Redalyc.Applicability of Attenuation Relations for Regional Studies

Total Page:16

File Type:pdf, Size:1020Kb

Redalyc.Applicability of Attenuation Relations for Regional Studies Geofísica Internacional ISSN: 0016-7169 [email protected] Universidad Nacional Autónoma de México México Joshi, Anand; Kumar, Ashvini; Lomnitz, Cinna; Castaños, Heriberta; Akhtar, Shahid Applicability of attenuation relations for regional studies Geofísica Internacional, vol. 51, núm. 4, octubre-diciembre, 2012, pp. 349-363 Universidad Nacional Autónoma de México Distrito Federal, México Available in: http://www.redalyc.org/articulo.oa?id=56824381004 How to cite Complete issue Scientific Information System More information about this article Network of Scientific Journals from Latin America, the Caribbean, Spain and Portugal Journal's homepage in redalyc.org Non-profit academic project, developed under the open access initiative GEOFÍSICA INTERNACIONAL (2012) 51-4: 349-363 ORIGINAL PAPER Applicability of attenuation relations for regional studies Anand Joshi*, Ashvini Kumar, Cinna Lomnitz, Heriberta Castaños and Shahid Akhtar Received: August 31, 2011; accepted: May 23, 2012; published on line: September 28, 2012 Resumen Abstract El siguiente trabajo analiza las aplicabilidades de This paper discusses the applicability of differ- diferentes ecuaciones predictivas del movimiento ent ground motion prediction equations (GMPE) del suelo en estadios regionales. Para ello se han for regional studies. Cumulative probability plots utilizado las gráficas cumulativas de probabilidad y and residual plots are used to check the normal- de residuales. Tanto la normalidad como la adecu- ity and model inadequacies in various GMPE. It ación del modelo están conformes siempre que los is seen that as long as the data set is similar to conjuntos de datos sean similares; sin embargo, that used for generating GMPE the normality and cuando el modelo se utiliza para la predicción de model adequacies are broadly satisfied. However, datos en diferentes regiones existe deviación de clear deviation from normality is observed when la normalidad. Por ejemplo, un conjunto de datos using GMPE for predicting different data sets. In provenientes de sismos en los Himalayas registra- order to check utility of various worldwide GMPE dos en una red sísmica fue predicha mediante las for dataset other than that used for preparing ecuaciones de Abrahamson y Litehiser (1989), de GMPE, the dataset of Himalayan earthquakes Boore y Atkinson (2008), de Boore et al. (1997) recorded on strong motion network has been y de Joyner y Boore (1981) y resulta que estos predicted using the GMPE given by Abrahamson modelos presentan el efecto “fat tail” y amplias and Litehiser (1989), Boore and Atkinson (2008), desviaciones de adecuación. Por otra parte, si se Boore et al. (1997) and Joyner and Boore (1981). utiliza el modelo que hemos derivadio a base de It is seen that these GMPE shows presence of fat datos de los Himalayas la predicción es normal y tails together with large model inadequacies when adecuada. Finalmente, se examina la dependencia they are used for predicting Himalayan data. The de las ecuaciones predictivas de los mapas de zo- data for Himalayan earthquake are also predicted nilización sísmica regionales. Se obtuvo un mapa by using the GMPE developed using Himalayan de 10% de probabilidad de excedencia para una data. It is seen that this GMPE obeys normality aceleración pico de 0.1g con el método de Joshi y and does not reflect any model inadequacies. The Patel (1997) y se encontró que el mapa resultante dependency of GMPE on the seismic zonation map era similar cuando se empleaban dos ecuaciones of the region is also checked in this work. The predictivas basadas en datos de los Himalayas; seismic map for 10% probability of exceedence en cambio, usando la ecuación de Abrahamson y of peak ground acceleration of 0.1g is prepared Litehiser (1989) los resultados eran discordantes. using modified method given by Joshi and Patel (1997). It is seen that two different regional GMPE Palabras clave: normalidad, residual, predicción developed using Himalayan dataset gives similar sísimica, Himalaya. seismic zonation map however large deviation in the seismic zonation map is observed when GMPE given by Abrahamson and Litehiser (1989) has been used. Key words: normality, residual, seismic, Himalaya. A. Joshi* H. Castaños A. Kumar Instituto de Investigaciones Económicas Department of Earth Sciences Universidad Nacional Autónoma de México Indian Institute of Technology Roorkee Ciudad Universitaria Roorkee, India Delegación Coyoacán, 04510 *Corresponding author: [email