A 64Mw DNN-Based Visual Navigation Engine for Autonomous
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Setting up Odroid C2 – Throughtput Testing
Throughput Testing Single-Board Computer for Wireless LAN Professionals Setting up Odroid C2 As Test End-Point Inventory Project Items Unpack and knoll the following items ❑ Impact Strong 5200 mAh USB Battery o And it has a flashlight as well! ❑ USB Micro Power Cable (comes with Battery) ❑ Micro SD Card to eMCC adapter (Blueish green) ❑ eMCC Memory Card (small with Red label) ❑ Transcend USB 3.0 SD Card Reader ❑ Odroid Wi-Fi 4 NIC – (Black) ❑ USB ‘U-bend’ Adaper (Black ❑ Odroid C2 – Single Board Computer ❑ #WLPC_EU USB Drive (has the Image) ❑ Odroid Case Kit (Black) Later we will have you use as part of the testing (not in your own kit) • Small Phillips Screwdriver (to assemble your case) • Short Ethernet Cable (to test your unit when attached to a switch port) ❑ If you are running Windows copy the Win32DiskImager-0.9.5-binary executable as well. If you are running Windows follow the Windows directions, if Mac OS – move to the Mac OS directions. Mac OS Version Configure Image ❑ Copy Image File from the #WLPC_EU USB drive (in the Odroid for #WLPC_EU folder) to your Desktop… the file name is DietPi_v133_OdroidC2-arm64- (WLAN_PRO) ❑ Open Image File – Boot Drive ❑ Should have a Folder Call “Boot” ❑ Find the dietpi.txt We are changing setting so your Odroid device can join a local SSID and download more files we’ll need. ❑ Under the Wi-Fi Details section change the Wi-Fi SSID to WLPC_EU-01 with a PSK of password. #Enter your Wifi details below, if applicable (Case Sensitive). Wifi_SSID=WLPC_EU-01 Wifi_KEY=password ❑ Under WiFi Hotspot Settings, -
Improving the Beaglebone Board with Embedded Ubuntu, Enhanced GPMC Driver and Python for Communication and Graphical Prototypes
Final Master Thesis Improving the BeagleBone board with embedded Ubuntu, enhanced GPMC driver and Python for communication and graphical prototypes By RUBÉN GONZÁLEZ MUÑOZ Directed by MANUEL M. DOMINGUEZ PUMAR FINAL MASTER THESIS 30 ECTS, JULY 2015, ELECTRICAL AND ELECTRONICS ENGINEERING Abstract Abstract BeagleBone is a low price, small size Linux embedded microcomputer with a full set of I/O pins and processing power for real-time applications, also expandable with cape pluggable boards. The current work has been focused on improving the performance of this board. In this case, the BeagleBone comes with a pre-installed Angstrom OS and with a cape board using a particular software “overlay” and applications. Due to a lack of support, this pre-installed OS has been replaced by Ubuntu. As a consequence, the cape software and applications need to be adapted. Another necessity that emerges from the stated changes is to improve the communications through a GPMC interface. The depicted driver has been built for the new system as well as synchronous variants, also developed and tested. Finally, a set of applications in Python using the cape functionalities has been developed. Some extra graphical features have been included as example. Contents Contents Abstract ..................................................................................................................................................................................... 5 List of figures ......................................................................................................................................................................... -
Suzanne's Microcluster Slides
