On the Two Largest Q-Eigenvalues of Graphs

Total Page:16

File Type:pdf, Size:1020Kb

On the Two Largest Q-Eigenvalues of Graphs View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Elsevier - Publisher Connector Discrete Mathematics 310 (2010) 2858–2866 Contents lists available at ScienceDirect Discrete Mathematics journal homepage: www.elsevier.com/locate/disc On the two largest Q -eigenvalues of graphs JianFeng Wang a,b, Francesco Belardo c,∗, QiongXiang Huang b, Bojana Borovi¢anin d a Department of Mathematics, Qinghai Normal University, Xining, Qinghai 810008, PR China b College of Mathematics and System Science, Xinjiang University, Urumqi 830046, PR China c Department of Mathematics, University of Messina, 98166 Sant'Agata, Messina, Italy d Faculty of Science, University of Kragujevac, 34000 Kragujevac, Serbia article info a b s t r a c t Article history: In this paper, we first give an upper bound for the largest signless Laplacian eigenvalue Received 1 February 2010 of a graph and find all the extremal graphs. Secondly, we consider the second-largest Received in revised form 7 May 2010 signless Laplacian eigenvalue and we characterize the connected graphs whose second- Accepted 23 June 2010 largest signless Laplacian eigenvalue does not exceed 3. Furthermore, we give the signless Available online 21 July 2010 Laplacian spectral characterization of the latter graphs. In particular, the well-known friendship graph is proved to be determined by the signless Laplacian spectrum. Keywords: ' 2010 Elsevier B.V. All rights reserved. Signless Laplacian Largest eigenvalue Cospectral graphs Graph index Spectral characterization Friendship graph 1. Introduction All graphs considered here are undirected and simple (i.e., loops and multiple edges are not allowed). Let G D G.V .G/; E.G// be a graph with vertex set V .G/ D fv1; v2; : : : ; vng and edge set E.G/, where n.G/ D jV .G/j D n is the order and m.G/ D jE.G/j D m is the size of G. For a graph G, let M D M.G/ be a corresponding graph matrix defined in a prescribed way. The M-polynomial of G is defined as det(λI − M/, where I is the identity matrix. The M-eigenvalues of G are the eigenvalues of its M-polynomial. The M-spectrum, denoted by SpecM .G/, of G is a multiset consisting of the M- eigenvalues. The M-spectral radius (or M-index) of G is the largest M-eigenvalue of G. Usually M.G/ is one of the following matrices: A.G/, the adjacency matrix, L.G/, the Laplacian matrix, and Q .G/, the signless Laplacian matrix. Cvetkovi¢ and Simi¢ [6–8] recently investigated the theory of Q -spectra of graphs, and they gave some reasons for studying graphs by using Q -spectra being more efficient than studying them using their A-spectra or L-spectra. See [4,5,2,15,14,21] for some recent results on this aspect. In this paper, we proceed to investigate the properties of the Q - spectra of graphs. Graphs with the same spectrum with respect to a graph matrix M are called M-cospectral graphs. A graph G is said to be determined by its M-spectrum (or we say that G is a DMS-graph for short) if there is no other non-isomorphic graph with ∼ the same spectrum, that is, SpecM .H/ D SpecM .G/ implies H D G for any graph H. An M-cospectral mate of G is a graph cospectral with but not isomorphic to G. The problem ``which graphs are determined by their spectrum?'' was posed by Günthard and Primas [11] more than 50 years ago in the context of Hückel’s theory in chemistry. Only in the most recent ∗ Corresponding author. E-mail addresses: [email protected] (J.F. Wang), [email protected] (F. Belardo), [email protected] (Q.X. Huang), [email protected] (B. Borovi¢anin). 