protected] México, D.F., México C. Lomnitz Instituto de Geofísica Universidad Nacional Autónoma de México Ciudad Universitaria Delegación Coyoacán, 04510 México, D.F., México 349 A. Joshi, A. Kumar, C. Lomnitz and H. Castaños Introduction (2008), Joyner and Boore (1981) has been used to check its deviation from normality and model An evaluation of seismic hazards, whether adequacies for predicting values other than that deterministic (scenario based) or probabilistic, used for its preparation. The GMPE’s prepared requires an estimate of the expected ground from the Himalayan data has been used further motion at the site of interest. The most common to check its deviation from normality and model mean of estimating expected ground motion adequacies. in the probabilistic seismic hazard analysis (PSHA), depends on use of ground motion Residual in GMPE: Concept prediction equation (Campbell, 1981). A ground motion prediction equation (GMPE) or ground Ground-motion prediction equation (GMPE) can motion model as seismologists prefer to call it be expressed in the following form (Campbell, is a mathematical based expression that relates 1981) as: a specific strong motion parameter of ground shaking to one or more seismological parameters Yb= fM()fR()fM(,Rf)(P)ε of an earthquake. The ground motion prediction 11 23 4 i (1) equation includes a random residual, which can be specified in term of its statistical parameters Where, Y is the strong motion parameter to be predicted, ( ) is a function of the magnitude like mean value and standard deviation. Early f1 M scale ; ( ) is a function of distance parameter works related to the development of GMPE does M f2 R ; ( , ) is a joint function of and ; ( ) is a not include ground motion variability (Bommer R f3 M R M R f4 Pi and Abrahamson, 2006). McGuire (1976) has function representing parameter of earthquake, published many GMPE which do not report path, site, or structure and ε (epsilon) is the associated standard deviation. The inclusion random residual representing the uncertainty of ground motion variability became standard in Y (Campbell, 1981). The random residual is at the beginning of the 1980’s (e.g., Campbell, usually assumed to be log normally distributed 1981; Joyner and Boore, 1981). (Campbell, 1981). A posteriori empirical justifi- cation in support of a lognormal distribution for New attenuation models for shallow crustal random residual comes from statistical tests on earthquake in the Western United States and the observed scatter about the predicted value similar active tectonic regions have been of Y (Esteva, 1970; Donovan, 1973; McGuire, developed under Next Generation of Ground 1977, 1978; Campbell, 1981). It is assumed Motion Attenuation Models (NGA) project by that random residuals behave normally for Power et al. (2008). Five set of ground motion all computations related to the ground motion models have been developed under this project. variability. Deviation of this random residual with The five NGA models developed by Power et respect to normality is one of the main causes of al. (2008) are compared with respect to data presence of fat tail in the distribution function. set utilized, model parameterizations and A simple method of checking nonlinearity ground motion predictions by Abrahamson et assumption is to construct a plot of cumulative al. (2008). Selection of appropriate GMPE for probability with respect to residuals plotted any seismological and engineering use plays in an increasing order. This graph is a straight an important role for any new region. It is seen line for normal distribution as shown in Figure that almost all parts of the world do not have 1(a). A sharp upward and downward curve at sufficient strong motion data from which GMPE both ends in Figure 1(b) indicates that the tail solely based on instrumental data from a small of this distribution is too heavy to be considered geographical area can be derived (Douglas, as normal distribution. Flattening at the extreme 2011). Validity of GMPE derived from data of end shown in Figure 1(c), which is a typical similar tectonic setup is confirmed by Douglas pattern from a distribution with thinner tail. The (2011) for regional studies. Douglas (2011) patterns associated with positive and negative conclude that although some regions seem skew are shown in Figure 1(d) and 1(e), to show considerable differences in shaking respectively. Small departures from normality it is currently more defensible to use well- assumption do not affect the model greatly, but constrained models, possibly based on data from gross nonlinearity is potentially more serious. If other regions, rather than use local, often