Download Product Insert (PDF)
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
What Are the Acute Treatments for Migraine and How Are They Used?
2. Acute Treatment CQ II-2-1 What are the acute treatments for migraine and how are they used? Recommendation The mainstay of acute treatment for migraine is pharmacotherapy. The drugs used include (1) acetaminophen, (2) non-steroidal anti-inflammatory drugs (NSAIDs), (3) ergotamines, (4) triptans and (5) antiemetics. Stratified treatment according to the severity of migraine is recommended: use NSAIDs such as aspirin and naproxen for mild to moderate headache, and use triptans for moderate to severe headache, or even mild to moderate headache when NSAIDs were ineffective in the past. It is necessary to give guidance and cautions to patients having acute attacks, and explain the methods of using medications (timing, dose, frequency of use) and medication use during pregnancy and breast-feeding. Grade A Background and Objective The objective of acute treatment is to resolve the migraine attack completely and rapidly and restore the patient’s normal functions. An ideal treatment should have the following characteristics: (1) resolves pain and associated symptoms rapidly; (2) is consistently effective; (3) no recurrence; (4) no need for additional use of medication; (5) no adverse effects; (6) can be administered by the patients themselves; and (7) low cost. Literature was searched to identify acute treatments that satisfy the above conditions. Comments and Evidence The acute treatment drugs for migraine generally include (1) acetaminophens, (2) non-steroidal anti-inflammatory drugs (NSAIDs), (3) ergotamines, (4) triptans, and (5) antiemetics. For severe migraines including status migrainosus and migraine attacks refractory to treatment, (6) anesthetics, and (7) corticosteroids (dexamethasone) are used (Tables 1 and 2).1)-9) There are two approaches to the selection and sequencing of these medications: “step care” and “stratified care”. -
Determination of Lornoxicam in Pharmaceutical Preparations by Zero and First Order Derivative UV Spectrophotometric Methods
ORIGINAL ARTICLES Department of Analytical Chemistry, Faculty of Pharmacy, University of Hacettepe, Sıhhiye, Ankara, Turkey Determination of lornoxicam in pharmaceutical preparations by zero and first order derivative UV spectrophotometric methods E. Nemutlu, S¸ . Demi˙rcan, S. Kır Received July 13, 2004, accepted August 10, 2004 Emirhan Nemutlu, Department of Analytical Chemistry, Faculty of Pharmacy, University of Hacettepe, 06100, Sıhhiye, Ankara, Turkey [email protected] Pharmazie 60: 421–425 (2005) Zero and first order derivative UV spectrophotometric methods were developed for the analysis of lornoxicam (LOR). The solutions of the standards and pharmaceutical samples were prepared in 0.05 N NaOH. Absorbances of LOR were measured at 376 nm for the zero order by measuring height of peak from zero and at 281 and 302 nm for the first order derivative spectrophotometric method by measuring peak to peak height. The linearity ranges were found to be 0.5–35 mg/mL for the zero order and 0.2–75 mg/mL for the first order derivative UV spectrophotometric method. The methods were validated and applied to the determination of LOR in pharmaceutical preparations (tablet and inject- able, both containing 8 mg LOR). It was concluded that the methods developed were accurate, sensi- tive, precise, robust, rugged and useful for the quality control of LOR in pharmaceutical preparations. 1. Introduction The main purpose of the studies presented was to develop simple, rapid, accurate, precise, linear, sensitive, robust Lornoxicam (6-chloro-4-hydroxy-2-methyl-N-2-pyridinyl- and rugged spectrophotometric methods for the determina- 2H-thieno[2,3-e]-1,2-thiazine-3-carboxamide 1,1-dioxide) tion of LOR in pharmaceutical formulations which can be is a non-steroidal anti-inflammatory drug (NSAID) with considered a useful alternative to the HPLC method. -