0012-365X/$ – see front matter ' 2010 Elsevier B.V. All rights reserved. doi:10.1016/j.disc.2010.06.030 J.F. Wang et al. / Discrete Mathematics 310 (2010) 2858–2866 2859 Fig. 1. Semi-edge walks of length 2 starting from v. years have mathematicians devoted their attention to this problem and many papers are now appearing in many journals. For additional remarks and basic results on this topic we refer the readers to the excellent surveys [19,20]. We now introduce some notation. Let G be a graph order n. Recall that Q .G/ D D.G/ C A.G/, where D.G/ D diag.d1; d2;:::; dn/ with di D dG.vi/ being the degree of vertex vi of G .1 ≤ i ≤ n/. Let S.G/ and L.G/ be respectively the subdivision graph and the line graph of G. The A-polynomial and Q -polynomial of G are respectively denoted by φ.G; λ) and '.G; λ). kG denotes the disjoint union of k copies of G. Assuming the non-increasing order, set SpecA.G/ D .t/ fλ1.G/; λ2.G/; : : : ; λn.G/g and SpecQ .G/ D fq1.G/; q2.G/; : : : ; qn.G/g, while µ means that µ is an eigenvalue with multiplicity t. The eigenvalue q1.G/ will be called the Q -index and it will be denoted by κ.G/. Traditionally, we let Pn; Cn; Kn and K1;n−1 respectively denote the path, the cycle, the complete graph and the star of order n. Kr;s denotes the complete bipartite graph on r C s vertices, where r and s denote the number of vertices in the color classes. A cycle C3 of order 3 is − called a triangle. Kn stands for the graph obtained from Kn by deleting an edge. By Ln;p we denote the lollipop graph obtained by appending a cycle Cp to a pendant vertex of a path Pn−p. Let Ta;b;c denote the tree with exactly one vertex v of maximal degree 3 such that Ta;b;c − v D Pa [ Pb [ Pc . Let Ft denote the friendship graph on n D 2t C 1 vertices, that is, the graph consisting of t triangles intersecting in a single vertex. Let Br;s be the butterfly graph that consists of s triangles sharing a common vertex having an additional r pendant vertices; clearly, the friendship graph Ft is a subgraph of Br;t . The friendship graph is well-known for the following friendship theorem with the wonderful proofs in [10,23]: Friendship Theorem. If G is a graph in which any two distinct vertices have exactly one common neighbor, then G has a vertex joined to all others. The rest of the paper is organized as follows. In Section 2 an upper bound for the Q -index is given. In Section 3 an upper bound for the second-largest Q -eigenvalue is obtained. In Section 4 all connected graphs with the second-largest Q -eigenvalue at most 3 are determined, and their spectral characterization are investigated. 2. An upper bound of the Q -index of a graph Cvetkovi¢, Rowlinson and Simi¢ introduced in [5] a very interesting definition of a ``semi-edge walk'' of a graph which is a generalization of the ``walk'' in a graph. Definition 2.1. A semi-edge walk (of length k) in an (undirected) graph G is an alternating sequence v1; e1; v2; e2; : : : ; vk; ek; vkC1 of vertices v1; v2; : : : ; vkC1 and edges e1; e2;:::; ek such that for any i D 1; 2;:::; k the vertices vi and viC1 are end- vertices (not necessarily distinct) of the edge ei. Lemma 2.1 ([5]). Let Q be the signless Laplacian of a graph G. The .i; j/-entry of the matrix Q k is equal to the number of semi-edge walks of length k starting from vertex i and terminating at vertex j. Using Lemma 2.1 from [9] we get the following lemma which can be proved by a method similar to that used to prove Lemma 2.2 in [9]. Lemma 2.2. Let G be a connected graph of order n and Q its signless Laplacian matrix. Let p.x/ be any polynomial and Sv.p.Q // be the row-sum of p.Q / corresponding to the vertex v. Then min Sv.p.Q // ≤ p(κ.G// ≤ max Sv.p.Q //: v2V .G/ v2V .G/ Moreover, equality holds if and only if the row-sums of p.Q / are all equal. 2 2 2 Now we calculate Sv.Q / in a graph G. Although we can obtain the expression for Sv.Q / by expanding Q D .D.G/ C A.G//2, we prefer to obtain the result through Lemma 2.1. The latter fact can help us to understand the relation between the 2 structure of G and the number of semi-edge walks of a given length. Clearly, Sv.Q / is the number of semi-edge walks of length 2 in G originating at v. By u ∼ v, we mean that u is adjacent to v; otherwise u 6∼ v. All semi-edge walks of length 2 are of the following types (cf. Fig. 1): T1: veiuieijaij and veiuieijui .1 ≤ i ≤ d.v/; 1 ≤ j ≤ d.ui/ − 1/. Each kind of semi-edge walk of type T1 counts d.ui/ − 1 P − such walks. So, the total number of T1 walks is 2 u∼v.d.u/ 1/. 2860 J.F. Wang et al. / Discrete Mathematics 310 (2010) 2858–2866 T2: veiuieiv; veiveiui; veiveiv and veiuieiui .1 ≤ i ≤ d.v//. We have d.v/ semi-edge walks of each kind, so the total number of T2 walks is 4d.v/. T3: veivejuj and veivejv .1 ≤ i 6D j ≤ d.v//.