poorly the errors come from a distribution with thicker constrained, models. or heavier tails than the normal, the least square fit may be sensitive to a small subset of data. This paper discusses the deviation of normality Heavy tail distribution often generates outliers and model inadequacies in the worldwide that pull the least square fit too much in their GMPE when they are used to predict regional direction. The random residual also plays an Himalayan data. The GMPE’s based on worldwide important role in deciding several types of model data prepared by Abrahamson and Litehiser inadequacies. The model inadequacies in the (1989), Boore et al. (1997), Boore and Atkinson GMPE are checked by plotting random variable 350 VOLUME 51 NUMBER 4 GEOFÍSICA INTERNACIONAL Figure 1. Normal pro- bability plots (a) ideal; (b) heavy-tailed distri- bution; (c) light-tailed distribution; (d) positive skew; (e) negative skew. (Modified after Montgo- mery et al. 2003). versus predicted parameter. If the plot of random span of time i.e., March 2006 to March 2008.
Recommended publications
  • The Alaknanda Basin (Uttarakhand Himalaya): a Study on Enhancing and Diversifying Livelihood Options in an Ecologically Fragile Mountain Terrain”
    Enhancing and Diversifying Livelihood Options ICSSR PDF A Final Report On “The Alaknanda Basin (Uttarakhand Himalaya): A Study on Enhancing and Diversifying Livelihood Options in an Ecologically Fragile Mountain Terrain” Under the Scheme of General Fellowship Submitted to Indian Council of Social Science Research Aruna Asaf Ali Marg JNU Institutional Area New Delhi By Vishwambhar Prasad Sati, Ph. D. General Fellow, ICSSR, New Delhi Department of Geography HNB Garhwal University Srinagar Garhwal, Uttarakhand E-mail: [email protected] Vishwambhar Prasad Sati 1 Enhancing and Diversifying Livelihood Options ICSSR PDF ABBREVIATIONS • AEZ- Agri Export Zones • APEDA- Agriculture and Processed food products Development Authority • ARB- Alaknanda River Basin • BDF- Bhararisen Dairy Farm • CDPCUL- Chamoli District Dairy Production Cooperative Union Limited • FAO- Food and Agricultural Organization • FDA- Forest Development Agency • GBPIHED- Govind Ballabh Pant Institute of Himalayan Environment and Development • H and MP- Herbs and Medicinal Plants • HAPPRC- High Altitude Plant Physiology Center • HDR- Human Development Report • HDRI- Herbal Research and Development Institute • HMS- Himalayan Mountain System • ICAR- Indian Council of Agricultural Research • ICIMOD- International Center of Integrated Mountain and Development • ICSSR- Indian Council of Social Science Research LSI- Livelihood Sustainability Index • IDD- Iodine Deficiency Disorder • IMDP- Intensive Mini Dairy Project • JMS- Journal of Mountain Science • MPCA- Medicinal Plant
    [Show full text]
  • Geomorphic Evolution of Dehra Dun, NW Himalaya: Tectonics and Climatic Coupling
    Geomorphology 266 (2016) 20–32 Contents lists available at ScienceDirect Geomorphology journal homepage: www.elsevier.com/locate/geomorph Geomorphic evolution of Dehra Dun, NW Himalaya: Tectonics and climatic coupling Swati Sinha, Rajiv Sinha ⁎ Department of Earth Sciences, Indian Institute of Technology Kanpur, Kanpur 208016, India article info abstract Article history: The Dehra Dun is a good example of a piggyback basin formed from the growth of the Siwalik hills. Two large riv- Received 22 November 2015 ers, the Ganga and the Yamuna, and their tributaries deposit a significant part of their sediment load in the Dun Received in revised form 1 May 2016 before they enter the Gangetic plains. This work documents the geomorphic complexities and landform evolu- Accepted 2 May 2016 tion of the Dehra Dun through geomorphic mapping and chronostratigraphic investigation of the incised fan sec- Available online 6 May 2016 tions. Lesser Himalayan hills, inner and outer dissected hills, isolated hills, proximal fan, distal fan, dip slope unit, fl fi Keywords: oodplains, and terraces are the major geomorphic units identi ed in the area. Isolated hills of fan material (IHF), fi Intermontane valleys proximal fan (PF), and distal fan (DF) are identi ed as fan surfaces from north to south of the valley. The OSL Himalayan foreland based chronology of the fan sediments suggests that the IHF is the oldest fan consisting of debris flow deposits Valley fills with a maximum age of ~43 ka coinciding with the precipitation minima. The proximal fan consisting of sheet Fan deposits flow deposits represents the second phase of aggradation between 34 and 21 ka caused by shifting of deposition locus downstream triggered by high sediment supply that exceeded the transport capacity.
