutral mudflats. In oxbows in floodplain forests, trees such as silver maple or American elm may overhang these communities providing partial cover. In ponded A Freshwater Mud Flat with stranded aquatic Oily water in footprints in the mucky sediments of Killdeer on mucky sediments of a FW Mud Flat. situations FW Mud Flat Communities plants. Photo: Melissa Dow Cullina, NHESP. a FW Mud Flat. Photo: Chloe Stuart, NHESP. Photo: Bill Byrne, MassWildlife. From: Classification of Natural Communities of Massachusetts htthttpp://www;mass;gov/nhesp/://www;mass;gov/nhesp/ Updated: 2016 Natural Heritage & Endangered Species Program, Division of FishFisheeriesries & Wildlife, 1 Rabbit Hill Rd;, Westborough, M! 01581 (508) 389-6360 .
Recommended publications
  • A Quick Guide to Southeast Florida's Coral Reefs
    A Quick Guide to Southeast Florida’s Coral Reefs DAVID GILLIAM NATIONAL CORAL REEF INSTITUTE NOVA SOUTHEASTERN UNIVERSITY Spring 2013 Prepared by the Land-based Sources of Pollution Technical Advisory Committee (TAC) of the Southeast Florida Coral Reef Initiative (SEFCRI) BRIAN WALKER NATIONAL CORAL REEF INSTITUTE, NOVA SOUTHEASTERN Southeast Florida’s coral-rich communities are more valuable than UNIVERSITY the Spanish treasures that sank nearby. Like the lost treasures, these amazing reefs lie just a few hundred yards off the shores of Martin, Palm Beach, Broward and Miami-Dade Counties where more than one-third of Florida’s 19 million residents live. Fishing, diving, and boating help attract millions of visitors to southeast Florida each year (30 million in 2008/2009). Reef-related expen- ditures generate $5.7 billion annually in income and sales, and support more than 61,000 local jobs. Such immense recreational activity, coupled with the pressures of coastal development, inland agriculture, and robust cruise and commercial shipping industries, threaten the very survival of our reefs. With your help, reefs will be protected from local stresses and future generations will be able to enjoy their beauty and economic benefits. Coral reefs are highly diverse and productive, yet surprisingly fragile, ecosystems. They are built by living creatures that require clean, clear seawater to settle, mature and reproduce. Reefs provide safe havens for spectacular forms of marine life. Unfortunately, reefs are vulnerable to impacts on scales ranging from local and regional to global. Global threats to reefs have increased along with expanding ART SEITZ human populations and industrialization. Now, warming seawater temperatures and changing ocean chemistry from carbon dioxide emitted by the burning of fossil fuels and deforestation are also starting to imperil corals.
    [Show full text]
  • Alexander the Great's Tombolos at Tyre and Alexandria, Eastern Mediterranean ⁎ N
    Available online at www.sciencedirect.com Geomorphology 100 (2008) 377–400 www.elsevier.com/locate/geomorph Alexander the Great's tombolos at Tyre and Alexandria, eastern Mediterranean ⁎ N. Marriner a, , J.P. Goiran b, C. Morhange a a CNRS CEREGE UMR 6635, Université Aix-Marseille, Europôle de l'Arbois, BP 80, 13545 Aix-en-Provence cedex 04, France b CNRS MOM Archéorient UMR 5133, 5/7 rue Raulin, 69365 Lyon cedex 07, France Received 25 July 2007; received in revised form 10 January 2008; accepted 11 January 2008 Available online 2 February 2008 Abstract Tyre and Alexandria's coastlines are today characterised by wave-dominated tombolos, peculiar sand isthmuses that link former islands to the adjacent continent. Paradoxically, despite a long history of inquiry into spit and barrier formation, understanding of the dynamics and sedimentary history of tombolos over the Holocene timescale is poor. At Tyre and Alexandria we demonstrate that these rare coastal features are the heritage of a long history of natural morphodynamic forcing and human impacts. In 332 BC, following a protracted seven-month siege of the city, Alexander the Great's engineers cleverly exploited a shallow sublittoral sand bank to seize the island fortress; Tyre's causeway served as a prototype for Alexandria's Heptastadium built a few months later. We report stratigraphic and geomorphological data from the two sand spits, proposing a chronostratigraphic model of tombolo evolution. © 2008 Elsevier B.V. All rights reserved. Keywords: Tombolo; Spit; Tyre; Alexandria; Mediterranean; Holocene 1. Introduction Courtaud, 2000; Browder and McNinch, 2006); (2) establishing a typology of shoreline salients and tombolos (Zenkovich, 1967; The term tombolo is used to define a spit of sand or shingle Sanderson and Eliot, 1996); and (3) modelling the geometrical linking an island to the adjacent coast.