Recommended publications
  • Ssp Structure of Some Graph Classes
    International Journal of Pure and Applied Mathematics Volume 101 No. 6 2015, 939-948 ISSN: 1311-8080 (printed version); ISSN: 1314-3395 (on-line version) url: A http://www.ijpam.eu P ijpam.eu SSP STRUCTURE OF SOME GRAPH CLASSES R. Mary Jeya Jothi1, A. Amutha2 1,2Department of Mathematics Sathyabama University Chennai, 119, INDIA Abstract: A Graph G is Super Strongly Perfect if every induced sub graph H of G possesses a minimal dominating set that meets all maximal cliques of H. Strongly perfect, complete bipartite graph, etc., are some of the most important classes of super strongly perfect graphs. Here, we analyse the other classes of super strongly perfect graphs like trivially perfect graphs and very strongly perfect graphs. We investigate the structure of super strongly perfect graph in friendship graphs. Also, we discuss the maximal cliques, colourability and dominating sets in friendship graphs. AMS Subject Classification: 05C75 Key Words: super strongly perfect graph, trivially perfect graph, very strongly perfect graph and friendship graph 1. Introduction Super strongly perfect graph is defined by B.D. Acharya and its characterization has been given as an open problem in 2006 [5]. Many analysation on super strongly perfect graph have been done by us in our previous research work, (i.e.,) we have investigated the classes of super strongly perfect graphs like strongly c 2015 Academic Publications, Ltd. Received: March 12, 2015 url: www.acadpubl.eu 940 R.M.J. Jothi, A. Amutha perfect, complete bipartite graph, etc., [3, 4]. In this paper we have discussed some other classes of super strongly perfect graphs like trivially perfect graph, very strongly perfect graph and friendship graph.
    [Show full text]
  • OPTIMAL SOLUTIONS and RANKS in the MAX-CUT SDP Daniel
    COVER PAGE: OPTIMAL SOLUTIONS AND RANKS IN THE MAX-CUT SDP Daniel Hong, Skyline High School, Sammamish, WA, USA Hyunwoo Lee, Interlake High School, Bellevue, WA, USA Alex Wei, Interlake High School, Bellevue, WA, USA Instructor: Diego Cifuentes, Massachusetts Institute of Technology, Cam- bridge, MA, USA 1 OPTIMAL SOLUTIONS AND RANKS IN THE MAX-CUT SDP DANIEL HONG, HYUNWOO LEE, AND ALEX WEI Abstract. The max-cut problem is a classical graph theory problem which is NP-complete. The best polynomial time approximation scheme relies on semidefinite programming (SDP). We study the conditions under which graphs of certain classes have rank 1 solutions to the max-cut SDP. We apply these findings to look at how solutions to the max-cut SDP behave under simple combinatorial constructions. Our results determine when solutions to the max-cut SDP for cycle graphs is rank 1. We find the solutions to the max-cut SDP of the vertex sum of two graphs. We then characterize the SDP solutions upon joining two triangle graphs by an edge sum. Keywords: Max-cut, Semidefinite program, Rank, Cycle graphs, Ver- tex sum, Edge sum Contents 1. Introduction 2 Related work 3 Structure 3 2. Background 4 2.1. Semidefinite programs 4 2.2. Max-cut SDP 4 2.3. Clique sums of graphs 6 3. Experiments on rank of max-cut SDP 6 4. Solutions and Ranks for Particular Classes of Graphs 7 4.1. Rank 1 solutions for cycles 7 4.2. Max-cut SDP for a vertex sum 8 4.3. Max-cut SDP for a diamond graph 9 5.