    [Show full text]
  • Characterizing the Main Himalayan Thrust in the Garhwal Himalaya, India with Receiver Function CCP Stacking
    Earth and Planetary Science Letters 367 (2013) 15–27 Contents lists available at SciVerse ScienceDirect Earth and Planetary Science Letters journal homepage: www.elsevier.com/locate/epsl Characterizing the Main Himalayan Thrust in the Garhwal Himalaya, India with receiver function CCP stacking Warren B. Caldwell a,n, Simon L. Klemperer a, Jesse F. Lawrence a, Shyam S. Rai b, Ashish c a Stanford University, Stanford, CA, United States b National Geophysical Research Institute, Hyderabad, India c CSIR Centre for Mathematical Modeling and Computer Simulation, NAL Belur, Bangalore, India article info abstract Article history: We use common conversion point (CCP) stacking of Ps receiver functions to image the crustal structure Received 20 November 2012 and Moho of the Garhwal Himalaya of India. Our seismic array of 21 broadband seismometers spanned Received in revised form the Himalayan thrust wedge at 79–801E, between the Main Frontal Thrust and the South Tibet 10 February 2013 Detachment, in 2005–2006. Our CCP image shows the Main Himalayan Thrust (MHT), the detachment Accepted 11 February 2013 at the base of the Himalayan thrust wedge, with a flat-ramp-flat geometry. Seismic impedance Editor: T.M. Harrison contrasts inferred from geologic cross-sections in Garhwal imply a negative impedance contrast (velocity decreasing downward) for the upper flat, located beneath the Lower Himalaya, and a positive Keywords: impedance contrast (velocity increasing downward) for the ramp, located beneath the surface trace of Himalaya the Munsiari Thrust (or MCT-I). At the lower flat, located beneath the Higher Himalaya, spatially India coincident measurements of very high electrical conductivities require the presence of free fluids, and Garhwal receiver functions we infer a negative impedance contrast on the MHT caused by ponding of these fluids beneath the CCP stacking detachment.
