The Case for a Long-Lived and Robust Yellowstone Hotspot Science Editor Openings for 2022
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Global Structure of the Martian Dichotomy: an Elliptical Impact Basin? J
Lunar and Planetary Science XXXIX (2008) 1980.pdf GLOBAL STRUCTURE OF THE MARTIAN DICHOTOMY: AN ELLIPTICAL IMPACT BASIN? J. C. Andrews-Hanna1, M. T. Zuber1, and W. B. Banerdt2 (1Dept. of Earth, Atm., and Planetary Sciences, Massachusetts Institute of Technology, Cambridge, MA 02139-4307, [email protected]; 2JPL, Caltech, Pasadena, CA 91109). Introduction: The topography and crustal Tharsis (Figure 2b). Short-wavelength anomalies in the thickness of Mars are dominated by the near- model crustal roots can result from either local density hemispheric dichotomy between the southern anomalies or the spatially- and temporally-variable highlands and northern lowlands. The dichotomy lithosphere thickness during Tharsis construction. boundary can be traced along an apparently irregular Thus, the roots are negative beneath younger portions path around the planet, except where it is buried of the rise that are likely composed of dense lava flows beneath the Tharsis volcanic rise [1]. The isostatic and supported by a thicker lithosphere (e.g., Olympus compensation of the dichotomy [2] and the ancient Mons), and positive beneath older portions that are population of buried impact craters beneath the largely isostatic today (e.g., Tempe Terra). lowlands [3] suggest that the dichotomy is one of the Nevertheless, we are able to map the dichotomy most ancient features on the planet. Early workers boundary both beneath Tharsis and elsewhere (Figure suggested a giant impact origin for the dichotomy [4], 2b). The location of the sub-Tharsis dichotomy but the attempted fit of a circular “Borealis basin” to boundary is largely insensitive to the choice of the irregular dichotomy boundary proved lithosphere thickness. -
Flood Basalts and Glacier Floods—Roadside Geology
u 0 by Robert J. Carson and Kevin R. Pogue WASHINGTON DIVISION OF GEOLOGY AND EARTH RESOURCES Information Circular 90 January 1996 WASHINGTON STATE DEPARTMENTOF Natural Resources Jennifer M. Belcher - Commissioner of Public Lands Kaleen Cottingham - Supervisor FLOOD BASALTS AND GLACIER FLOODS: Roadside Geology of Parts of Walla Walla, Franklin, and Columbia Counties, Washington by Robert J. Carson and Kevin R. Pogue WASHINGTON DIVISION OF GEOLOGY AND EARTH RESOURCES Information Circular 90 January 1996 Kaleen Cottingham - Supervisor Division of Geology and Earth Resources WASHINGTON DEPARTMENT OF NATURAL RESOURCES Jennifer M. Belcher-Commissio11er of Public Lands Kaleeo Cottingham-Supervisor DMSION OF GEOLOGY AND EARTH RESOURCES Raymond Lasmanis-State Geologist J. Eric Schuster-Assistant State Geologist William S. Lingley, Jr.-Assistant State Geologist This report is available from: Publications Washington Department of Natural Resources Division of Geology and Earth Resources P.O. Box 47007 Olympia, WA 98504-7007 Price $ 3.24 Tax (WA residents only) ~ Total $ 3.50 Mail orders must be prepaid: please add $1.00 to each order for postage and handling. Make checks payable to the Department of Natural Resources. Front Cover: Palouse Falls (56 m high) in the canyon of the Palouse River. Printed oo recycled paper Printed io the United States of America Contents 1 General geology of southeastern Washington 1 Magnetic polarity 2 Geologic time 2 Columbia River Basalt Group 2 Tectonic features 5 Quaternary sedimentation 6 Road log 7 Further reading 7 Acknowledgments 8 Part 1 - Walla Walla to Palouse Falls (69.0 miles) 21 Part 2 - Palouse Falls to Lower Monumental Dam (27.0 miles) 26 Part 3 - Lower Monumental Dam to Ice Harbor Dam (38.7 miles) 33 Part 4 - Ice Harbor Dam to Wallula Gap (26.7 mi les) 38 Part 5 - Wallula Gap to Walla Walla (42.0 miles) 44 References cited ILLUSTRATIONS I Figure 1. -
MARS DURING the PRE-NOACHIAN. J. C. Andrews-Hanna1 and W. B. Bottke2, 1Lunar and Planetary La- Boratory, University of Arizona
