Atlas of Crabs of the Persian Gulf Reza Naderloo
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
A Classification of Living and Fossil Genera of Decapod Crustaceans
RAFFLES BULLETIN OF ZOOLOGY 2009 Supplement No. 21: 1–109 Date of Publication: 15 Sep.2009 © National University of Singapore A CLASSIFICATION OF LIVING AND FOSSIL GENERA OF DECAPOD CRUSTACEANS Sammy De Grave1, N. Dean Pentcheff 2, Shane T. Ahyong3, Tin-Yam Chan4, Keith A. Crandall5, Peter C. Dworschak6, Darryl L. Felder7, Rodney M. Feldmann8, Charles H. J. M. Fransen9, Laura Y. D. Goulding1, Rafael Lemaitre10, Martyn E. Y. Low11, Joel W. Martin2, Peter K. L. Ng11, Carrie E. Schweitzer12, S. H. Tan11, Dale Tshudy13, Regina Wetzer2 1Oxford University Museum of Natural History, Parks Road, Oxford, OX1 3PW, United Kingdom [email protected] [email protected] 2Natural History Museum of Los Angeles County, 900 Exposition Blvd., Los Angeles, CA 90007 United States of America [email protected] [email protected] [email protected] 3Marine Biodiversity and Biosecurity, NIWA, Private Bag 14901, Kilbirnie Wellington, New Zealand [email protected] 4Institute of Marine Biology, National Taiwan Ocean University, Keelung 20224, Taiwan, Republic of China [email protected] 5Department of Biology and Monte L. Bean Life Science Museum, Brigham Young University, Provo, UT 84602 United States of America [email protected] 6Dritte Zoologische Abteilung, Naturhistorisches Museum, Wien, Austria [email protected] 7Department of Biology, University of Louisiana, Lafayette, LA 70504 United States of America [email protected] 8Department of Geology, Kent State University, Kent, OH 44242 United States of America [email protected] 9Nationaal Natuurhistorisch Museum, P. O. Box 9517, 2300 RA Leiden, The Netherlands [email protected] 10Invertebrate Zoology, Smithsonian Institution, National Museum of Natural History, 10th and Constitution Avenue, Washington, DC 20560 United States of America [email protected] 11Department of Biological Sciences, National University of Singapore, Science Drive 4, Singapore 117543 [email protected] [email protected] [email protected] 12Department of Geology, Kent State University Stark Campus, 6000 Frank Ave. -
Downloaded from Brill.Com10/11/2021 08:33:28AM Via Free Access 224 E
Contributions to Zoology, 67 (4) 223-235 (1998) SPB Academic Publishing bv, Amsterdam Optics and phylogeny: is there an insight? The evolution of superposition eyes in the Decapoda (Crustacea) Edward Gaten Department of Biology, University’ ofLeicester, Leicester LEI 7RH, U.K. E-mail: [email protected] Keywords: Compound eyes, superposition optics, adaptation, evolution, decapod crustaceans, phylogeny Abstract cannot normally be predicted by external exami- nation alone, and usually microscopic investiga- This addresses the of structure and in paper use eye optics the tion of properly fixed optical elements is required construction of and crustacean phylogenies presents an hypoth- for a complete diagnosis. This largely rules out esis for the evolution of in the superposition eyes Decapoda, the use of fossil material in the based the of in comparatively on distribution eye types extant decapod fami- few lies. It that arthropodan specimens where the are is suggested reflecting superposition optics are eyes symplesiomorphic for the Decapoda, having evolved only preserved (Glaessner, 1969), although the optics once, probably in the Devonian. loss of Subsequent reflecting of some species of trilobite have been described has superposition optics occurred following the adoption of a (Clarkson & Levi-Setti, 1975). Also the require- new habitat (e.g. Aristeidae,Aeglidae) or by progenetic paedo- ment for good fixation and the fact that complete morphosis (Paguroidea, Eubrachyura). examination invariably involves the destruction of the specimen means that museum collections Introduction rarely reveal enough information to define the optics unequivocally. Where the optics of the The is one of the compound eye most complex component parts of the eye are under investiga- and remarkable not on of its fixation organs, only account tion, specialised to preserve the refrac- but also for the optical precision, diversity of tive properties must be used (Oaten, 1994). -