csinparallel.org Microclusters for teaching PDC Suzanne J. Matthews (West Point) 1 csinparallel.org What is a Microcluster? • A personal, highly portable Beowulf cluster • Enables highly interactive and tactile experiential learning • Notable early examples: – Ultimate Linux Lunch Box (Ron Minnich and Mitch Williams, Sandia National Labs) – LittleFe (Charlie Peck, Earlham College) – Microwulf (Joel Adams, Calvin College) 2 csinparallel.org Single Board Computers (SBCs) 3 csinparallel.org Student Pi (West Point) Suzanne J. Matthews Raspberry Pi nodes - Prototype: Raspberry Pi B nodes - Initial: Raspberry Pi B+ nodes - Current: Raspberry Pi 2 nodes - 900 Mhz quad-core CPU, 1 GB of RAM, HDMI, USB, 10/100 Ethernet - Raspbian Linux June 2014 - ~$40 p/node - Materials: - http://suzannejmatthews.com/private/cluster.html October 2014 May 2016 4 csinparallel.org Student Parallella (West Point) Suzanne J. Matthews Parallella nodes - dual-core ARM A9 CPU, 16-core Epiphany co-processor, 1 GB of RAM, μHDMI, μUSB, Gigabit Ethernet - Linaro Linux - ~$145 p/node - Materials: - http://suzannejmatthews.com/private/cluster.html - http://suzannejmatthews.github.io/ October 2014 April 2016 January 2015 5 csinparallel.org Half ShoeBox Clusters (Centre College) David Toth Cubieboard/ODROID nodes (2-node clusters) - Prototype: Cubieboard2: dual-core ARM Cortex A7, 1 GB of RAM, HDMI, USB, 10/100 Ethernet - Latest: ODROID C2: 2Ghz quad-core A53, 2 GB of RAM, HDMI, USB, Gigabit Ethernet, - Android/Ubuntu Linux - ~ $150-$200 p/cluster - Materials: Early 2014 - http://web.centre.edu/david.toth/portablecluster/index.html -
A3MAP: Architecture-Aware Analytic Mapping for Networks-On-Chip Wooyoung Jang and David Z
6C-2 A3MAP: Architecture-Aware Analytic Mapping for Networks-on-Chip Wooyoung Jang and David Z. Pan Department of Electrical and Computer Engineering University of Texas at Austin [email protected], [email protected] Abstract - In this paper, we propose a novel and global A3MAP formulation, we seek to embed a task graph into the metric (Architecture-Aware Analytic Mapping) algorithm applied to space of network. Then, the quality of task mapping is NoC (Networks-on-Chip) based MPSoC (Multi-Processor measured by the total distortion of metric embedding. System-on-Chip) not only with homogeneous cores on regular Through this formulation, our A3MAP can map a task mesh architecture as done by most previous mapping adaptively to any different sized tile both on a algorithms but also with heterogeneous cores on irregular mesh or custom architecture. As a main contribution, we develop a regular/irregular mesh and on a custom network. Fig. 1 simple yet efficient interconnection matrix that models any task shows the methodology of our A3MAP. Given a task graph graph and network. Then, task mapping problem is exactly and a network as inputs, an interconnection matrix that can formulated to an MIQP (Mixed Integer Quadratic model any task graph and network along interconnection is Programming). Since MIQP is NP-hard [15], we propose two generated. Then, task mapping problem is exactly effective heuristics, a successive relaxation algorithm and a formulated to an MIQP (Mixed Integer Quadratic genetic algorithm. Experimental results show that A3MAP by Programming) and is solved by two effective heuristics since the successive relaxation algorithm reduces an amount of the MIQP is NP-hard [15]. -
Comparative Study of Various Systems on Chips Embedded in Mobile Devices
Innovative Systems Design and Engineering www.iiste.org ISSN 2222-1727 (Paper) ISSN 2222-2871 (Online) Vol.4, No.7, 2013 - National Conference on Emerging Trends in Electrical, Instrumentation & Communication Engineering Comparative Study of Various Systems on Chips Embedded in Mobile Devices Deepti Bansal(Assistant Professor) BVCOE, New Delhi Tel N: +919711341624 Email: [email protected] ABSTRACT Systems-on-chips (SoCs) are the latest incarnation of very large scale integration (VLSI) technology. A single integrated circuit can contain over 100 million transistors. Harnessing all this computing power requires designers to move beyond logic design into computer architecture, meet real-time deadlines, ensure low-power operation, and so on. These opportunities and challenges make SoC design an important field of research. So in the paper we will try to focus on the various aspects of SOC and the applications offered by it. Also the different parameters to be checked for functional verification like integration and complexity are described in brief. We will focus mainly on the applications of system on chip in mobile devices and then we will compare various mobile vendors in terms of different parameters like cost, memory, features, weight, and battery life, audio and video applications. A brief discussion on the upcoming technologies in SoC used in smart phones as announced by Intel, Microsoft, Texas etc. is also taken up. Keywords: System on Chip, Core Frame Architecture, Arm Processors, Smartphone. 1. Introduction: What Is SoC? We first need to define system-on-chip (SoC). A SoC is a complex integrated circuit that implements most or all of the functions of a complete electronic system. -