    [Show full text]
  • Changing Scenario of Traditional Beekeeping in Garhwal Himalaya: a Case Study from Gairsain Block of District Chamoli, Uttarakhand
    International Journal of Life Sciences Singh et. al., Vol. 2 No. 1 ISSN: 2277-193X International Journal of Life Sciences Vol.2. No.1. 2013. Pp. 16-20 ©Copyright by CRDEEP. All Rights Reserved Full Length Research Paper Changing Scenario of Traditional Beekeeping in Garhwal Himalaya: A Case Study from Gairsain Block of district Chamoli, Uttarakhand P. Tiwari, J. K. Tiwari and Dinesh Singh* Department of Botany & Microbiology, Post Box -22, HNB Garhwal University, Srinagar Garhwal-246174, Uttarakhand *Corresponding Author: Dinesh Singh Abstract Present study was carried out in Gairsain block of district Chamoli of Uttarakhand state. The data was collected through the direct interview of local inhabitants by administrating a set of structured questionnaires during the year 2011-2012. The present study revealed that the number of traditional wall hives and colonies were decreasing with parallel to increasing modern cemented houses. As such the total average number of wall hives/ house decreased from 11.23 in 1980 to 8.44 in 2010. This average will reach below as the traditional houses will complete their life span in near future. If the trend is not checked, then there will be no wall hives in the region in coming future. Thus, there is urgent need to conserve the traditional beekeeping to sustain the bee habitat and to provide nesting site for honey bees. Key words: Wall hive, Traditional house, Honey bee, Nesting site. Introduction Beekeeping is an environment friendly, agro-forestry based, traditionally adopted occupation among the mountain communities and is the part of natural and cultural heritage (Verma 1989, Mishra1995, Singh 1995, Pohkrel et al.
    [Show full text]
  • The Tectonics of the Garhwal— Kumaun Lesser Himalaya
    ZOBODAT - www.zobodat.at Zoologisch-Botanische Datenbank/Zoological-Botanical Database Digitale Literatur/Digital Literature Zeitschrift/Journal: Jahrbuch der Geologischen Bundesanstalt Jahr/Year: 1978 Band/Volume: 121 Autor(en)/Author(s): Fuchs Gerhard, Sinha A.K. Artikel/Article: The Tectonics of the Garhwal-Kumaun Lesser Himalaya 219-241 ©Geol. Bundesanstalt, Wien; download unter www.geologie.ac.at Jahrb. Geol. B.-A. Band 121, Heft 2 S. 219—241 Wien, Dezember 1978 The Tectonics of the Garhwal— Kumaun Lesser Himalaya By GERHARD FUCHS *) and ANSHU K. SINHA **) With 3 plates (= Beilagen 5—7) :o _§ Tectonics 5 Garhwal -2 Kumaun <>5 Lesser Himalaya CONTENTS Abstract 219 Zusammenfassung 219 1. Introduction 220 2. Some remarks to Stratigraphy 220 3. The Parautochthonous Unit 221 4. The Chail Nappes 228 5. The Crystalline Nappes 235 6. Conclusions 236 Acknowledgement 237 References 237 Abstract The paper is an attemt to give an uniform picture of the structure of Garhwal — Kumaun Lesser Himalaya. In combining data from literature with own observations the experiences from Western Nepal were invaluable aid. The lowest structural unit north of the Main Boundary Thrust is the Parautochtho­ nous Unit comprising the Krol Belt. The existence of a "Krol Nappe" derived from afar is denied. The above unit is succeeded by the Chail Nappes. The lower two subsidiary units consist of Chail-Deoban sequence, the uppermost nappe is built entirely by the Chail Formation and oversteps the lower units and the Parautochthonous Unit in unconformable way. The Crystalline Nappes are represented by a lower unit of medium grade metamor- phics and an upper unit composed by the high grade crystalline.
    [Show full text]
  • Archeological and Historical Database on Earthquakes
    Archeological and Historical Database on earthquakes. We are not aware of any studies on the seismic the Medieval Earthquakes of the Central performance of the temples in the Garhwal Himalaya, but Himalaya: Ambiguities and Inferences models of the performance of similar multistoried structures in Nepal show a fundamental time period less than 0.6 s (Jaishi by C. P. Rajendran, Kusala Rajendran, Jaishri et al., 2003). Because this is within the range of natural period of a wide variety of soils, there is a high probability for such Sanwal, and Mike Sandiford structures to approach a state of partial resonance during large earthquakes. The spatial distribution of damage, response of specific structures, and models based on their structural elements INTRODUCTION could lead to the location and magnitude of pre-twentieth cen- tury earthquakes. The architectural style showed only minor variations be- Global Positioning System-based convergence rate between In- 20 3mm=yr tween different clans and their rulers, and the constructions dia and southern Tibet is estimated as (Larson generally consist of a common plan, which used large and heavy et al., 1999). Despite this fast convergence, the seismicity rate ∼50% rock units arranged on top of each other, without mortar of the Himalaya has been remarkably low, as only of (Fig. 2). As a society whose social milieu revolved around this plate boundary has ruptured during the last 200 years. the temples for ages (>1000 years), the temple archives carried This long-lived deficit in seismic productivity has led many through generations serve as an important and often the only to believe that the region holds potential for more than one magnitude ≥8:0 source of information on its history including the impact of earthquake (Ambraseys and Jackson, 2003).