    [Show full text]
  • Brighton Beach Groynes
    CASE STUDY: BRIGHTON BEACH GROYNES BRIGHTON, SOUTH AUSTRALIA FEBRUARY 2017 CLIENT: CITY OF HOLDFAST BAY Adelaide’s beaches are affected by a common phenomenon called ELCOROCK® longshore drift - the flow of water, in one direction, along a beach occurring as a result of winds and currents. In Adelaide longshore drift flows from south to north and it frequently erodes beaches The ELCOROCK system consists of sand- over time, particularly during storm events when tides are high and filled geotextile containers built to form sea is rough. a stabilising, defensive barrier against coastal erosion. Without sand replenishment, the southern end of Adelaide’s beaches will slowly erode and undermine existing infrastructure at The robustness and stability of Elcorock the sea/land interface. The objective of Elcorock sand container geotextile containers provide a solutions groynes, laid perpendicular to the beach, is to capture some of for other marine structures such as groynes and breakwaters. These the natural sand as well as dredged sand, that moves along the structures extend out into the wave zone coast. Over time, this process builds up the beach, particularly and provide marina and beach protection, between the groynes which results in the protection of the existing sand movement control and river training. infrastructure. The size of the container can easily be Geofabrics met with the city of Holdfast Bay in the early stages of selected based on the wave climate and the project to discuss the product, durability and previous projects other conditions ensuring stability under with a similar application. Due to recent weather events, the beach the most extreme conditions.
    [Show full text]
  • Alternative Stable States of Tidal Marsh Vegetation Patterns and Channel Complexity
    ECOHYDROLOGY Ecohydrol. (2016) Published online in Wiley Online Library (wileyonlinelibrary.com) DOI: 10.1002/eco.1755 Alternative stable states of tidal marsh vegetation patterns and channel complexity K. B. Moffett1* and S. M. Gorelick2 1 School of the Environment, Washington State University Vancouver, Vancouver, WA, USA 2 Department of Earth System Science, Stanford University, Stanford, CA, USA ABSTRACT Intertidal marshes develop between uplands and mudflats, and develop vegetation zonation, via biogeomorphic feedbacks. Is the spatial configuration of vegetation and channels also biogeomorphically organized at the intermediate, marsh-scale? We used high-resolution aerial photographs and a decision-tree procedure to categorize marsh vegetation patterns and channel geometries for 113 tidal marshes in San Francisco Bay estuary and assessed these patterns’ relations to site characteristics. Interpretation was further informed by generalized linear mixed models using pattern-quantifying metrics from object-based image analysis to predict vegetation and channel pattern complexity. Vegetation pattern complexity was significantly related to marsh salinity but independent of marsh age and elevation. Channel complexity was significantly related to marsh age but independent of salinity and elevation. Vegetation pattern complexity and channel complexity were significantly related, forming two prevalent biogeomorphic states: complex versus simple vegetation-and-channel configurations. That this correspondence held across marsh ages (decades to millennia)
    [Show full text]
  • CITY of MIAMI BEACH DUNE MANAGEMENT PLAN January 2016
    CITY OF MIAMI BEACH DUNE MANAGEMENT PLAN January 2016 Prepared by: CITY OF MIAMI BEACH COASTAL MANAGEMENT 1700 Convention Center Drive AND CONSULTING Miami Beach, Florida 33139 7611 Lawrence Road Boynton Beach, Florida 33436 I. STATEMENT OF PURPOSE Coastal dunes are habitat for wildlife and support a high biodiversity of flora and fauna. They also keep beaches healthy by accreting sand and minimizing beach erosion rates. The dunes protect coastal infrastructure and upland properties from storm damage by blocking storm surge and absorbing wave energy. Therefore, a healthy dune system is an invaluable asset to coastal communities like Miami Beach. The purpose of the City of Miami Beach Dune Management Plan (“the Plan”) is to outline the framework and specifications that the City will use to foster and maintain a healthy, stable, and natural dune system that is appropriate for its location and reduces public safety and maintenance concerns. The Plan shall guide the City’s efforts in managing the urban, man-made dune as close to a natural system as possible and ensuring the dune provides storm protection, erosion control, and a biologically-rich habitat for local species. II. OBJECTIVES This plan was developed collaboratively with local government and community stakeholders, as well as local experts to meet the following primary objectives: 1. Reduce to the maximum extent possible the presence of invasive, non-native pest plant species within the dune system. Non-native species compete with and overwhelm more stable native dune plants, thereby threatening the stability and biodiversity of the dune system. Reducing the presence of aggressive, non-native vegetation preserves and promotes the structural integrity and biodiversity of the dune.