Zootaxa,Crustacean Classification
Zootaxa 1668: 313–325 (2007) ISSN 1175-5326 (print edition) www.mapress.com/zootaxa/ ZOOTAXA Copyright © 2007 · Magnolia Press ISSN 1175-5334 (online edition) Crustacean classification: on-going controversies and unresolved problems* GEOFF A. BOXSHALL Department of Zoology, The Natural History Museum, Cromwell Road, London SW7 5BD, United Kingdom E-mail: [email protected] *In: Zhang, Z.-Q. & Shear, W.A. (Eds) (2007) Linnaeus Tercentenary: Progress in Invertebrate Taxonomy. Zootaxa, 1668, 1–766. Table of contents Abstract . 313 Introduction . 313 Treatment of parasitic Crustacea . 315 Affinities of the Remipedia . 316 Validity of the Entomostraca . 318 Exopodites and epipodites . 319 Using of larval characters in estimating phylogenetic relationships . 320 Fossils and the crustacean stem lineage . 321 Acknowledgements . 322 References . 322 Abstract The journey from Linnaeus’s original treatment to modern crustacean systematics is briefly characterised. Progress in our understanding of phylogenetic relationships within the Crustacea is linked to continuing discoveries of new taxa, to advances in theory and to improvements in methodology. Six themes are discussed that serve to illustrate some of the major on-going controversies and unresolved problems in the field as well as to illustrate changes that have taken place since the time of Linnaeus. These themes are: 1. the treatment of parasitic Crustacea, 2. the affinities of the Remipedia, 3. the validity of the Entomostraca, 4. exopodites and epipodites, 5. using larval characters in estimating phylogenetic rela- tionships, and 6. fossils and the crustacean stem-lineage. It is concluded that the development of the stem lineage concept for the Crustacea has been dominated by consideration of taxa known only from larval or immature stages. -
The Biology of Terebra Gouldi Deshayes, 1859, and a Discussion Oflife History Similarities Among Other Terebrids of Similar Proboscis Type!
Pacific Science (1975), Vol. 29, No.3, p. 227-241 Printed in Great Britain The Biology of Terebra gouldi Deshayes, 1859, and a Discussion ofLife History Similarities among Other Terebrids of Similar Proboscis Type! BRUCE A. MILLER2 ABSTRACT: Although gastropods of the family Terebridae are common in sub tidal sand communities throughout the tropics, Terebra gouldi, a species endemic to the Hawaiian Islands, is the first terebrid for which a complete life history is known. Unlike most toxoglossan gastropods, which immobilize their prey through invenomation, T. gouldi possesses no poison apparatus and captures its prey with a long muscular proboscis. It is a primary carnivore, preying exclusively on the enteropneust Ptychodera flava, a nonselective deposit feeder. The snail lies com pletely buried in the sand during the day, but emerges to search for prey after dark. Prey are initially detected by distance chemoreception, but contact of the anterior foot with the prey is necessary for proboscis eversion and feeding. The sexes in T. gouldi are separate, and copulation takes place under the sand. Six to eight spherical eggs are deposited in a stalked capsule, and large numbers of capsules are attached in a cluster to coral or pebbles. There is no planktonic larval stage. Juveniles hatch through a perforation in the capsule from 30-40 days after development begins and immediately burrow into the sand. Growth is relatively slow. Young individuals may grow more than 1 cm per year, but growth rates slow considerably with age. Adults grow to a maximum size of 8 cm and appear to live 7-10 years. -