54-60 Research Article Bioanalytical Method for Lornoxicam Deter
Available online www.jocpr.com Journal of Chemical and Pharmaceutical Research, 2015, 7(8):54-60 ISSN : 0975-7384 Research Article CODEN(USA) : JCPRC5 Bioanalytical method for lornoxicam determination in human plasma by using piroxicam as internal standard by LC-MS/MS Rajesh Dhiman*, Vijaya Durga, Jayasankar and Antony Joseph Rio Micro Therapeutics Research Labs Pvt. Ltd. Chennai, Tamilnadu, India _____________________________________________________________________________________________ ABSTRACT High Performance Liquid Chromatographic tandem mass spectrometric method for the estimation of Lornoxicam in human plasma has been developed and validated using Piroxicam as internal standard. Sample preparation process was accomplished by protein precipitation technique. The processed sample was chromatographed and analyzed on Hypurity advance, 50×4.6mm, 5 µm column using mobile phase [0.3% formic acid in water and 0.3% formic acid in Acetonitrile (50:50% v/v)] and diluent as 50% methanol in water. Lornoxicam were chromatographed and analyzed by MS Detector. The analytical method described is valid the determination of Lornoxicam (over a range of 21.51 ng/ml to 1276.61 ng/ml) using Piroxicam as internal standard in human plasma. Signal from the detector were captured in a computer and processed using Mass Hunter software. Key words: Lornoxicam, Piroxicam, internal standard, LC/MS/MS and validation etc. _____________________________________________________________________________________________ INTRODUCTION Lornoxicam ((3E)-6-chloro-3-[hydroxy(pyridin-2-ylamino) methyl ene]-2-methyl-2,3-dihydro-4H-thieno[2,3- e][1,2]thiazin-4-one 1,1-dioxide) [1]is a non-steroidal anti-inflammatory drug (NSAID). Lornoxicam is a compound in the same chemical class as Piroxicam, Meloxicam and Tenoxicam, with potent anti-inflammatory, antipyretic and analgesic activity. -
A Comparative Study to Assess the Efficacy and Tolerability of Lornoxicam and Diclofenac in Patients with Osteoarthritis of Knee in a Tertiary Care Hospital
Available online www.jocpr.com Journal of Chemical and Pharmaceutical Research, 2014, 6(3):1306-1311 ISSN : 0975-7384 Research Article CODEN(USA) : JCPRC5 A comparative study to assess the efficacy and tolerability of lornoxicam and diclofenac in patients with osteoarthritis of knee in a tertiary care hospital Swapna R. Nayaka 1, K. R. Mamatha 2 and K. V. P. K. Raju 3 1Department of Pharmacology, M V J Medical College & Research Hospital, Hoskote 2Department of Pharmacology, Bangalore Medical College & Research Institute, Bangalore 3Department of Orthopedics, Victoria Hospital, Bangalore Medical College & Research Institute, Bangalore _____________________________________________________________________________________________ ABSTRACT Cardiovascular adverse effects of COX-2 inhibitors and gastro-intestinal intolerability of NSAIDs for the treatment of osteoarthritis has prompted for better tolerated and efficacious NSAID but as there is paucity of data in Indian population, the present study was taken up. To evaluate the efficacy and tolerability of lornoxicam and diclofenac in patients with osteoarthritis of knee. A 4week, randomized open label comparative study was conducted in Department of Orthopedics, Victoria