    [Show full text]
  • The Evolution of the Artificial Wildbird Tidal Mudflat in Fukuoka, Japan
    1 The Evolution of the MIA DOCTO + SCOTT WALLS Jacob Bintliff, Mariana Chavez, Daniela Peña Corvillon, Artificial Wildbird Tidal Johanna Hoffman, Katelyn Walker, UC Berkeley, LA 205 Studio Mudflat in Fukuoka, Japan Spring 2012 2 PRESENTATION CONTENT INTRODUCTION // SCIENTIFIC ANALYSIS // WETLAND DESIGN // HUMAN INTERFACE // CONCLUSIONS 3 CONTEXT 4 5 6 CONTEXT BEFORE PRESENT 7 ISLAND CITY 8 9 ITERATIONS ORIGINAL WETLAND PLAN 10 ITERATIONS JAPAN STUDENT WORKSHOP 11 ITERATIONS 2008 Land Use Plan ~8.5 - 9 ha ~12 ha ~10 ha ~10 ~7 ha Setup of the central area ~8.75 ha ~38.25 ha We will establish a lively ~7 ha interactive space by inviting urban functions such as commercial and ~ 6.75 ha corporate functions, and dissemination of information on education, ~2.25 ha Wild Bird Park 3.9 ha 3.1 ha School and Amenities culture, and art. Further, public transportation Green Space facilities and facilities for 4.1 ha convenience are invited Assigned Facilities Teriha Town to improve the business Hospital ~18 ha environment in the area. Apartments 4.1+ ha Joint Independent Houses Spcialist Clinic 1.8 ha ~1.5 ha Commercial Elderly Elderly Center? Center Planned Subdivision 1.6 ha 1.2 ha Coporate (Sold) 0.9 ha Planned Use/Mixed Use Idustrial and hatches based on legend color code and denote use type Research & Development Currently Built Port Warf 1000 m UC BERKELEY LAND USE PLAN 12 ITERATIONS UC BERKELEY LAND USE PLAN 13 ITERATIONS 16 Hectare Wild Bird Park UC BERKELEY - JAPAN WETLAND DESIGN 14 DESIGN GOALS Provide natural habitat for migrating bird species
    [Show full text]
  • Beach Nourishment: Massdep's Guide to Best Management Practices for Projects in Massachusetts
    BBEACHEACH NNOURISHMEOURISHMENNTT MassDEP’sMassDEP’s GuideGuide toto BestBest ManagementManagement PracticesPractices forfor ProjectsProjects inin MassachusettsMassachusetts March 2007 acknowledgements LEAD AUTHORS: Rebecca Haney (Coastal Zone Management), Liz Kouloheras, (MassDEP), Vin Malkoski (Mass. Division of Marine Fisheries), Jim Mahala (MassDEP) and Yvonne Unger (MassDEP) CONTRIBUTORS: From MassDEP: Fred Civian, Jen D’Urso, Glenn Haas, Lealdon Langley, Hilary Schwarzenbach and Jim Sprague. From Coastal Zone Management: Bob Boeri, Mark Borrelli, David Janik, Julia Knisel and Wendolyn Quigley. Engineering consultants from Applied Coastal Research and Engineering Inc. also reviewed the document for technical accuracy. Lead Editor: David Noonan (MassDEP) Design and Layout: Sandra Rabb (MassDEP) Photography: Sandra Rabb (MassDEP) unless otherwise noted. Massachusetts Massachusetts Office Department of of Coastal Zone Environmental Protection Management 1 Winter Street 251 Causeway Street Boston, MA Boston, MA table of contents I. Glossary of Terms 1 II. Summary 3 II. Overview 6 • Purpose 6 • Beach Nourishment 6 • Specifications and Best Management Practices 7 • Permit Requirements and Timelines 8 III. Technical Attachments A. Beach Stability Determination 13 B. Receiving Beach Characterization 17 C. Source Material Characterization 21 D. Sample Problem: Beach and Borrow Site Sediment Analysis to Determine Stability of Nourishment Material for Shore Protection 22 E. Generic Beach Monitoring Plan 27 F. Sample Easement 29 G. References 31 GLOSSARY Accretion - the gradual addition of land by deposition of water-borne sediment. Beach Fill – also called “artificial nourishment”, “beach nourishment”, “replenishment”, and “restoration,” comprises the placement of sediment within the nearshore sediment transport system (see littoral zone). (paraphrased from Dean, 2002) Beach Profile – the cross-sectional shape of a beach plotted perpendicular to the shoreline.