Fresh Record of the Moon Crab Matuta Victor (Fabricius, 1781) (Crustacea: Decapoda: Matutidae) from the Odisha Coast After a Century
Indian Journal of Geo Marine Sciences Vol. 47 (09), September 2018, pp. 1782-1786 Fresh record of the moon crab Matuta victor (Fabricius, 1781) (Crustacea: Decapoda: Matutidae) from the Odisha coast after a century Durga Prasad Behera1, Lakshman Nayak1 & Sunil Kumar Sahu2,3* 1P.G. Department of Marine Sciences, Berhampur University, India -760 007 2School of Life Science, Sun Yat-sen University, Guangzhou, China – 510 275 3BGI-Research, BGI-Shenzhen, Shenzhen, China – 518 083 *[Email: [email protected]] Received 29 December 2016; revised 20 April 2017 The recurrence of common moon crab Matuta victor (Fabricius, 1781) was recorded from near shore waters of Gopalpur port of the Ganjam district, Odisha after a century. Totally ten specimens were collected which comprised of 5 males and 5 females. Matuta victor was first reported in Chilika Lake during 1915. [Keywords: Recurrence; Crab; Matuta victor; Odisha; Super cyclone] Introduction Regarding information on crab diversity along south Considering the ecological and the habitat point of Odisha, Rath and Devroy reported 22 species from view the crabs represents a most significant crustacean 16 genera and 4 families in Banshadhara, Nagabali resource in offshore trawling1-2. The coastal and and Bahuda estuary23-24. The most attractive crabs in offshore water of Odisha forms a rich and diverse the tropical and subtropical area belong to family habitat for many pelagic and demersal fishery resources Calapidae and Mututidae which is popularly known as including crab. Brachyuran crabs are among the most shame faces or moon crabs 25. species-rich animal groups as studied by different On Odisha coast, the moon crab Matuta victor authors 3-4. -
Crustacea: Decapoda: Brachyura: Macrophthalmidae)
Zootaxa 3826 (2): 369–376 ISSN 1175-5326 (print edition) www.mapress.com/zootaxa/ Article ZOOTAXA Copyright © 2014 Magnolia Press ISSN 1175-5334 (online edition) http://dx.doi.org/10.11646/zootaxa.3826.2.6 http://zoobank.org/urn:lsid:zoobank.org:pub:F6BD92F8-1485-4154-9290-358B05061548 Tritodynamia serratipes sp. nov., a new marine crab from Singapore (Crustacea: Decapoda: Brachyura: Macrophthalmidae) ARTHUR ANKER1 & PETER K. L. NG1,2 1Tropical Marine Science Institute, National University of Singapore, Singapore, Republic of Singapore. E-mail: [email protected] 2Lee Kong Chian Natural History Museum, National University of Singapore, Singapore, Republic of Singapore. E-mail: [email protected] Abstract Tritodynamia serratipes sp. nov. is described based on a female specimen dredged on soft mud at a depth of 6.3–6.5 m, near Marina East, only a few kilometers from Singapore’s city centre. The new species differs from all other species of Tritodynamia Ortmann, 1894 by a unique combination of morphological characters, including the posterior margin of the propodus of the second ambulatory leg armed with a row of particularly strong teeth, and the cutting edges of dactylus and pollex each proximally armed with two stout teeth. Tritodynamia serratipes sp. nov. is the second species of the genus described from tropical Asia. Key words: Tritodynamia, new species, South-East Asia, Singapore Introduction Tritodynamia Ortmann, 1894, previously classified as a pinnotherid crab genus, is currently regarded as a member of the family Macrophthalmidae Dana, 1851, in the monogeneric subfamily Tritodynamiinae Števčić, 2005 (see Ng et al. 2008; Naruse & Ng 2010). According to the most recent assessments of Tritodynamia (Yang & Tang 2005; Ng et al. -