Nomadik Application Processor Andrea Gallo Giancarlo Asnaghi ST Is #1 World-Wide Leader in Digital TV and Consumer Audio
Nomadik Application Processor Andrea Gallo Giancarlo Asnaghi ST is #1 world-wide leader in Digital TV and Consumer Audio MP3 Portable Digital Satellite Radio Set Top Box Player Digital Car Radio DVD Player MMDSP+ inside more than 200 million produced chips January 14, 2009 ST leader in mobile phone chips January 14, 2009 Nomadik Nomadik is based on this heritage providing: – Unrivalled multimedia performances – Very low power consumption – Scalable performances January 14, 2009 BestBest ApplicationApplication ProcessorProcessor 20042004 9 Lowest power consumption 9 Scalable performance 9 Video/Audio quality 9 Cost-effective Nominees: Intel XScale PXA260, NeoMagic MiMagic 6, Nvidia MQ-9000, STMicroelectronics Nomadik STn8800, Texas Instruments OMAP 1611 January 14, 2009 Nomadik Nomadik is a family of Application Processors – Distributed processing architecture ARM9 + multiple Smart Accelerators – Support of a wide range of OS and applications – Seamless integration in the OS through standard API drivers and MM framework January 14, 2009 roadmap ... January 14, 2009 Some Nomadik products on the market... January 14, 2009 STn8815 block diagram January 14, 2009 Nomadik : a true real time multiprocessor platform ARM926 SDRAM SRAM General (L1 + L2) Purpose •Unlimited Space (Level 2 •Limited Bandwidth Cache System for Video) DMA Master OS Memory Controller Peripherals multi-layer AHB bus RTOS RTOS Multi-thread (Scheduler FSM) NAND Flash MMDSP+ Video •Unlimited Space MMDSP+ Audio 66 MHz, 16-bit •“No” Bandwidth 133 MHz, 24-bit •Mass storage -
ARM Was Developed at Acron Computer Limited Of
MEH420 Intro. To Embedded Systems ARM Processors ARM Processors • ARM was developed at Acron Computer • Based upon RISC Architecture with Limited of Cambridge, England between enhancements to meet requirements of 1983 & 1985 embedded applications. • RISC concept introduced in 1980 at Stanford • A large uniform register file and Berkley • Load-store architecture, where data processing operations operate on register contents only • ARM Limited founded in 1990 • Uniform and fixed length instruction • ARM Cores • 32-bit processor • Licensed to partners to develop and fabricate new • Instructions are 32-bit long microcontrollers • Good speed / power consumption ratio • Soft core • High code density -1- -2- -3- ARM Processors ARM Processors ARM Processors • Version 1 (1983-1985) (obsolete) • Version 5T • Enhancement to Basic RISC Features: • 26-bit addressing, no multiply or coprocessor • Superset of 4T adding new instruction • Version 5TE • Control over ALU and barrel shifter for every data • Version 2 (obsolete) processing operation to maximize their usage • Includes 32-bit result multiply co-processor • Add signal processing extension • Auto-increment and auto-decrement addressing • Version 3 • Examples: • ARM9E-S: v5TE (Sony Ericsson K-W series, TI modes to optimize program loops • 32-bit addressing • Load and Store multiple instructions to maximize OMAPs) data throughput • Version 4 • XScale: v4 (Samsung Omnia, Blackberry) • Conditional execution of instructions to maximize • Add signed, unsigned half-word and signed byte • Version 6 execution throughput load and store instructions • ARM11: ARMv6 (iPhone, Nokia E90, N95 etc) • Version 4T: Thumb compressed form of • Cortex-M0-M1: ARMv6 (STM32, NXP LPC, FPGA instruction introduced. Softcore) -4- -5- -6- ARM Processors ARM Processors: Common Features (till v5) ARM Processors: Basic ARM Organization • ARM v7: (M,E-M,R,A): Cortex-M3-M4, Cortex-R4-R5- R7, Cortex-A5-A7-A8-A9,A12, A15. -