Hospital, Bangalore, on outpatients with osteoarthritis of knee who met the inclusion and exclusion criteria. About 100 patients were involved and randomized into two groups of 50 each receiving lornoxicam 8mg BD (group L) and Diclofenac 50mg TID in other (group D). Efficacy was assessed by VAS scores (visual analog scale), WOMAC scale (Western Ontario and McMasters Individual Osteoarthritis Index) for pain and Likert scale for patients assessment to response for therapy and tolerability monitored by incidence of adverse events and any changes in laboratory parameters done on follow up visits. Both drugs were associated with sustained reduction in the scores of osteoarthritis symptoms and improved response to therapy compared with baseline with P<0.001**. -
22382Orig1s000
CENTER FOR DRUG EVALUATION AND RESEARCH APPLICATION NUMBER: 22382Orig1s000 PHARMACOLOGY REVIEW(S) DEPARTMENT OF HEALTH AND HUMAN SERVICES PUBLIC HEALTH SERVICE FOOD AND DRUG ADMINISTRATION CENTER FOR DRUG EVALUATION AND RESEARCH PHARMACOLOGY/TOXICOLOGY REVIEW AND EVALUATION NDA NUMBER: 22-382 SERIAL NUMBER: 000 (1st submission) DATE RECEIVED BY CENTER: 12/05/08 PRODUCT: Ketorolac Tromethamine Nasal Spray INTENDED CLINICAL POPULATION: Management of moderate to severe pain (short- term) SPONSOR: Roxro Pharma, Inc. DOCUMENTS REVIEWED: Module 4, Vol. 1-6 REVIEW DIVISION: Division of Anesthesia, Analgesia and Rheumatology Products (HFD-170) PHARM/TOX REVIEWER: Newton H. Woo, Ph.D. PHARM/TOX SUPERVISOR: Adam Wasserman, Ph.D. DIVISION DIRECTOR: Bob Rappaport, M.D. PROJECT MANAGER: Jessica Benjamin Date of review submission to Document Archiving, Reporting & Regulatory Tracking System (DAARTS): August 11, 2009 TABLE OF CONTENTS EXECUTIVE SUMMARY .............................................................................................. 3 2.6 PHARMACOLOGY/TOXICOLOGY REVIEW................................................... 8 2.6.1 INTRODUCTION AND DRUG HISTORY................................................................... 8 2.6.2 PHARMACOLOGY....................................................................................................... 11 2.6.2.1 Brief summary ...................................................................................................................... 11 2.6.2.2 Primary pharmacodynamics ................................................................................................ -
New Combination Suppositories of Lornoxicam and Aloin for Rheumatoid Arthritis
Online - 2455-3891 Vol 11, Issue 2, 2018 Print - 0974-2441 Research Article NEW COMBINATION SUPPOSITORIES OF LORNOXICAM AND ALOIN FOR RHEUMATOID ARTHRITIS ASHTI M H SAEED1, MARYAM H ALAAYEDI2, ATHMAR DH H ALSHOHANI1 1 Department of Pharmaceutics, Mustansiriyah University, College of Pharmacy, Baghdad, Iraq. 2 Department of Pharmaceutics, Kerbala University, College of Pharmacy, Kerbala, Iraq. Email: [email protected] Received: 05 October 2017, Revised and Accepted: 20 November 2017 ABSTRACT Objective: The objective of our current work is to formulate, optimize and evaluate new combination rectal suppositories as a treatment for rheumatoid arthritis that contains both lornoxicam and aloin. Both are strong anti-inflammatory agents, and a combination of both may have synergistic effect as an anti-inflammatory treatment. Methods: Rectal suppositories containing 8 mg lornoxicam and 200 mg aloin were formulated by heat fusion method. Different combinations of different molecular weights of polyethylene glycol (PEG) were used for the formulated suppositories. The formulated suppositories were evaluated for their visual appearance, weight