Fourth Conference on Early Mars 2017 (LPI Contrib. No. 2014) 3078.pdf MARS DURING THE PRE-NOACHIAN. J. C. Andrews-Hanna1 and W. B. Bottke2, 1Lunar and Planetary La- boratory, University of Arizona, Tucson, AZ 85721, [email protected], 2Southwest Research Institute and NASA’s SSERVI-ISET team, 1050 Walnut St., Suite 300, Boulder, CO 80302. Introduction: The surface geology of Mars appar- ing the pre-Noachian was ~10% of that during the ently dates back to the beginning of the Early Noachi- LHB. Consideration of the sawtooth-shaped exponen- an, at ~4.1 Ga, leaving ~400 Myr of Mars’ earliest tially declining impact fluxes both in the aftermath of evolution effectively unconstrained [1]. However, an planet formation and during the Late Heavy Bom- enduring record of the earlier pre-Noachian conditions bardment [5] suggests that the impact flux during persists in geophysical and mineralogical data. We use much of the pre-Noachian was even lower than indi- geophysical evidence, primarily in the form of the cated above. This bombardment history is consistent preservation of the crustal dichotomy boundary, to- with a late heavy bombardment (LHB) of the inner gether with mineralogical evidence in order to infer the Solar System [6] during which HUIA formed, which prevailing surface conditions during the pre-Noachian. followed the planet formation era impacts during The emerging picture is a pre-Noachian Mars that was which the dichotomy formed. less dynamic than Noachian Mars in terms of impacts, Pre-Noachian Tectonism and Volcanism: The geodynamics, and hydrology. crust within each of the southern highlands and north- Pre-Noachian Impacts: We define the pre- ern lowlands is remarkably uniform in thickness, aside Noachian as the time period bounded by two impacts – from regions in which it has been thickened by volcan- the dichotomy-forming impact and the Hellas-forming ism (e.g., Tharsis, Elysium) or thinned by impacts impact. -
GEOG 442 – the Great Extinctions Evolution Has Spawned An
GEOG 442 – The Great Extinctions Evolution has spawned an incredible diversity of lineages from nearly the beginning of the planet itself to the present. Speciation often results from the isolation of a population of organisms, which then evolve along their own trajectories, depending on such factors as founder effect, genetic drift, and natural selection in environments that are different to some extent from the range of environments from which they've been isolated. Speciation can be allopatric or sympatric. Once a new species forms, it is endemic to its source region. It may then be later able to escape its source region, migrating into new regions and even becoming cosmopolitan. Even a cosmopolitan species is subject to environmental change out of its environmental envelope and to competition from other species. This can then set off a process of decline and local extirpations across its range, resulting in disjunct distribution, eventually recreating an endemic distribution in its last redoubt before its final extinction. Extinction, then, is the normal fate of species. If a species is lucky, it may go extinct by dint of having evolved into one or more daughter lineages that are so divergent from the parent that we consider the parent extinct. Many species are not lucky: Their last lineage fades out. Extinction is normal. We can talk about the background extinction rate, the normal loss of species and lineages through time. The average duration of species is somewhere between 1 and 13 million years, depending on the kind of critter we're talking about. Mammal species tend to last about 1-2 million years; unicellular dinoflagellate algae are on the other end at 13 million years. -
December 2012 Number 1
Calochortiana December 2012 Number 1 December 2012 Number 1 CONTENTS Proceedings of the Fifth South- western Rare and Endangered Plant Conference Calochortiana, a new publication of the Utah Native Plant Society . 3 The Fifth Southwestern Rare and En- dangered Plant Conference, Salt Lake City, Utah, March 2009 . 3 Abstracts of presentations and posters not submitted for the proceedings . 4 Southwestern cienegas: Rare habitats for endangered wetland plants. Robert Sivinski . 17 A new look at ranking plant rarity for conservation purposes, with an em- phasis on the flora of the American Southwest. John R. Spence . 25 The contribution of Cedar Breaks Na- tional Monument to the conservation of vascular plant diversity in Utah. Walter Fertig and Douglas N. Rey- nolds . 35 Studying the seed bank dynamics of rare plants. Susan Meyer . 46 East meets west: Rare desert Alliums in Arizona. John L. Anderson . 