Passmark - Android Device List
PassMark - Android Device List https://www.androidbenchmark.net/device_list.php AndroidTM Benchmarks Performance Comparison of Android Devices Below is an alphabetical list of all Android device types that appear in the charts. Clicking on a specific device name will take you to the charts where it appears in and will highlight it for you. PassMark Rating CPUMark Rating PassMark Rank Android Device Type Samples (higher is better) (higher is better) (lower is better) 4G R17S 1,572 4,088 1253 1 A-gold BV9500Plus 5,052 13,068 375 1 A-gold BV9800 4,450 11,400 487 1 A-gold F1 4,237 10,869 531 7 A-gold S3_Pro 4,392 11,219 504 2 A-gold Z2_PRO 4,406 11,246 499 1 A1 Alpha 20+ 4,753 12,266 435 1 Acer A3-A40 1,982 5,269 1082 1 Acer AO722 519 1,272 1725 1 1 z 62 2020-10-14, 12:02 PassMark - Android Device List https://www.androidbenchmark.net/device_list.php PassMark Rating CPUMark Rating PassMark Rank Android Device Type Samples (higher is better) (higher is better) (lower is better) AGM A10 2,030 8,521 1066 1 ALCATEL A574BL 497 1,202 1736 1 AlcatelOneTouch Alcatel_5044R 438 1,129 1759 1 Alco CT9223W97 1,214 3,111 1384 1 ALLDOCUBE M8 2,730 7,274 882 5 ALLDOCUBE T701 1,092 4,554 1437 1 ALLDOCUBE U1006H 1,902 4,931 1125 1 ALLVIEW P7_PRO 1,691 4,543 1210 1 ALLVIEW X4_Soul 2,536 6,938 925 1 Alps Acer One 8 T4-82L 2,539 6,526 924 1 Alps Tablet18T 1,201 3,043 1394 1 Alps tb8788p1_64_bsp 2,343 5,784 983 2 Amazon KFKAWI 712 1,701 1589 4 Amazon KFMAWI 2,306 5,640 992 19 Amazon KFONWI 1,082 2,588 1442 3 Amlogic A95X-A3 1,228 3,182 1381 1 Amlogic ABOX A4 397 -
Security Monitor for Mobile Devices: Design and Applications
UNIVERSITY OF CALIFORNIA, IRVINE Security Monitor for Mobile Devices: Design and Applications DISSERTATION submitted in partial satisfaction of the requirements for the degree of DOCTOR OF PHILOSOPHY in Computer Science by Saeed Mirzamohammadi Dissertation Committee: Professor Ardalan Amiri Sani, UCI, Chair Professor Gene Tsudik, UCI Professor Sharad Mehrotra, UCI Doctor Sharad Agarwal, MSR 2020 Portion of Chapter 1 c 2018 ACM, reprinted, with permission, from [148] Portion of Chapter 1 c 2017 ACM, reprinted, with permission, from [150] Portion of Chapter 1 c 2018 IEEE, reprinted, with permission, from [149] Portion of Chapter 1 c 2020 ACM, reprinted, with permission, from [151] Portion of Chapter 2 c 2018 ACM, reprinted, with permission, from [148] Portion of Chapter 2 c 2017 ACM, reprinted, with permission, from [150] Portion of Chapter 3 c 2018 ACM, reprinted, with permission, from [148] Portion of Chapter 4 c 2018 IEEE, reprinted, with permission, from [149] Portion of Chapter 5 c 2017 ACM, reprinted, with permission, from [150] Portion of Chapter 6 c 2020 ACM, reprinted, with permission, from [151] Portion of Chapter 7 c 2020 ACM, reprinted, with permission, from [151] Portion of Chapter 7 c 2017 ACM, reprinted, with permission, from [150] Portion of Chapter 7 c 2018 IEEE, reprinted, with permission, from [149] Portion of Chapter 7 c 2018 ACM, reprinted, with permission, from [148] All other materials c 2020 Saeed Mirzamohammadi TABLE OF CONTENTS Page LIST OF FIGURES v LIST OF TABLES vii ACKNOWLEDGMENTS viii VITA ix ABSTRACT OF THE DISSERTATION xi 1 Introduction 1 1.1 Applications of the security monitor . -
Cubieboard Cubieboard2 Cubietruck Beaglebone Black
Raspberry Pi (Model B rev.2) Cubieboard Cubieboard2 Cubietruck Beaglebone Black 1 Ghz (OC) ARM® Cortex-A6 1 Ghz ARM® Cortex-A8 1 Ghz ARM® Cortex-A7 Dual Core 1 Ghz ARM® Cortex-A7 Dual Core 1 Ghz ARM® Cortex-A8 CPU ARM1176JZF-F Allwinner A10 C8096CA Allwinner A20 Allwinner A20 AM335x GPU/FPU VideoCore IV Mali-400 (CedarX, OpenGL) Mali-400MP2 (CedarX, OpenGL) Mali-400MP2 (CedarX, OpenGL) SGX350 3D / NEON FPU accelerator RAM 512 MB 1 GB DDR3 2 GB 2 GB 512 MB DDR3 Storage micro SD/SDHC 4 GB NAND Flash, micro SD/SDHC, SATA 4 GB NAND Flash, micro SD/SDHC, SATA 4 GB NAND Flash, micro SD/SDHC, SATA 2.0 2GB eMMC Power micro USB (5V/1A) 3.5 W DC 5v/2A DC 5v/2A DC 5v/2.5A DC 5V/500mA Video RCA Composite Video, HDMI 1.4 HDMI HDMI HDMI/VGA microHDMI Audio 3.5 mm Headphone Jack 3.5 mm Headphone Jack / Line In 3.5 mm Headphone Jack 3.5 mm Headphone Jack, SPDIF Network 10/100 Mbps 10/100 Mbps 10/100 Mbps 10/100/1000 Mbps, Wifi, Bluetooth 10/100 Mbps 2x46 PIN GPIO I/O ports 26 PIN GPIO, 2x Ribon 2x48 PIN GPIO, 4PIN Serial, 1IR 2x48 PIN GPIO, 4PIN Serial, 1IR 1x 54 PIN GPIO (Arduino Shield Compatible) USB ports 2x USB 2.0 2x USB 2.0 2x USB 2.0, 1 mini USB OTG 2x USB 2.0, 1 mini USB OTG 1x USB 2.0 Linux (Raspbian, Debian, Fedora, Arch, Gentoo, Kali), Andoid, Angstrom, Ubuntu, Fedora, Gentoo. -
