BI88CH27_Holland ARjats.cls May 22, 2019 10:39 Annual Review of Biochemistry Mechanism and Regulation of Centriole and Cilium Biogenesis David K. Breslow1 and Andrew J. Holland2 1Department of Molecular, Cellular and Developmental Biology, Yale University, New Haven, Connecticut 06511, USA; email:
[email protected] 2Department of Molecular Biology and Genetics, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, USA; email:
[email protected] Annu. Rev. Biochem. 2019. 88:691–724 Keywords First published as a Review in Advance on centriole, centrosome, cilia, ciliopathy, cell cycle, mitosis January 2, 2019 The Annual Review of Biochemistry is online at Abstract Access provided by Johns Hopkins University on 01/09/20. For personal use only. Annu. Rev. Biochem. 2019.88:691-724. Downloaded from www.annualreviews.org biochem.annualreviews.org The centriole is an ancient microtubule-based organelle with a conserved https://doi.org/10.1146/annurev-biochem-013118- nine-fold symmetry. Centrioles form the core of centrosomes, which orga- 111153 nize the interphase microtubule cytoskeleton of most animal cells and form Copyright © 2019 by Annual Reviews. the poles of the mitotic spindle. Centrioles can also be modified to form All rights reserved basal bodies, which template the formation of cilia and play central roles in cellular signaling, fluid movement, and locomotion. In this review, wedis- cuss developments in our understanding of the biogenesis of centrioles and cilia and the regulatory controls that govern their structure and number. We also discuss how defects in these processes contribute to a spectrum of human diseases and how new technologies have expanded our understand- ing of centriole and cilium biology, revealing exciting avenues for future exploration.