    [Show full text]
  • Active Tectonics of Kumaun and Garhwal Himalaya
    Springer Natural Hazards The Springer Natural Hazards series seeks to publish a broad portfolio of scientific books, aiming at researchers, students, and everyone interested in Natural Hazard research. The series includes peer-reviewed monographs, edited volumes, text- books, and conference proceedings. It covers all categories of hazards such as atmospheric/climatological/oceanographic hazards, storms, tsunamis, floods, ava- lanches, landslides, erosion, earthquakes, volcanoes, and welcomes book proposals on topics like risk assessment, risk management, and mitigation of hazards, and related subjects. More information about this series at http://www.springer.com/series/10179 R. Jayangondaperumal • V. C. Thakur V. Joevivek • Priyanka Singh Rao Anil Kumar Gupta Active Tectonics of Kumaun and Garhwal Himalaya 123 R. Jayangondaperumal Priyanka Singh Rao Structure and Tectonic Group Structure and Tectonic Group Wadia Institute of Himalayan Geology Wadia Institute of Himalayan Geology Dehradun, Uttarakhand Dehradun, Uttarakhand India India V. C. Thakur and Structure and Tectonic Group Wadia Institute of Himalayan Geology Geological Survey of India Dehradun, Uttarakhand Government of India India Hyderabad, Telangana India V. Joevivek Structure and Tectonic Group Anil Kumar Gupta Wadia Institute of Himalayan Geology Structure and Tectonic Group Dehradun, Uttarakhand Wadia Institute of Himalayan Geology India Dehradun, Uttarakhand India and and Akshaya College of Engineering and Technology Department of Geology and Geophysics Kinathukadavu, Coimbatore, Tamil Nadu Indian Institute of Technology Kharagpur India Kharagpur, West Bengal India ISSN 2365-0656 ISSN 2365-0664 (electronic) Springer Natural Hazards ISBN 978-981-10-8242-9 ISBN 978-981-10-8243-6 (eBook) https://doi.org/10.1007/978-981-10-8243-6 Library of Congress Control Number: 2018931503 © Springer Nature Singapore Pte Ltd.
    [Show full text]
  • Landslide Studies Between Devprayag and Pali Along National Highway-7, Tehri District, Garhwal Lesser Himalaya
    Volume 65, Issue 1, 2021 Journal of Scientific Research Institute of Science, Banaras Hindu University, Varanasi, India. Landslide Studies Between Devprayag and Pali along National Highway-7, Tehri District, Garhwal Lesser Himalaya R.A. Singh*1, Rahul Negi2, Piyush K. Singh3, and T.N. Singh4 1Government Degree College, Gururabanj, Almora, Uttarakhand. [email protected]* 2Department of Geology, L.S.M. Govt. P.G. College, Pithoragarh, Uttarakhand. [email protected] 3Department of Earth Sciences, IIT Roorkee, Roorkee, Uttarakhand. [email protected] 4Vice Chancellor, Mahatma Gandhi Kashi Vidyapith, Varanasi, U.P. [email protected] Abstract: Landslides are very common geological hazards which Index Terms: Active Landslides, Damage zone, Mitigation, NH-7, occur in Himalayan region mostly during monsoon season. It may Potential Landslides. be caused either due to natural factors such as rainfall, lithology, geomorphology, seismicity, geological structures and slopes, and I. INTRODUCTION anthropogenic factors such as road widening, blasting, Himalaya is tectonically very active where Landslides have deforestation, construction of houses etc. The present studies of landslides have been carried out along the National Highway-7 occurred from the Lesser Himalaya to Higher Himalaya (Singh, from Devprayag (N 300 08’34.80” E 78035’45.60”) to Pali (N 300 2010, 2012 & 2013; Umrao,et al., 2011; Kumar et al. 2014; 10’04.80” E 78037’22.80”). The detail geological and structural Sarkar, et al., 2016). Uttarakhand is a part of Himalayan region. mapping has been done on 1:10000 scale. Rocks along the road are Devprayag is a holy place where Alaknanda and Bhagirathi phyllite and quartzite and at some places river bed materials are Rivers meet after that the river named as “Ganga River”.