Passmark Android Benchmark Charts - CPU Rating
PassMark Android Benchmark Charts - CPU Rating http://www.androidbenchmark.net/cpumark_chart.html Home Software Hardware Benchmarks Services Store Support Forums About Us Home » Android Benchmarks » Device Charts CPU Benchmarks Video Card Benchmarks Hard Drive Benchmarks RAM PC Systems Android iOS / iPhone Android TM Benchmarks ----Select A Page ---- Performance Comparison of Android Devices Android Devices - CPUMark Rating How does your device compare? Add your device to our benchmark chart This chart compares the CPUMark Rating made using PerformanceTest Mobile benchmark with PerformanceTest Mobile ! results and is updated daily. Submitted baselines ratings are averaged to determine the CPU rating seen on the charts. This chart shows the CPUMark for various phones, smartphones and other Android devices. The higher the rating the better the performance. Find out which Android device is best for your hand held needs! Android CPU Mark Rating Updated 14th of July 2016 Samsung SM-N920V 166,976 Samsung SM-N920P 166,588 Samsung SM-G890A 166,237 Samsung SM-G928V 164,894 Samsung Galaxy S6 Edge (Various Models) 164,146 Samsung SM-G930F 162,994 Samsung SM-N920T 162,504 Lemobile Le X620 159,530 Samsung SM-N920W8 159,160 Samsung SM-G930T 157,472 Samsung SM-G930V 157,097 Samsung SM-G935P 156,823 Samsung SM-G930A 155,820 Samsung SM-G935F 153,636 Samsung SM-G935T 152,845 Xiaomi MI 5 150,923 LG H850 150,642 Samsung Galaxy S6 (Various Models) 150,316 Samsung SM-G935A 147,826 Samsung SM-G891A 145,095 HTC HTC_M10h 144,729 Samsung SM-G928F 144,576 Samsung -
Building a Datacenter with ARM Devices
Building a Datacenter with ARM Devices Taylor Chien1 1SUNY Polytechnic Institute ABSTRACT METHODS THE CASE CURRENT RESULTS The ARM CPU is becoming more prevalent as devices are shrinking and Physical Custom Enclosure Operating Systems become embedded in everything from medical devices to toasters. Build a fully operational environment out of commodity ARM devices using Designed in QCAD and laser cut on hardboard by Ponoko Multiple issues exist with both Armbian and Raspbian, including four However, Linux for ARM is still in the very early stages of release, with SBCs, Development Boards, or other ARM-based systems Design was originally only for the Raspberry Pis, Orange Pi Ones, Udoo critical issues that would prevent them from being used in a datacenter many different issues, challenges, and shortcomings. Have dedicated hard drives and power system for mass storage, including Quads, PINE64, and Cubieboard 3 multiple drives for GlusterFS operation, and an Archive disk for backups and Issue OS In order to test what level of service commodity ARM devices have, I Each device sits on a tray which can be slid in and out at will rarely-used storage Kernel and uboot are not linked together after a Armbian decided to build a small data center with these devices. This included Cable management and cooling are on the back for easy access Build a case for all of these devices that will protect them from short circuits version update building services usually found in large businesses, such as LDAP, DNS, Designed to be solid and not collapse under its own weight and dust Operating system always performs DHCP request Raspbian Mail, and certain web applications such as Roundcube webmail, Have devices hooked up to a UPS for power safety Design Flaws Allwinner CPUs crash randomly when under high Armbian ownCloud storage, and Drupal content management.