    [Show full text]
  • The Mississippi River Delta Basin and Why We Are Failing to Save Its Wetlands
    University of New Orleans ScholarWorks@UNO University of New Orleans Theses and Dissertations Dissertations and Theses 8-8-2007 The Mississippi River Delta Basin and Why We are Failing to Save its Wetlands Lon Boudreaux Jr. University of New Orleans Follow this and additional works at: https://scholarworks.uno.edu/td Recommended Citation Boudreaux, Lon Jr., "The Mississippi River Delta Basin and Why We are Failing to Save its Wetlands" (2007). University of New Orleans Theses and Dissertations. 564. https://scholarworks.uno.edu/td/564 This Thesis is protected by copyright and/or related rights. It has been brought to you by ScholarWorks@UNO with permission from the rights-holder(s). You are free to use this Thesis in any way that is permitted by the copyright and related rights legislation that applies to your use. For other uses you need to obtain permission from the rights- holder(s) directly, unless additional rights are indicated by a Creative Commons license in the record and/or on the work itself. This Thesis has been accepted for inclusion in University of New Orleans Theses and Dissertations by an authorized administrator of ScholarWorks@UNO. For more information, please contact [email protected]. The Mississippi River Delta Basin and Why We Are Failing to Save Its Wetlands A Thesis Submitted to the Graduate Faculty of the University of New Orleans in partial fulfillment of the requirements for the degree of Master of Science in Urban Studies By Lon J. Boudreaux Jr. B.S. Our Lady of Holy Cross College, 1992 M.S. University of New Orleans, 2007 August, 2007 Table of Contents Abstract.............................................................................................................................
    [Show full text]
  • Journal of the Oklahoma Native Plant Society, Volume 2, Number 1
    54 Oklahoma Native Plant Record Volume 2, Number 1, December 2002 Schoenoplectus hallii and S. saximontanus 2000 Wichita Mountain Wildlife Refuge Survey Dr. Lawrence K. Magrath Curator-USAO (OCLA) Herbarium Chickasha, OK 73018-5358 A survey to determine locations of populations of Schoenoplectus hallii and S. saximontanus was conducted at Wichita Mountains Wildlife Refuge in August and September 2000. One or both species were found at 20 of the 134 locations surveyed. A distinctive terminal achene character was found specifically that the transverse ridges of S. hallii appeared to be rounded and S. saximontanus appeared to be rounded with a projecting narrow wing. Basal macroachenes have not yet been properly described but are borne singly at the base of each culm and are about 3-4 times larger than the terminal achenes. It is speculated that amphicarpy may be related to grazing pressure, the basal macroachene being produced even if the upper portion is consumed, as a response to grazing. Both species are grazed/disturbed by bison, elk, and longhorns on the Refuge. Introduction the drawdown mud, sand, or gravel flats. A survey to determine locations of However in some places they occur in shallow populations of Schoenoplectus hallii (A. Gray) water up to a depth of about a foot [30.5cm]. S.G. Smith (Hall’s bulrush) and S. saximontanus They seem to compete with perennial emergent (Fernald) J. Raynal (Rocky Mountain bulrush) plants and with most emergent annuals. was conducted on the Wichita Mountains In addition to the 36 sites that I Wildlife Refuge during late August through personally examined, WMWR staff examined September 2000.
    [Show full text]
  • Wetlands, Biodiversity and the Ramsar Convention
    Wetlands, Biodiversity and the Ramsar Convention Wetlands, Biodiversity and the Ramsar Convention: the role of the Convention on Wetlands in the Conservation and Wise Use of Biodiversity edited by A. J. Hails Ramsar Convention Bureau Ministry of Environment and Forest, India 1996 [1997] Published by the Ramsar Convention Bureau, Gland, Switzerland, with the support of: • the General Directorate of Natural Resources and Environment, Ministry of the Walloon Region, Belgium • the Royal Danish Ministry of Foreign Affairs, Denmark • the National Forest and Nature Agency, Ministry of the Environment and Energy, Denmark • the Ministry of Environment and Forests, India • the Swedish Environmental Protection Agency, Sweden Copyright © Ramsar Convention Bureau, 1997. Reproduction of this publication for educational and other non-commercial purposes is authorised without prior perinission from the copyright holder, providing that full acknowledgement is given. Reproduction for resale or other commercial purposes is prohibited without the prior written permission of the copyright holder. The views of the authors expressed in this work do not necessarily reflect those of the Ramsar Convention Bureau or of the Ministry of the Environment of India. Note: the designation of geographical entities in this book, and the presentation of material, do not imply the expression of any opinion whatsoever on the part of the Ranasar Convention Bureau concerning the legal status of any country, territory, or area, or of its authorities, or concerning the delimitation of its frontiers or boundaries. Citation: Halls, A.J. (ed.), 1997. Wetlands, Biodiversity and the Ramsar Convention: The Role of the Convention on Wetlands in the Conservation and Wise Use of Biodiversity.