    [Show full text]
  • Graphic Sequences with a Realization Containing a Generalized Friendship Graph ∗
    Graphic Sequences with a Realization Containing a Generalized Friendship Graph ∗ Jian-Hua Yina,† Gang Chenb, John R. Schmittc aDepartment of Applied Mathematics, College of Information Science and Technology, Hainan University, Haikou 570228, P.R. China bDepartment of Mathematics, Ningxia University, Yinchuan 750021, P.R. China cDepartment of Mathematics, Middlebury College, Middlebury, VT, USA Abstract: Gould, Jacobson and Lehel (Combinatorics, Graph Theory and Algorithms, Vol.I (1999) 451–460) considered a variation of the classical Tur´an-type extremal problems as follows: for any simple graph H, determine the smallest even integer σ(H, n) such that every n-term graphic sequence π = (d1, d2, . , dn) with term sum σ(π) = d1 + d2 + ··· + dn ≥ σ(H, n) has a realization G containing H as a subgraph. Let Ft,r,k denote the generalized friendship graph on kt − kr + r vertices, that is, the graph of k copies of Kt meeting in a common r set, where Kt is the complete graph on t vertices and 0 ≤ r ≤ t. In this paper, we determine σ(Ft,r,k, n) for k ≥ 2, t ≥ 3, 1 ≤ r ≤ t − 2 and n sufficiently large. Keywords: degree sequence, potentially Ft,r,k-graphic sequence, generalized friendship graph. 2000 MR Subject Classification: 05C35, 05C07. 1. Introduction The set of all sequences π = (d1, d2, . , dn) of non-negative, non-increasing integers with d1 ≤ n − 1 is denoted by NSn. A sequence π ∈ NSn is said to be graphic if it is the degree sequence of a simple graph G on n vertices, and such a graph G is called a realization of π.
    [Show full text]
  • Math.RA] 25 Sep 2013 Previous Paper [3], Also Relying in Conceptually Separated Tools from Them, Such As Graphs and Digraphs
    Certain particular families of graphicable algebras Juan Núñez, María Luisa Rodríguez-Arévalo and María Trinidad Villar Dpto. Geometría y Topología. Facultad de Matemáticas. Universidad de Sevilla. Apdo. 1160. 41080-Sevilla, Spain. [email protected] [email protected] [email protected] Abstract In this paper, we introduce some particular families of graphicable algebras obtained by following a relatively new line of research, ini- tiated previously by some of the authors. It consists of the use of certain objects of Discrete Mathematics, mainly graphs and digraphs, to facilitate the study of graphicable algebras, which are a subset of evolution algebras. 2010 Mathematics Subject Classification: 17D99; 05C20; 05C50. Keywords: Graphicable algebras; evolution algebras; graphs. Introduction The main goal of this paper is to advance in the research of a novel mathematical topic emerged not long ago, the evolution algebras in general, and the graphicable algebras (a subset of them) in particular, in order to obtain new results starting from those by Tian (see [4, 5]) and others already obtained by some of us in a arXiv:1309.6469v1 [math.RA] 25 Sep 2013 previous paper [3], also relying in conceptually separated tools from them, such as graphs and digraphs. Concretely, our goal is to find some particular types of graphicable algebras associated with well-known types of graphs. The motivation to deal with evolution algebras in general and graphicable al- gebras in particular is due to the fact that at present, the study of these algebras is very booming, due to the numerous connections between them and many other branches of Mathematics, such as Graph Theory, Group Theory, Markov pro- cesses, dynamic systems and the Theory of Knots, among others.
    [Show full text]
  • Interlace Polynomials of Friendship Graphs
    Electronic Journal of Graph Theory and Applications 6 (2) (2018), 269–281 Interlace polynomials of friendship graphs Christina Eubanks-Turnera, Aihua Lib aDepartment of Mathematics, Loyola Marymount University, 90045 bDepartment of Mathematical Sciences, Montclair State University, 07043 [email protected], [email protected] Abstract In this paper, we study the interlace polynomials of friendship graphs, that is, graphs that satisfy the Friendship Theorem given by Erdos,¨ Renyi´ and Sos. Explicit formulas, special values, and behaviour of coefficients of these polynomials are provided. We also give the interlace polynomials of other similar graphs, such as, the butterfly graph. Keywords: graph polynomial, interlace polynomial, friendship graph, butterfly graph Mathematics Subject Classification : 05C31, 05C50 DOI: 10.5614/ejgta.2018.6.2.7 1. Introduction Sequencing by hybridization is a method of reconstructing a long DNA string from its nu- cleotide sequence. Since gaining a unique reconstruction from the substrings is not always possi- ble, a major question that arises in this study is “For a random string, how many reconstructions are possible?” In [2], Arratia, Bollobas,´ Coppersmith, and Sorkin answer an important question related to DNA sequencing by converting this to a question about Euler circuits in a 2-in, 2-out graph that have been “toggled” (interlaced). The previously mentioned authors introduced the in- terlace polynomial of a graph, a polynomial that represents the information gained from doing the toggling process on the graph, see [2]. Interlace polynomials are similar to other graph polynomi- als, such as, Tutte and Martin polynomials, see [5]. Some researchers have studied different types of graph polynomials, such as genus polynomials, [7].