variation, hardness, friability, disintegration time, melting temperature, and drug content uniformity. Results: All the formulations prepared were within the required limits for USP. When the release study was performed, both drugs were released from all the formulations prepared. However, formulation F7 which is composed of PEG 400 30.88% (w/w): PEG 4000 46.32% (w/w) was superior to other formulations in which more than 80% of both drugs loaded were released after 35 min. The presence of both drugs in the same suppository did not affect their release. Conclusion: A new combination suppositories have been obtained where the two combined drugs were released fast without interference with each other release. -
Inflammatory Drugs
Solubility of Nonsteroidal Anti- diflunisal, etoricoxib, fenbufen, fentiazac, flufenamic inflammatory Drugs (NSAIDs) in acid, flurbiprofen, ibuprofen, indomethacin, ketopro- Neat Organic Solvents and Organic fen, ketorolac, lornoxicam, mefenamic acid, melox- Solvent Mixtures iam, nabumetone, naproxen, niflumic acid, nimesulide, phenylbutazone, piroxicam, rofecoxib, sodium diclof- William E. Acree enac, sodium ibuprofen, sodium naproxen, sodium J. Phys. Chem. Ref. Data 43, 023102 (2014) salicylate, tenoxicam, tolfenamic acid, and valdecoxib. IUPAC-NIST Solubility Data Series, Volume 102 http://dx.doi.org/10.1063/1.4869683 This IUPAC-NIST Solubility Data Series volume reviews experimentally determined solubility data for 33 non- To access recent volumes in the Solubility Data Series, visit http://jpcrd.aip.org/ and steroidal anti-inflammatory drugs (NSAIDs) dissolved search IUPAC-NIST Solubility Data Series in neat organic solvents and well-defined binary and ternary organic solvent mixtures retrieved from the published chemical and pharmaceutical litera- ture covering the period from 1980 to the beginning of 2014. Except for aspirin (2-acetoxybenzoic acid) and salicylic acid (2-hydroxybenzoic acid), very little Provisional Recommendations physical and chemical property data are available Provisional Recommendations are drafts of IUPAC in the published literature for NSAIDs prior to 1980. recommendations on terminology, nomenclature, and Solubility data are compiled and critically reviewed symbols made widely available to allow interested -
A Comparison of the Efficacy and Tolerability of Lornoxicam And
Original Article A Comparison of the Efficacy and Tolerability of Lornoxicam and Diclofenac Sodium in Patients with Acute Postoperative Pain after Spinal Surgery Galani Varsha J*1, Patel Nimesh A1, Bhart R Dave2, Ajay Krishnan2 1Department of Pharmacology, A. R. College of Pharmacy, Vallabh Vidyanagar-388120, Gujarat, India. 2Spine surgeon, Stavya Spine Hospital, Ahmedabad-380009, Gujarat, India. ABSTRACT Spinal fusion surgery causes severe postoperative pain, hampering reconvalescense. Nonsteroidal anti-inflammatory drugs are used in the management of postoperative pain to avoid the adverse effects associated with opioids. Lornoxicam use is increasing for postoperative pain management. However, lornoxicam has not been studied for use in pain management after spinal surgery. In the present study, analgesic efficacy and tolerability of lornoxicam and diclofenac sodium were compared in post operative spinal surgery patients. This single blinded, randomized, prospective comparative study of lornoxicam (8 mg) versus diclofenac (75 mg) was conducted at Stavya Spine Hospital, Ahmedabad, Gujarat. 