56 Calochortus nuttallii (Sego lily), Spatial patterns of endemic plant spe- state flower of Utah. By Kaye cies of the Colorado Plateau. Crystal Thorne. Krause . 63 Continued on page 2 Copyright 2012 Utah Native Plant Society. All Rights Reserved. Utah Native Plant Society Utah Native Plant Society, PO Box 520041, Salt Lake Copyright 2012 Utah Native Plant Society. All Rights City, Utah, 84152-0041. www.unps.org Reserved. Calochortiana is a publication of the Utah Native Plant Society, a 501(c)(3) not-for-profit organi- Editor: Walter Fertig ([email protected]), zation dedicated to conserving and promoting steward- Editorial Committee: Walter Fertig, Mindy Wheeler, ship of our native plants. Leila Shultz, and Susan Meyer CONTENTS, continued Biogeography of rare plants of the Ash Meadows National Wildlife Refuge, Nevada. -
Russian Museums Visit More Than 80 Million Visitors, 1/3 of Who Are Visitors Under 18
Moscow 4 There are more than 3000 museums (and about 72 000 museum workers) in Russian Moscow region 92 Federation, not including school and company museums. Every year Russian museums visit more than 80 million visitors, 1/3 of who are visitors under 18 There are about 650 individual and institutional members in ICOM Russia. During two last St. Petersburg 117 years ICOM Russia membership was rapidly increasing more than 20% (or about 100 new members) a year Northwestern region 160 You will find the information aboutICOM Russia members in this book. All members (individual and institutional) are divided in two big groups – Museums which are institutional members of ICOM or are represented by individual members and Organizations. All the museums in this book are distributed by regional principle. Organizations are structured in profile groups Central region 192 Volga river region 224 Many thanks to all the museums who offered their help and assistance in the making of this collection South of Russia 258 Special thanks to Urals 270 Museum creation and consulting Culture heritage security in Russia with 3M(tm)Novec(tm)1230 Siberia and Far East 284 © ICOM Russia, 2012 Organizations 322 © K. Novokhatko, A. Gnedovsky, N. Kazantseva, O. Guzewska – compiling, translation, editing, 2012 [email protected] www.icom.org.ru © Leo Tolstoy museum-estate “Yasnaya Polyana”, design, 2012 Moscow MOSCOW A. N. SCRiAbiN MEMORiAl Capital of Russia. Major political, economic, cultural, scientific, religious, financial, educational, and transportation center of Russia and the continent MUSEUM Highlights: First reference to Moscow dates from 1147 when Moscow was already a pretty big town. -
Arxiv:2003.06799V2 [Astro-Ph.EP] 6 Feb 2021
Thomas Ruedas1,2 Doris Breuer2 Electrical and seismological structure of the martian mantle and the detectability of impact-generated anomalies final version 18 September 2020 published: Icarus 358, 114176 (2021) 1Museum für Naturkunde Berlin, Germany 2Institute of Planetary Research, German Aerospace Center (DLR), Berlin, Germany arXiv:2003.06799v2 [astro-ph.EP] 6 Feb 2021 The version of record is available at http://dx.doi.org/10.1016/j.icarus.2020.114176. This author pre-print version is shared under the Creative Commons Attribution Non-Commercial No Derivatives License (CC BY-NC-ND 4.0). Electrical and seismological structure of the martian mantle and the detectability of impact-generated anomalies Thomas Ruedas∗ Museum für Naturkunde Berlin, Germany Institute of Planetary Research, German Aerospace Center (DLR), Berlin, Germany Doris Breuer Institute of Planetary Research, German Aerospace Center (DLR), Berlin, Germany Highlights • Geophysical subsurface impact signatures are detectable under favorable conditions. • A combination of several methods will be necessary for basin identification. • Electromagnetic methods are most promising for investigating water concentrations. • Signatures hold information about impact melt dynamics. Mars, interior; Impact processes Abstract We derive synthetic electrical conductivity, seismic velocity, and density distributions from the results of martian mantle convection models affected by basin-forming meteorite impacts. The electrical conductivity features an intermediate minimum in the strongly depleted topmost mantle, sandwiched between higher conductivities in the lower crust and a smooth increase toward almost constant high values at depths greater than 400 km. The bulk sound speed increases mostly smoothly throughout the mantle, with only one marked change at the appearance of β-olivine near 1100 km depth. -