Brachyura, Majoidea) Genera Acanthonyx Latreille, 1828 and Epialtus H
Nauplius 20(2): 179-186, 2012 179 Range extensions along western Atlantic for Epialtidae crabs (Brachyura, Majoidea) genera Acanthonyx Latreille, 1828 and Epialtus H. Milne Edwards, 1834 Ana Francisca Tamburus and Fernando L. Mantelatto Laboratory of Bioecology and Crustacean Systematics (LBSC) - Postgraduate Program in Comparative Biology - Department of Biology - Faculty of Philosophy, Sciences and Letters of Ribeirão Preto (FFCLRP) - University of São Paulo (USP). Av. Bandeirantes 3900, CEP 14040- 901, Ribeirão Preto (SP), Brazil. E-mails: (AFT) [email protected]; (FLM) [email protected] Abstract The present study provided information extending the known geographical distribution of three species of majoid crabs, the epialtids Acanthonyx dissimulatus Coelho, 1993, Epialtus bituberculatus H. Milne Edwards, 1834, and E. brasiliensis Dana, 1852. Specimens of both genera from different carcinological collections were studied by comparing morphological characters. We provide new data that extends the geographical distributions of E. bituberculatus to the coast of the states of Paraná and Santa Catarina (Brazil), and offer new records from Belize and Costa Rica. Epialtus brasiliensis is recorded for the first time in the state of Rio Grande do Sul (Brazil), and A. dissimulatus is reported from Quintana Roo, Mexico. The distribution of A. dissimulatus, previously known as endemic to Brazil, has a gap between the states of Espírito Santo and Rio de Janeiro. However, this restricted southern distribution is herein amplified by the Mexican specimens. Key words: Geographic distribution, majoid, new records, spider crabs. Introduction (Melo, 1996). Epialtus bituberculatus H. Milne Edwards, 1834 has been from Florida (USA), The family Epialtidae MacLeay, 1838 Gulf of Mexico, West Indies, Colombia, includes 76 genera, among them Acanthonyx Venezuela and Brazil (Ceará to São Paulo Latreille, 1828 and Epialtus H. -
Part I. an Annotated Checklist of Extant Brachyuran Crabs of the World
THE RAFFLES BULLETIN OF ZOOLOGY 2008 17: 1–286 Date of Publication: 31 Jan.2008 © National University of Singapore SYSTEMA BRACHYURORUM: PART I. AN ANNOTATED CHECKLIST OF EXTANT BRACHYURAN CRABS OF THE WORLD Peter K. L. Ng Raffles Museum of Biodiversity Research, Department of Biological Sciences, National University of Singapore, Kent Ridge, Singapore 119260, Republic of Singapore Email: [email protected] Danièle Guinot Muséum national d'Histoire naturelle, Département Milieux et peuplements aquatiques, 61 rue Buffon, 75005 Paris, France Email: [email protected] Peter J. F. Davie Queensland Museum, PO Box 3300, South Brisbane, Queensland, Australia Email: [email protected] ABSTRACT. – An annotated checklist of the extant brachyuran crabs of the world is presented for the first time. Over 10,500 names are treated including 6,793 valid species and subspecies (with 1,907 primary synonyms), 1,271 genera and subgenera (with 393 primary synonyms), 93 families and 38 superfamilies. Nomenclatural and taxonomic problems are reviewed in detail, and many resolved. Detailed notes and references are provided where necessary. The constitution of a large number of families and superfamilies is discussed in detail, with the positions of some taxa rearranged in an attempt to form a stable base for future taxonomic studies. This is the first time the nomenclature of any large group of decapod crustaceans has been examined in such detail. KEY WORDS. – Annotated checklist, crabs of the world, Brachyura, systematics, nomenclature. CONTENTS Preamble .................................................................................. 3 Family Cymonomidae .......................................... 32 Caveats and acknowledgements ............................................... 5 Family Phyllotymolinidae .................................... 32 Introduction .............................................................................. 6 Superfamily DROMIOIDEA ..................................... 33 The higher classification of the Brachyura ........................ -