    [Show full text]
  • Minor-Obstructions for Apex Sub-Unicyclic Graphs1
    Minor-Obstructions for Apex Sub-unicyclic Graphs1 Alexandros Leivaditis2 Alexandros Singh3 Giannos Stamoulis3 Dimitrios M. Thilikos4,2,3,5 Konstantinos Tsatsanis3 Vasiliki Velona6,7,8 Abstract A graph is sub-unicyclic if it contains at most one cycle. We also say that a graph G is k-apex sub-unicyclic if it can become sub-unicyclic by removing k of its vertices. We identify 29 graphs that are the minor-obstructions of the class of 1-apex sub-unicyclic graphs, i.e., the set of all minor minimal graphs that do not belong in this class. For bigger values of k, we give an exact structural characterization of all the cactus graphs that are minor-obstructions of k-apex sub- unicyclic graphs and we enumerate them. This implies that, for every k, the class of k-apex sub-unicyclic graphs has at least 0.34 · k−2.5(6.278)k minor-obstructions. Keywords: Graph Minors, Obstruction set, Sub-unicyclc graphs. 1 Introduction A graph is called unicyclic [17] if it contains exactly one cycle and is called sub-unicyclic if it contains at most one cycle. Notice that sub-unicyclic graphs are exactly the subgraphs of unicyclic graphs. A graph H is a minor of a graph G if a graph isomorphic to H can be obtained by some subgraph of G after a series of contractions. We say that a graph class G is minor-closed if every minor of every graph in G also belongs in G. We also define obs(G), called the minor-obstruction set of G, as the set of minor-minimal graphs not in G.
    [Show full text]
  • 4-Prime Cordiality of Some Cycle Related Graphs
    Available at Applications and Applied http://pvamu.edu/aam Mathematics: Appl. Appl. Math. An International Journal ISSN: 1932-9466 (AAM) Vol. 12, Issue 1 (June 2017), pp. 230 – 240 4-Prime cordiality of some cycle related graphs 1R. Ponraj, 2Rajpal Singh, & 1S. Sathish Narayanan 1Department of Mathematics Sri Paramakalyani College Alwarkurichi-627412, India [email protected]; [email protected] & 2Research Scholar Department of Mathematics Manonmaniam Sundaranar University Abishekapatti, Tirunelveli - 627012, Tamilnadu, India [email protected] Received: June 18, 201; Accepted: October 20, 2016 Abstract Recently three prime cordial labeling behavior of path, cycle, complete graph, wheel, comb, subdivison of a star, bistar, double comb, corona of tree with a vertex, crown, olive tree and other standard graphs were studied. Also four prime cordial labeling behavior of complete graph, book, flower were studied. In this paper, we investigate the four prime cordial labeling behavior of corona of wheel, gear, double cone, helm, closed helm, butterfly graph, and friendship graph. Keywords: Wheel; Gear; Double Cone; Helm; Butterfly Graph MSC 2010 No.: Primary 05C78, Secondary 05C38 1. Introduction Throughout this paper we have considered only simple and undirected graph. Terms and defini- tions not defined here are used in the sense of Harary (2001) and Gallian (2015). 230 AAM: Intern. J., Vol. 12, Issue 1 (June 2017) 231 Let G = (V;E) be a (p;q) graph. The cardinality of V is called the order of G and the cardinality of E is called the size of G. Rosa (1967) introduced graceful labelling of graphs which was the foundation of the graph labelling.