47 patients were enrolled in the study. After spinal surgery, 23 patients received diclofenac sodium and 24 patients received lornoxicam. Pain were assessed at baseline (0 min), 15 mins, 30 mins, 45 mins, 60 mins, 90 mins, 120 mins, 180 mins, 240 mins, 300 mins, and 360 mins by Address for visual analog scale of 10 points. Adverse events were recorded for both groups. Laboratory safety parameters were measured before and Correspondence after 24 hrs of surgery. The pain relief score were significantly Department of (<0.001) reduced at measured time points as compared to baseline for pharmacology, A. R. both groups. However, difference (p< 0.05) between lornoxicam and College of Pharmacy, diclofenac treated groups for pain relief score were found only at 30 Vallabh Vidyanagar- mins and 300 mins after drug administration. -
Cyclooxygenase
COX Cyclooxygenase Cyclooxygenase (COX), officially known as prostaglandin-endoperoxide synthase (PTGS), is an enzyme that is responsible for formation of important biological mediators called prostanoids, including prostaglandins, prostacyclin and thromboxane. Pharmacological inhibition of COX can provide relief from the symptoms of inflammation and pain. Drugs, like Aspirin, that inhibit cyclooxygenase activity have been available to the public for about 100 years. Two cyclooxygenase isoforms have been identified and are referred to as COX-1 and COX-2. Under many circumstances the COX-1 enzyme is produced constitutively (i.e., gastric mucosa) whereas COX-2 is inducible (i.e., sites of inflammation). Non-steroidal anti-inflammatory drugs (NSAID), such as aspirin and ibuprofen, exert their effects through inhibition of COX. The main COX inhibitors are the non-steroidal anti-inflammatory drugs (NSAIDs). www.MedChemExpress.com 1 COX Inhibitors, Antagonists, Activators & Modulators (+)-Catechin hydrate (-)-Catechin Cat. No.: HY-N0355 ((-)-Cianidanol; (-)-Catechuic acid) Cat. No.: HY-N0898A (+)-Catechin hydrate inhibits cyclooxygenase-1 (-)-Catechin, isolated from green tea, is an (COX-1) with an IC50 of 1.4 μM. isomer of Catechin having a trans 2S,3R configuration at the chiral center. Catechin inhibits cyclooxygenase-1 (COX-1) with an IC50 of 1.4 μM. Purity: 99.59% Purity: 98.78% Clinical Data: Phase 4 Clinical Data: No Development Reported Size: 100 mg Size: 10 mM × 1 mL, 5 mg, 10 mg, 25 mg, 50 mg (-)-Catechin gallate (-)-Epicatechin ((-)-Catechin 3-gallate; (-)-Catechin 3-O-gallate) Cat. No.: HY-N0356 ((-)-Epicatechol; Epicatechin; epi-Catechin) Cat. No.: HY-N0001 (-)-Catechin gallate is a minor constituent in (-)-Epicatechin inhibits cyclooxygenase-1 (COX-1) green tea catechins. -
Package Leaflet: Information for the User Xefo Rapid 8 Mg Film-Coated Tablets Lornoxicam
Package leaflet: Information for the user Xefo Rapid 8 mg film-coated tablets Lornoxicam Read all of this leaflet carefully before you start taking this medicine because it contains important information for you. Keep this leaflet. You may need to read it again. If you have any further questions, ask your doctor or pharmacist. This medicine has been prescribed for you only. Do not pass it on to others. It may harm them, even if their signs of illness are the same as yours. If you get any side effects, talk to your doctor or pharmacist. This includes any possible side effects not listed in this leaflet. See section 4. What is in this leaflet: 1. What Xefo Rapid is and what it is used for 2. What you need to know before you take Xefo Rapid 3. How to take Xefo Rapid 4. Possible side effects 5. How to store Xefo Rapid 6. Contents of the pack and other information 1. What Xefo Rapid is and what it is used for Xefo Rapid is a non-steroidal anti-inflammatory drug and antirheumatic drug (NSAID) of the oxicam class. It is intended for short term treatment of acute mild to moderate pain. 2. What you need to know before you take Xefo Rapid Do not take Xefo Rapid if you are allergic to lornoxicam or any of the other ingredients of this medicine (listed in section 6); if you are taking other NSAIDs such as acetylsalicylic acid (for instance, aspirin); ibuprofen and COX-2 inhibitors; if you are hypersensitive to other NSAIDs including acetylsalicylic acid (for instance, aspirin); if you suffer from thrombocytopenia (low blood platelet count -