A New Classification of the Xanthoidea Sensu Lato
Contributions to Zoology, 75 (1/2) 23-73 (2006) A new classifi cation of the Xanthoidea sensu lato (Crustacea: Decapoda: Brachyura) based on phylogenetic analysis and traditional systematics and evaluation of all fossil Xanthoidea sensu lato Hiroaki Karasawa1, Carrie E. Schweitzer2 1Mizunami Fossil Museum, Yamanouchi, Akeyo, Mizunami, Gifu 509-6132, Japan, e-mail: GHA06103@nifty. com; 2Department of Geology, Kent State University Stark Campus, 6000 Frank Ave. NW, North Canton, Ohio 44720, USA, e-mail: [email protected] Key words: Crustacea, Decapoda, Brachyura, Xanthoidea, Portunidae, systematics, phylogeny Abstract Family Pilumnidae ............................................................. 47 Family Pseudorhombilidae ............................................... 49 A phylogenetic analysis was conducted including representatives Family Trapeziidae ............................................................. 49 from all recognized extant and extinct families of the Xanthoidea Family Xanthidae ............................................................... 50 sensu lato, resulting in one new family, Hypothalassiidae. Four Superfamily Xanthoidea incertae sedis ............................... 50 xanthoid families are elevated to superfamily status, resulting in Superfamily Eriphioidea ......................................................... 51 Carpilioidea, Pilumnoidoidea, Eriphioidea, Progeryonoidea, and Family Platyxanthidae ....................................................... 52 Goneplacoidea, and numerous subfamilies are elevated -
Chaenostoma Sinuspersici
Nauplius SHORT COMMUNICATION THE JOURNAL OF THE On the distribution range of BRAZILIAN CRUSTACEAN SOCIETY Chaenostoma sinuspersici (Naderloo & Türkay, 2011) (Decapoda: Brachyura: e-ISSN 2358-2936 www.scielo.br/nau Macrophthalmidae) in Indian waters www.crustacea.org.br Jigneshkumar N. Trivedi1 Kauresh D. Vachhrajani1 orcid.org/0000-0002-6840-4752 1 Marine Biodiversity and Ecology Lab., Department of Zoology, Faculty of Science, Th e Maharaja Sayajirao University of Baroda, Vadodara-390002, Gujarat, India. ZOOBANK htt p://zoobank.org/urn:lsid:zoobank.org:pub:5CBAF7D7-265F-4352- B850-1C290A9F867A ABSTRACT Chaenostoma sinuspersici (Naderloo & Türkay, 2011) (Macrophthalmidae) is recorded for the fi rst time in Indian waters. Th e species has so far been only reported from the western Indian Ocean and Arabian Sea. KEY WORDS Range extension, species complex, rocky shore, Gujarat, fi rst record. Th e genusChaenostoma (Stimpson, 1858) of family Macrophthalmidae is composed of small sized crabs which are common on the rocky shores of tropical and subtropical regions (Litulo, 2005; Davie, 2012). Chaenostoma currently contains six species: Chaenostoma boscii (Audouin, 1826), Chaenostoma punctulatus (Miers, 1884), Chaenostoma sinuspersici (Naderloo & Türkay, 2011), Chaenostoma java Naderloo, 2013, Chaenostoma orientale Stimpson, 1858 and Chaenostoma crassimanus Stimpson, 1858 (Stimpson, 1858; Ng et al. 2008; Naderloo and Türkay, 2011; Naderloo, 2013; Shih et al., 2015, Teng et al., 2016). Another species, Chaenostoma lisae (Poupin & Bouchard, 2010) is now considered as junior synonym of C. crassimanus (Shih et al., 2015; Teng et al., 2016). Chaenostoma sinuspersici was described from Persian Gulf and has a widespread distribution in Indo-West Pacifi c (Naderloo and Türkay, 2011; Teng et al., 2016). -