    [Show full text]
  • Optimal Emulations by Butterfly-Like Networks
    Optimal Emulations by Butterfly-Like Networks Sandeep N. Bhatt Bell Communications Research Morristown, New Jersey Fan R. K. Chung Bell Communications Research Morristown, New Jersey Jia-Wei Hong New York University New York, New York F. Thomson Leighton Massachusetts Institute of Technology Cambridge, Massachusetts Bojana Obreni´c Queens College of CUNY Flushing, New York Arnold L. Rosenberg University of Massachusetts Amherst, Massachusetts Eric J. Schwabe Northwestern University Evanston, Illinois 1 Contact Author: Eric J. Schwabe Department of EECS Northwestern University 2145 Sheridan Road Evanston, IL 60208 Acknowledgments of Support: The research of S. N. Bhatt was supported in part by NSF Grant CCR-88-07426, NSF/DARPA Grant CCR-89-08285, and Air Force Grant AFOSR-89-0382; the re- search of F. T. Leighton was supported in part by Air Force Grant AFOSR-F49620- 92-J-0125, DARPA Contracts N00014-91-J-1698 and N00014-92-J-1799, and an NSF Presidential Young Investigator Award with matching funds from AT&T and IBM; the research of B. Obreni´cand A. L. Rosenberg was supported in part by NSF Grant CCR-88-12567; the research of E. J. Schwabe was supported in part by DARPA Con- tract N00014-89-J-1988, NSF Grant CCR-93-09111, and a DARPA/NASA Research Assistantship in Parallel Processing administered by the Institute for Advanced Com- puter Studies, University of Maryland. A portion of this research was done while F. T. Leighton and A. L. Rosenberg were visiting Bell Communications Research. Authors’ Present Addresses: Sandeep N. Bhatt: Computing and Communications Research Department, Bell Com- munications Research, Morristown, NJ 07960; Fan R.
    [Show full text]
  • The Friendship Theorem
    THE FRIENDSHIP THEOREM ELIZABETH WALKER Abstract. In this paper we explore the friendship theorem, which in graph theory is stated as if we have a finite graph in which any two nodes have exactly one common neighbor, then Then there is a node which is adjacent to all other nodes. We provide a com- mon proof of the friendship theorem, followed by two extensions. The first extension relates to the number of common neighbors a node must have. The second relaxes the friendship condition such that any two nodes can have no common neighbor or one common neighbor. 1. Introduction The Friendship Theorem has long been explored through graph the- ory, and its origins are not known. The Friendship Theorem can be stated as follows: Theorem 1.1. Suppose in a group of people we have the situation that any pair of persons has precisely one common friend. Then there is always a person (the \politician") who is everybody's friend. In such a situation, there is always one person who is everyone's friend. We will see throughout this paper that the Friendship Theorem can be explored with graph theory in order to provide valuable insights to a variety of graphs of different diameter. We will summarize a simple proof of the friendship theorem as well as a purely combinatorial proof proposed by Mertzios and Unger in 2008, and a relaxation of the problem and further conclusions discussed by Skala in 1972. The friendship theorem is commonly translated into a theorem in graph theory: Theorem 1.2. Suppose that G is a finite graph in which any two ver- tices have precisely one common neighbor.
    [Show full text]
  • Adjacent Vertex Distinguishing Total Coloring of Line and Splitting Graph of Some Graphs
    Annals of Pure and Applied Mathematics Vol. 13, No. 2, 2017, 173-183 Annals of ISSN: 2279-087X (P), 2279-0888(online) Published on 4 April 2017 www.researchmathsci.org DOI: http://dx.doi.org/10.22457/apam.v13n2a3 Adjacent Vertex Distinguishing Total Coloring of Line and Splitting Graph of Some Graphs K.Thirusangu 1 and R.Ezhilarasi 2 1Department of Mathematics, S.I.V.E.T College, Gowrivakkam Chennai - 600 073, India 2Ramanujan Institute for Advanced Study in Mathematics University of Madras, Chennai - 600 005, India. 2Corresponding author. Email: [email protected] ; [email protected] Received 9 March 2017; accepted 28 March 2017 Abstract. In this paper, we prove the existence of the adjacent vertex distinguishing total n coloring of line graph of Fan graph Fn , double star K1, n,n , Friendship graph F and 2n splitting graph of path Pn , cycle Cn , star K1, n and sun let graph S in detail. Keywords: simple graph, adjacent vertex distinguishing total coloring, line graph, splitting graph, path, cycle, star, sun let, fan, double star and friendship graph. AMS Mathematics Subject Classification (2010): 05C15, 05C38, 05C76 1. Introduction Throughout this paper, we consider finite, simple, connected and undirected graph G = (V (G), E(G)) . For every vertex u,v ∈V (G) , the edge connecting two vertices is denoted by uv ∈ E(G) . For all other standard concepts of graph theory, we see [1,2,5]. ∪ For graphs G1 and G2 , we let G1 G2 denotes their union, that is, ∪ ∪ ∪ ∪ V (G1 G2 ) = V (G1) V (G2 ) and E(G1 G2 ) = E(G1) E(G2 ) .