(CD-P-PH/PHO) Report Classification/Justifica
COMMITTEE OF EXPERTS ON THE CLASSIFICATION OF MEDICINES AS REGARDS THEIR SUPPLY (CD-P-PH/PHO) Report classification/justification of - Medicines belonging to the ATC group M01 (Antiinflammatory and antirheumatic products) Table of Contents Page INTRODUCTION 6 DISCLAIMER 8 GLOSSARY OF TERMS USED IN THIS DOCUMENT 9 ACTIVE SUBSTANCES Phenylbutazone (ATC: M01AA01) 11 Mofebutazone (ATC: M01AA02) 17 Oxyphenbutazone (ATC: M01AA03) 18 Clofezone (ATC: M01AA05) 19 Kebuzone (ATC: M01AA06) 20 Indometacin (ATC: M01AB01) 21 Sulindac (ATC: M01AB02) 25 Tolmetin (ATC: M01AB03) 30 Zomepirac (ATC: M01AB04) 33 Diclofenac (ATC: M01AB05) 34 Alclofenac (ATC: M01AB06) 39 Bumadizone (ATC: M01AB07) 40 Etodolac (ATC: M01AB08) 41 Lonazolac (ATC: M01AB09) 45 Fentiazac (ATC: M01AB10) 46 Acemetacin (ATC: M01AB11) 48 Difenpiramide (ATC: M01AB12) 53 Oxametacin (ATC: M01AB13) 54 Proglumetacin (ATC: M01AB14) 55 Ketorolac (ATC: M01AB15) 57 Aceclofenac (ATC: M01AB16) 63 Bufexamac (ATC: M01AB17) 67 2 Indometacin, Combinations (ATC: M01AB51) 68 Diclofenac, Combinations (ATC: M01AB55) 69 Piroxicam (ATC: M01AC01) 73 Tenoxicam (ATC: M01AC02) 77 Droxicam (ATC: M01AC04) 82 Lornoxicam (ATC: M01AC05) 83 Meloxicam (ATC: M01AC06) 87 Meloxicam, Combinations (ATC: M01AC56) 91 Ibuprofen (ATC: M01AE01) 92 Naproxen (ATC: M01AE02) 98 Ketoprofen (ATC: M01AE03) 104 Fenoprofen (ATC: M01AE04) 109 Fenbufen (ATC: M01AE05) 112 Benoxaprofen (ATC: M01AE06) 113 Suprofen (ATC: M01AE07) 114 Pirprofen (ATC: M01AE08) 115 Flurbiprofen (ATC: M01AE09) 116 Indoprofen (ATC: M01AE10) 120 Tiaprofenic Acid (ATC: -
(12) United States Patent (10) Patent No.: US 8.242,146 B2 Klein Et Al
USOO8242146 B2 (12) United States Patent (10) Patent No.: US 8.242,146 B2 Klein et al. (45) Date of Patent: Aug. 14, 2012 (54) COMBINATION OF ANSAID AND A PDE-4 Wolda, S.L., “PDE4 inhibitors and chronic obstructive pulmonary INHIBITOR disease”, Emerging Drugs, vol. 5, No. 3, pp. 309-319, (2000). Silva, J.C.R. et al., “Effects of pentoxifylline and nabumetone on the (75) Inventors: Thomas Klein, Constance (DE); serum levels of IL-1B and TNF C in rats with adjuvant arthritis', Hans-Peter Kley, Allensbach (DE) Inflammation Research, vol. 49, pp. 14-19, (2000). Kumar, A. et al., “Analgesic and anti-inflammatory effects of (73) Assignee: Nycomed GmbH, Constance (DE) phosphodiesterase inhibitors'. Indian Journal of Experimental Biol ogy, vol. 38, pp. 26-30. (2000). (*) Notice: Subject to any disclaimer, the term of this Reuter, B.K. et al., “Phosphodiesterase inhibitors prevent NSAID patent is extended or adjusted under 35 entreopathy independently of effects on TNF-C. release'. Am J U.S.C. 154(b) by 1207 days. Physiol, vol. 277, pp. G847-G854, (1999). Sivola, J. et al., “Effects of nonsteroidal anti-inflammatory drugs on (21) Appl. No.: 12/003,129 rat gastric mucosal phosphodiesterase activity'. Agents and Actions, vol. 12, No. 4, pp. 516-520, (1982). (22) Filed: Dec. 20, 2007 Salcedo, J. et al., “Phosphodiesterase 4 Inhibition, A New Mecha nism to Maintain and Promote Gastric and Intestinal Mucosal Integ (65) Prior Publication Data rity Against NSAID-Induced Injury in the Rat', Gastroenterology, US 2008/O255.209 A1 Oct. 16, 2008 vol. 114, No.