    [Show full text]
  • Subsurface Geology of Cenozoic Deposits, Gulf Coastal Plain, South-Central United States
    REGIONAL STRATIGRAPHY AND _^ SUBSURFACE GEOLOGY OF CENOZOIC DEPOSITS, GULF COASTAL PLAIN, SOUTH-CENTRAL UNITED STATES V U.S. GEOLOGICAL SURVEY PROFESSIONAL PAPER 1416-G AVAILABILITY OF BOOKS AND MAPS OF THE U.S. GEOLOGICAL SURVEY Instructions on ordering publications of the U.S. Geological Survey, along with prices of the last offerings, are given in the current-year issues of the monthly catalog "New Publications of the U.S. Geological Survey." Prices of available U.S. Geological Survey publications re­ leased prior to the current year are listed in the most recent annual "Price and Availability List." Publications that may be listed in various U.S. Geological Survey catalogs (see back inside cover) but not listed in the most recent annual "Price and Availability List" may no longer be available. Reports released through the NTIS may be obtained by writing to the National Technical Information Service, U.S. Department of Commerce, Springfield, VA 22161; please include NTIS report number with inquiry. Order U.S. Geological Survey publications by mail or over the counter from the offices listed below. BY MAIL OVER THE COUNTER Books Books and Maps Professional Papers, Bulletins, Water-Supply Papers, Tech­ Books and maps of the U.S. Geological Survey are available niques of Water-Resources Investigations, Circulars, publications over the counter at the following U.S. Geological Survey offices, all of general interest (such as leaflets, pamphlets, booklets), single of which are authorized agents of the Superintendent of Docu­ copies of Earthquakes & Volcanoes, Preliminary Determination of ments. Epicenters, and some miscellaneous reports, including some of the foregoing series that have gone out of print at the Superintendent of Documents, are obtainable by mail from ANCHORAGE, Alaska-Rm.
    [Show full text]
  • Atlantic and Gulf Coastal Plain Region SUMMARY of FINDINGS
    WETLAND DETERMINATION DATA FORM – Atlantic and Gulf Coastal Plain Region Project/Site: City/County: Sampling Date: Applicant/Owner: State: Sampling Point: Investigator(s): Section, Township, Range: Landform (hillslope, terrace, etc.): Local relief (concave, convex, none): Slope (%): Subregion (LRR or MLRA): Lat: Long: Datum: Soil Map Unit Name: NWI classification: Are climatic / hydrologic conditions on the site typical for this time of year? Yes No (If no, explain in Remarks.) Are Vegetation , Soil , or Hydrology significantly disturbed? Are “Normal Circumstances” present? Yes No Are Vegetation , Soil , or Hydrology naturally problematic? (If needed, explain any answers in Remarks.) SUMMARY OF FINDINGS – Attach site map showing sampling point locations, transects, important features, etc. Hydrophytic Vegetation Present? Yes No Is the Sampled Area Hydric Soil Present? Yes No within a Wetland? Yes No Wetland Hydrology Present? Yes No Remarks: HYDROLOGY Wetland Hydrology Indicators: Secondary Indicators (minimum of two required) Primary Indicators (minimum of one is required; check all that apply) Surface Soil Cracks (B6) Surface Water (A1) Aquatic Fauna (B13) Sparsely Vegetated Concave Surface (B8) High Water Table (A2) Marl Deposits (B15) (LRR U) Drainage Patterns (B10) Saturation (A3) Hydrogen Sulfide Odor (C1) Moss Trim Lines (B16) Water Marks (B1) Oxidized Rhizospheres along Living Roots (C3) Dry-Season Water Table (C2) Sediment Deposits (B2) Presence of Reduced Iron (C4) Crayfish Burrows (C8) Drift Deposits (B3) Recent Iron Reduction
    [Show full text]