(Brachyura) Di Pulau Tikus, Gugusan Pulau Pari, Kepulauan Seribu
PROS SEM NAS MASY BIODIV INDON Volume 1, Nomor 2, April 2015 ISSN: 2407-8050 Halaman: 213-221 DOI: 10.13057/psnmbi/ m010208 Sebaran kepiting (Brachyura) di Pulau Tikus, Gugusan Pulau Pari, Kepulauan Seribu Brachyuran crab distribution in Tikus Island, Pari Island Group, Seribu Islands PIPIT ANGGRAENI1,♥, DEWI ELFIDASARI1, RIANTA PRATIWI2 1Jurusan Biologi, Fakultas Sains dan Teknologi, Universitas Al Azhar Indonesia. Komplek Masjid Agung Jl. Sisingamangaraja Kebayoran Baru, Jakarta. Tel.: +62-21-72792753, Fax.: +62-21-7244767,♥email: [email protected] 2Pusat Penelitian Oseanografi LIPI. Jl. Pasir Putih Ancol Timur, Jakarta Utara (Kota), Jakarta Manuskrip diterima: 8 Desember 2014. Revisi disetujui: 1 Februari 2015. Abstrak. Anggraeni P, Elfidasari D, Pratiwi R. 2015. Sebaran kepiting (Brachyura) di Pulau Tikus, Gugusan Pulau Pari, Kepulauan Seribu.Pros Sem Nas Masy Biodiv Indon 1 (2): 213-221. Kepiting (Brachyura) merupakan salah satu spesies kunci (keystone species) yang memegang peranan penting di alam. Terdapat ± 150.000 Crustacea yang belum diidentifikasi termasuk kepiting (Brachyura). Penelitian ini bertujuan untuk menganalisa sebaran kepiting (Brachyura) di Pulau Tikus Gugus Pulau Pari, Kepulauan Seribu dengan menggunakan metode transek kuadrat. Transek kuadrat mewakili bagian barat, utara, timur dan selatan Pulau Tikus. Hasil penelitan menunjukkan terdapat 34 jenis dengan total 11 famili kepiting (Brachyura) dari Pulau Tikus yaitu Portunidae, Majidae, Galenidae, Dromiidae, Calappidae, Ocypodidae, Grapsidae, Porcellanidae, Macrophthalmidae, Xanthidae dan Pilumnidae. Keseluruhan jenis kepiting memiliki sebaran pada berbagai habitat dengan substrat yang berbeda sesuai dengan jenis kepiting dan kemampuan adaptasi terhadap lingkungan. Sebaran kepiting bergantung dari keberadaan substrat dan ekosistem sekitar perairan yang mendukung perolehan makanan kepiting. Kata kunci: Kepiting, Brachyura, sebaran, transek kuadrat, Pulau Tikus Abstrak. -
The Crustacea Decapoda (Brachyura and Anomura) of Eniwetok Atoll, Marshall Islands, with Special Reference to the Obligate Commensals of Branching Corals 1
The Crustacea Decapoda (Brachyura and Anomura) of Eniwetok Atoll, Marshall Islands, with special reference to the obligate commensals of branching corals 1 John S. GARTH Allan Hancock Foundation Univer5ity of Southern California 2 and Eniwetok Ma rine Biological Laboratory Introduction The brachyuran decapod crustaceans of the Marsh all Islands have been reviewed by Balss (1938) and by Miyake (1938, 1939). These reports stem from the German and Jap anese occupations, respect ively, the former being the result of the Pacific Exp edition of Dr. Sixten Bock, 1917-1918, the latter th e result of the Micronesia Expedition of Prof. Te iso Esaki, 1937-1938. According to Fosberg (1956, p. 1), J aluit Atoll was the headquarters of both the German and the Japan ese administrations, a fact that accounts for the preponderanc e of record s from the southern Marshall Isl ands. Additional coverage of the southern Marsh alls was provided by the 1950 Arno Atoll Expedition of the Coral Atoll Program of the Pa cific Science Board, the decapod crustaceans collected by Dr. R. W. Hiatt having been reported by Holthuis (1953). Carcinologically speak ing, the northern Marshalls ar e less well known, collections having been made only at Likieb Atoll by both Dr. Bock and Prof. Esaki and at Kwajalein Atoll by Prof . Esaki alone. Except for the shrimps, reported by Chace (1955), the extensive collections made in connection with Operation Crossroads in 1946- 1947, which includ ed Bikini, Rongelap, Rongerik, and Eniwetok atolls (Fosberg, 1956, p. 4), are at the U.S. Nationa l Museum awaiting stud y.