    [Show full text]
  • Traditional Knowledge on Medicinal Plants Among Rural Women of the Garhwal Himalaya, Uttaranchal
    Indian Journal of Traditional Knowledge Vol. 4(3), July 2005, pp. 259-266 Traditional knowledge on medicinal plants among rural women of the Garhwal Himalaya, Uttaranchal Bhagwati Uniyal* and Vandana Shiva *Type IV/11 (Residential Complex) Wildlife Institute of India, Post Box No 18, Chandrabani, Dehradun 248 001; ‘Navdanya’, 105 Rajpur Road, Dehradun, 248 001, Uttaranchal E-mail: bhagwatiuniyal @ rediffmail.com Received 2 April 2004; revised 26 February 2005 The present paper deals with traditional knowledge of medicinal plants among rural women of Garhwal. Seventy women of 11 villages were interviewed on the basis of their traditional knowledge on the various uses of medicinal plants found in the adjoining forest and agricultural areas. A total of 113 medicinal plant species were recorded during the inten- sive surveys and discussions held with the rural women. Keywords: Traditional Knowledge, Medicinal Plants, Garhwal, Ethnomedicine IPC Int. Cl.7: A61K35/78, A61P11/10, A61P11/14, A61P13/02, A61P15/02, A61P15/04, A61P15/08, A61P15/10, A61P17/02, A61P19/02, A61P33/10, A61P39/02 Traditional medicine has been defined as the sum of for commercial use as livelihood option. Women in the knowledge, skills and practices based on the theo- the Himalayan region have an intimate and long time ries, beliefs and experiences indigenous to different association with the surrounding forests for fulfilling culture, whether explicable or not, used in the mainte- their daily needs of fuel, fodder and other forest pro- nance of health as well in the prevention, diagnosis, duce. Rural women in the Himalayas are the only improvement or treatment of physical and mental ill- ones who play a vital role having knowledge about ness1.
    [Show full text]
  • Ethnopaediatrics in Garhwal Himalaya, Uttarakhand, India (Psychomedicine and Medicine)
    New York Science Journal 2010;3(4) Ethnopaediatrics in Garhwal Himalaya, Uttarakhand, India (Psychomedicine and Medicine) Jay Krishan Tiwari1, Radha Ballabha1 and Prabhawati Tiwari1 1. Department of Botany, HNB Garhwal University, Srinagar Garhwal, Uttarakhand- 246 174, India Authors E-mail: [email protected], [email protected], [email protected] Abstract: Garhwal Himalaya has its peculiar topography, vegetation, people and traditions. In the remote areas traditional customs and beliefs are still maintained and modem trends are yet to reach, which provide interesting scope of ethnobotanical studies. The present paper pertains to typical practices in ethnopaediatrics in Garhwal Himalaya, India. The inhabitants use different plants in primary health care of children. Different charms and amulets associated with the common ailments of children have been discussed. [New York Science Journal 2010;3(4):123-126]. (ISSN: 1554-0200). Key Words: Ethnopaediatrics, Garhwal Himalaya, indigenous knowledge, local communities. 1. Introduction ethnopaediatrics, covering also the psychomedicinal According to WHO approximately 80% of aspects as practiced in remote areas of Garhwal World population in developing countries depends on Himalaya, India. traditional medicines for primary healthcare (WHO, 2002) and in modern medicine too, nearly 25% are based on plant derived drugs (Tripathi, 2002). Garhwal o o Himalaya lying between the latitudes 29 26′ to 31 28′ N and longitudes 77o 49′ to 80o 06′ E (Figure 1) occupies an important place in Indian subcontinent. About 80% of the total population is rural and the inhabitants are called the Garhwalis or Paharis. Besides Garhwalis the area is inhabited by populations of different tribal communities such as Gujjars, Bhoxas, Tharus, Koltas, Kinnauries, Junsaris, etc.