1783-84 Laki Eruption, Iceland
1783-84 Laki eruption, Iceland Eruption History and Atmospheric Effects Thor Thordarson Faculty of Earth sciences, University of Iceland 12/8/2017 1 Atmospheric Effects of the 1783-84 Laki Eruption in Iceland Outline . Volcano-Climate interactions - background Laki eruption . Eruption history . Sulfur release and aerosol loading . Plume transport and aerosol dispersal . Environmental and climatic effects 12/8/2017. Concluding Remarks 2 Santorini, 1628 BC Tambora, 1815 Etna, 44 BC Lakagígar, 1783 Toba, 71,000 BP Famous Volcanic Eruptions Krakatau, 1883 Pinatubo, 1991 El Chichón, 1982 Agung, 1963 St. Helens, 1980 Major volcanic eruptions of the past 250 years Volcano Year VEI d.v.i/Emax IVI Lakagígar [Laki craters], Iceland 1783 4 2300 0.19 Unknown (El Chichón?) 1809 0.20 Tambora, Sumbawa, Indonesia 1815 7 3000 0.50 Cosiguina, Nicaragua 1835 5 4000 0.11 Askja, Iceland 1875 5 1000 0.01* Krakatau, Indonesia 1883 6 1000 0.12 Okataina [Tarawera], North Island, NZ 1886 5 800 0.04 Santa Maria, Guatemala 1902 6 600 0.05 Ksudach, Kamchatka, Russia 1907 5 500 0.02 Novarupta [Katmai], Alaska, US 1912 6 500 0.15 Agung, Bali, Indonesia 1963 4 800 0.06 Mt. St. Helens, Washington, US 1980 5 500 0.00 El Chichón, Chiapas, Mexico 1982 5 800 0.06 Mt. Pinatubo, Luzon, Philippines 1991 6 1000 — Volcano – Climate Interactions Key to Volcanic Forcing is: SO2 mass loading, eruption duration plume height replenishment aerosol production, residence time 12/8/2017 5 Volcanic Forcing: sulfur dioxide sulfate aerosols SO2 75%H2SO4+ 25%H2O clear sky 1991 Pinatubo aerosols -
Análisis Geológico De La Región Oxia Planum En Marte, Sitio Principal De Aterrizaje De La Misión Exomars 2020
UNIVERSIDAD NACIONAL AUTÓNOMA DE MÉXICO FACULTAD DE INGENIERÍA Análisis geológico de la región Oxia Planum en Marte, sitio principal de aterrizaje de la Misión ExoMars 2020 TESIS Que para obtener el título de Ingeniera Geóloga P R E S E N T A Karen Itzel Reyes Ayala DIRECTOR DE TESIS Dr. Primož Kajdič Ciudad Universitaria, Cd. Mx., 2016. Jurado asignado Presidente: Dr. Jaime Humberto Urrutia Fucugauchi Vocal: Dr. Primož Kajdič Secretario: Dr. Dante Jaime Morán Zenteno Primer suplente: Dr. Héctor Javier Durand Manterola Segundo suplente: Dr. Enrique Alejandro González Torres Director de tesis: Dr. Primož Kajdič Asesores externos: Dr. Jorge L. Vago (European Space Agency) Dr. Olivier Witasse (European Space Agency) A José Anselmo Reyes León Mi más sincero agradecimiento al European Space Research and Technology Centre (ESTEC) de la Agencia Espacial Europea por brindarme la oportunidad de participar en el Third ExoMars 2018 Landing Site Selection Workshop y permitirme el acceso al material disponible para realizar este trabajo. Agradecimientos Tere y Carlos. Soy tan afortunada de tenerlos como padres, gracias por educarme con buenos principios y hacerme la persona que soy en la actualidad. Sus palabras de aliento nunca me dejaron caer, sus grandes sacrificios hoy pueden verse reflejados en este logro. Gracias por sus ejemplos de perseverancia y constancia que los caracterizan y que me han infundado siempre. El orgullo que sienten por mí fue lo que me hizo llegar hasta el final. ¡Los amo! Dr. Primož Kajdič. Gracias por haberme adentrado en el estudio de las Ciencias Espaciales, por creer en mis capacidades y haber hecho posible mi estancia en ESTEC. -
Large Igneous Provinces and Mass Extinctions: an Update
Downloaded from specialpapers.gsapubs.org on April 29, 2015 OLD G The Geological Society of America Special Paper 505 2014 OPEN ACCESS Large igneous provinces and mass extinctions: An update David P.G. Bond* Department of Geography, Environment and Earth Science, University of Hull, Hull HU6 7RX, UK, and Norwegian Polar Institute, Fram Centre, 9296 Tromsø, Norway Paul B. Wignall School of Earth and Environment, University of Leeds, Leeds LS2 9JT, UK ABSTRACT The temporal link between mass extinctions and large igneous provinces is well known. Here, we examine this link by focusing on the potential climatic effects of large igneous province eruptions during several extinction crises that show the best correlation with mass