    [Show full text]
  • A Ramsey Problem Related to Butterfly Graph Vs. Proper Connected Subgraphs of K4
    A RAMSEY PROBLEM RELATED TO BUTTERFLY GRAPH VS. PROPER CONNECTED SUBGRAPHS OF K4 Chula Jayawardene and Lilanthi Samarasekara Department of Mathematics, University of Colombo, Sri Lanka e-mails: [email protected]; [email protected] A graph on 5 vertices consisting of 2 copies of the cycle graph C3 sharing a common vertex is called the Butterfly graph (B). The smallest natural number s such that any two-colouring (say red and blue) of the edges of Kjs has a copy of a red B or a blue G is called the multipartite Ramsey number of Butterfly graph versus G. This number is denoted by mj(B,G). In this paper we find exact the values for mj(B,G) when j 3and G represents any connected proper subgraph of K4 with at least one edge. Key words : Graph Theory, Ramsey Theory. 1. INTRODUCTION In this paper we concentrate on simple graphs. Let the complete multipartite graph having j uniform sets of size s be denoted by Kjs. Given two graphs G and H, we say that KN→( G, H) if KN is coloured by two colours red and blue and it contains a copy of G (in the first color red) or a copy of (in the second color blue). With respect to this notation, we define the Ramsey number r(n,m) as the smallest integer N such that KN→(Kn, Km). As of today, beyond the case n = 5, almost nothing significant is known with regard to diagonal classical Ramsey number r(n,n) (see [8] for a survey).
    [Show full text]
  • SM444 Notes on Algebraic Graph Theory
    SM444 notes on algebraic graph theory David Joyner 2017-12-04 These are notes1 on algebraic graph theory for sm444. This course focuses on \calculus on graphs" and will introduce and study the graph-theoretic analog of (for example) the gradient. For some well-made short videos on graph theory, I recommend Sarada Herke's channel on youtube. Contents 1 Introduction 2 2 Examples 6 3 Basic definitions 20 3.1 Diameter, radius, and all that . 20 3.2 Treks, trails, paths . 22 3.3 Maps between graphs . 26 3.4 Colorings . 29 3.5 Transitivity . 30 4 Adjacency matrix 31 4.1 Definition . 31 4.2 Basic results . 32 4.3 The spectrum . 35 4.4 Application to the Friendship Theorem . 44 4.5 Eigenvector centrality . 47 1See Biggs [Bi93], Joyner-Melles [JM], Joyner-Phillips [JP] and the lecture notes of Prof Griffin [Gr17] for details. 1 4.5.1 Keener ranking . 52 4.6 Strongly regular graphs . 54 4.6.1 The Petersen graph . 54 4.7 Desargues graph . 55 4.8 D¨urergraph . 56 4.9 Orientation on a graph . 57 5 Incidence matrix 59 5.1 The unsigned incidence matrix . 59 5.2 The oriented case . 62 5.3 Cycle space and cut space . 63 6 Laplacian matrix 74 6.1 The Laplacian spectrum . 79 7 Hodge decomposition for graphs 84 7.1 Abstract simplicial complexes . 85 7.2 The Bj¨orner complex and the Riemann hypothesis . 91 7.3 Homology groups . 95 8 Comparison graphs 98 8.1 Comparison matrices . 98 8.2 HodgeRank . 100 8.3 HodgeRank example .
    [Show full text]