    [Show full text]
  • A Case Study of Chamoli District, Uttarakhand
    aphy & N r at og u e ra G l Khanduri, J Geogr Nat Disast 2018, 8:2 f D o i s l Journal of Geography and Natural a DOI: 10.4172/2167-0587.1000226 a s n t r e u r s o J Disasters ISSN: 2167-0587 Research Article Open Access Landslide Distribution and Damages during 2013 Deluge: A Case Study of Chamoli District, Uttarakhand Khanduri S* Department of Disaster Management, Disaster Mitigation and Management Centre, Rajpur Road, Uttarakhand Secretariat, Dehradun, Uttarakhand 248001, India *Corresponding author: Khanduri S, Geologist, Department of Disaster Management, Disaster Mitigation and Management Centre, Rajpur Road, Uttarakhand Secretariat, Dehradun, Uttarakhand 248001, India, Tel: +919927721776; E-mail: [email protected] Received date: Feb 09, 2018; Accepted date: July 31, 2018; Published date: August 08, 2018 Copyright: © 2018 Khanduri S. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Abstract In June 2013 multiple disaster involving flash flood and landslides struck many parts of Uttarakhand state. This caused massive devastation in the state on 16 and 17 June, 2013. In the present paper, attempt was made to analysis the landslide incidences and damages in Chamoli district. A total of 220 landslides were observed in the area. About 92% of slide occurred on northerly (48 percent) and southerly (43 percent) facing slopes. These may be subject to freeze-thaw and drier cycles. Heavy rainfall and low shear strength of the rocks have played a major role in facilitating these slides.
    [Show full text]
  • Soft Sediments and Damage Pattern-A Few
    Nat Hazards (2014) 74:1829–1851 DOI 10.1007/s11069-014-1283-4 ORIGINAL PAPER Soft sediments and damage pattern: a few case studies from large Indian earthquakes vis-a-vis seismic risk evaluation Mithila Verma • R. J. Singh • B. K. Bansal Received: 27 November 2012 / Accepted: 2 June 2014 / Published online: 19 June 2014 Ó Springer Science+Business Media Dordrecht 2014 Abstract India is prone to earthquake hazard; almost 65 % area falls in high to very high seismic zones, as per the seismic zoning map of the country. The Himalaya and the Indo- Gangetic plains are particularly vulnerable to high seismic hazard. Any major earthquake in Himalaya can cause severe destruction and multiple fatalities in urban centers located in the vicinity. Seismically induced ground motion amplification and soil liquefaction are the two main factors responsible for severe damage to the structures, especially, built on soft sedimentary environment. These are essentially governed by the size of earthquake, epi- central distance and geology of the area. Besides, lithology of the strata, i.e., sediment type, grain size and their distribution, thickness, lateral discontinuity and ground water depth, play an important role in determining the nature and degree of destruction. There has been significant advancement in our understanding and assessment of these two phenomena. However, data from past earthquakes provide valuable information which help in better estimation of ground motion amplification and soil liquefaction for evaluation of seismic risk in future and planning the mitigation strategies. In this paper, we present the case studies of past three large Indian earthquakes, i.e., 1803 Uttaranchal earthquake (Mw 7.5); 1934 Bihar–Nepal earthquake (Mw 8.1) and 2001 Bhuj earthquake (Mw 7.7) and discuss the role of soft sediments particularly, alluvial deposits in relation to the damage pattern due to amplified ground motions and soil liquefaction induced by the events.
    [Show full text]