volcanism: the Frasnian-Famennian (Late Devonian), Capi- tanian (Middle Permian), end-Permian, end-Triassic, and Toarcian (Early Jurassic) extinctions. It is clear that there is no direct correlation between total volume of lava and extinction magnitude because there is always suffi cient recovery time between individual eruptions to negate any cumulative effect of successive fl ood basalt erup- tions. Instead, the environmental and climatic damage must be attributed to single- pulse gas effusions. It is notable that the best-constrained examples of death-by- volcanism record the main extinction pulse at the onset of (often explosive) volcanism (e.g., the Capitanian, end-Permian, and end-Triassic examples), suggesting that the rapid injection of vast quantities of volcanic gas (CO2 and SO2) is the trigger for a truly major biotic catastrophe. Warming and marine anoxia feature in many extinc- tion scenarios, indicating that the ability of a large igneous province to induce these proximal killers (from CO2 emissions and thermogenic greenhouse gases) is the single most important factor governing its lethality. -
Pre-Mission Insights on the Interior of Mars Suzanne E
Pre-mission InSights on the Interior of Mars Suzanne E. Smrekar, Philippe Lognonné, Tilman Spohn, W. Bruce Banerdt, Doris Breuer, Ulrich Christensen, Véronique Dehant, Mélanie Drilleau, William Folkner, Nobuaki Fuji, et al. To cite this version: Suzanne E. Smrekar, Philippe Lognonné, Tilman Spohn, W. Bruce Banerdt, Doris Breuer, et al.. Pre-mission InSights on the Interior of Mars. Space Science Reviews, Springer Verlag, 2019, 215 (1), pp.1-72. 10.1007/s11214-018-0563-9. hal-01990798 HAL Id: hal-01990798 https://hal.archives-ouvertes.fr/hal-01990798 Submitted on 23 Jan 2019 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Open Archive Toulouse Archive Ouverte (OATAO ) OATAO is an open access repository that collects the wor of some Toulouse researchers and ma es it freely available over the web where possible. This is an author's version published in: https://oatao.univ-toulouse.fr/21690 Official URL : https://doi.org/10.1007/s11214-018-0563-9 To cite this version : Smrekar, Suzanne E. and Lognonné, Philippe and Spohn, Tilman ,... [et al.]. Pre-mission InSights on the Interior of Mars. (2019) Space Science Reviews, 215 (1). -
Flood Basalt Hosted Palaeosols: Potential Palaeoclimatic Indicators of Global Climate Change
Geoscience Frontiers xxx (2013) 1e9 Contents lists available at ScienceDirect China University of Geosciences (Beijing) Geoscience Frontiers journal homepage: www.elsevier.com/locate/gsf Review Flood basalt hosted palaeosols: Potential palaeoclimatic indicators of global climate change M.R.G. Sayyed* Department of Geology, Poona College (University of Pune), Camp, Pune 411 001, Maharashtra, India article info abstract Article history: Since continental sediments (in addition to the marine geological record) offer important means of Received 29 December 2012 deciphering environmental changes, the sediments hosted by the successive flows of the continental Received in revised form flood basalt provinces of the world should be treasure houses in gathering the palaeoclimatic data. 27 July 2013 Palaeosols developed on top of basalt flows are potentially ideal for palaeoenvironmental reconstructions Accepted 16 August 2013 because it is easy to determine their protolith geochemistry and also they define a definite time interval. Available online xxx The present paper summarizes the nature of the basalt-hosted palaeosols formed on the flood basalts provinces from different parts of the globe having different ages. Keywords: Ó Continental flood basalts 2013, China University of Geosciences (Beijing) and Peking University. Production and hosting by Palaeosols Elsevier B.V. All rights reserved. Weathering Palaeoclimates Global change 1. Introduction across multiple time and space scales. Such palaeoclimatic records further reveal the changes in the atmospheric chemistry and the Globally distributed climate change events affect oceanic, at- response of natural systems to the climate change as these events mospheric and terrestrial environments and Earth’s history reveals are affecting the global oceanic, atmospheric and terrestrial envi- that there were periods when the climate was significantly cooler ronments.