Starry Stonewort

Total Page:16

File Type:pdf, Size:1020Kb

Starry Stonewort Nitellopsis obtusa Starry Stonewort A Non-Native Submerged Aquatic Lower Plant STARRY STONEWORT (SSW) Nitellopsis obtusa General Characteristics The “squeeze test” may be used to distinguish SSW from Chara spp. • In SSW, the protoplasm will pop out of the cell when squeezed. The remaining cell wall becomes limp straw (G. Douglas Pullman, Aquest Corp, personal communication). • In Chara spp., the protoplasm does not separate easily from Source: Online photo. www.startribune.com. the cell wall (Hackett et al. MI Dept. Environ. Quality. Chara sp., a native 2014). lake weed on left; SSW on right. STARRY STONEWORT (SSW) Nitellopsis obtusa General Characteristics • SSW plants can form gyrogonites, which are calcified, spiral-shaped fructifications (Bharathan 1983, 1987). • Many Charophytes produce lime-shells around their oospores, & these lime-shells (called gyrogonites) are frequently found as fossils. (See www.charophytes.com/cms/index.php?option=com_con tent&view=article&id). STARRY STONEWORT (SSW) Nitellopsis obtusa General Characteristics SEM lateral & apical views of gyrogonites of : • Chara aspera (figs.1-2); • C. hispida (figs. 3-4); • C. globularis (figs. 5-6) Source:www.researchg ate.net STARRY STONEWORT (SSW) Taxonomic Classification • EMPIRE……………………………………………...Eukaryota • KINGDOM.…………………………………………. Protista • PHYLUM…………………………………………..Charophyta • CLASS ……………………………………….……Charophyceae • ORDER………………………………………………Charales • FAMILY………………………………………………Characeae • GENUS……………………………………………….Nitellopsis* • SPECIES……………………………………………..obtusa *Other genera in the Characeae family include Chara, Lamprothamnium, Lynchnothamnus, Nitella, & Tolypella. Source: Lewis & McCount (2004). STARRY STONEWORT (SSW) Taxonomic Classification Starry stonewort description Stoneworts used to be classified as members of the plant kingdom, but it is now agreed that they belong – along with other green algae – in the kingdom Protista. Put simply, the protistas are simple multi-celled or single celled organisms, descended from some of the earliest life- forms that appeared on Earth. Some of the Chlorophytes, specifically the stoneworts, are thought by scientists to have been the early ancestors of all plants. Stoneworts do indeed resemble plants, are frequently mistaken for them, and are often found as fossils. Source:www.arkive.org/starry-stonewort/nitellopsis obtusa. STARRY STONEWORT (SSW) Nitellopsis obtusa General Life Cycle • SSW “plant-like” algae are dioecious, which means that algae are either male or female. • The best evidence to date indicates that the SSW populations in the United States are all male, though there may be undiscovered females. • This means that spread of SSW is probably through human movement of fragments & bulbils from lake to lake. STARRY STONEWORT (SSW) Nitellopsis obtusa General Life Cycle • SSW has orange female structures called oogonia that are located at the nodes of upper branchlets. • Male structures also are orange colored, & occur at nodes. Source: Starry Stonewort (Nitellopsis They are called obtusa) Biology & Management by Scott antheridia. Source: www.algaebase.org. Van Egeren, Wisconsin DNR, July 29, Online photo of paired 2015. Photo from a slide presentation SSW oogonia. Collected by given in a public information meeting. Emma Harris, Norfolk, UK. www.dnr.wi.gov/topic/invasives/ 08-04-2014. documents/ssw-info.pdf. General Life Cycle STARRY STONEWORT (SSW) Nitellopsis obtusa The orange to red colored oocytes are female gametocytes from which an egg develops. They are visible to the naked eye. Source:www.wolverinelake.com A decade of starry stonewort in Michigan (Pullman, G. D. & G. C. Crawford, 2010). STARRY STONEWORT (SSW) Nitellopsis obtusa General Life Cycle • In sexual reproduction, plasmogamy (fusion of haploid gametes) is followed by karyogamy (nuclear fusion) to form a diploid zygote (Graham, L. E., & L. W. Wilcox. 1999). • Sexual reproduction in SSW occurs through production & fertilization of oospores. • Mature oospores often produced under eutrophic conditions. • Have a mandatory dormant period before germination (Bharathan 1987; Hackett et al 2014). The seed-like oospores germinate into the new plant. • SSW spore production may be controlled by light & tends to take place from July to September. STARRY STONEWORT (SSW) Nitellopsis obtusa General Life Cycle • Asexual reproduction is a means by which an individual organism can produce additional copies of itself without unions of cytoplasmic nuclear materials or meiosis. • One way SSW asexual reproduction occurs is by prolific production of vegetative bulbils. • Creamy white bulbils may occur at the base of the main stem just below the substrate water interface & are attached to root-like filaments. • Bulbils also may occur on branches of the main stem at nodes. STARRY STONEWORT (SSW) Nitellopsis obtusa General Life Cycle • Bulbils stay viable for several months to years (Hackett et al 2014). • They can be found at any point during the year. • Most abundant in late fall & early spring (Pullman & Crawford 2010; Hackett et al 2014). • Bulbils can sprout in 3-5 days under the right conditions (Bharathan 1987). STARRY STONEWORT (SSW) Nitellopsis obtusa General Life Cycle • Another way SSW asexual reproduction occurs is by plant fragmentation. • One release indicates that SSW can easily reproduce from plant-like fragments (Houseman 2014). STARRY STONEWORT (SSW) Nitellopsis obtusa Life Cycle With Zygotic Meiosis Most chlorophyceans & charophytes (includes Chara spp., & Nitellopsis obtusa) are primarily found in freshwaters. These algae have (1) haploid vegetative phases. (2) the zygote is the only diploid stage. (3) zygotic meiosis occurs. [After L. E. Graham & L. W. Wilcox. 1999.] Means of Spread of SSW STARRY STONEWORT Nitellopsis obtusa • SSW can be spread by oocytes. • Oocytes could be easily transported in aquatic plant debris caught in boat trailers. • Oocytes can easily become attached to the fur & feathers of aquatic fauna. Aquatic plants hitching ride on a • An effective way for SSW to boat trailer. Michigan Dept. of spread rapidly among inland lakes (Pullman & Crawford Environmental Quality. MSU 2010). Extension. Online photo msue.anr.msu.edu. Means of Spread of SSW STARRY STONEWORT Nitellopsis obtusa • SSW may be spread by algal fragments, but there has been little research in this area. • Fragments of SSW can easily be spread between lakes by boats, trailers, waterfowl, & anchors holding sediments (Anonymous 2014; Ford-Steward 2015). No reports found on how long fragments remain viable out of water. • SSW fragments may act as disseminules that could be important in the spread of the alga within a lake & from lake to lake (Pullman & Crawford 2010). Means of Spread of SSW STARRY STONEWORT Nitellopsis obtusa • SSW also can be spread by star-shaped bulbils • Bulbils occur mainly at the lower stem nodes near the substrate. • Bulbils reach 2 - 6 mm across (about 0.2 in). • Bulbils produce clones of the parent. • Bulbils are cream colored & possess 5 or 6 distinctive points. Source: Online photo at www. uwsp.edu Means of Spread of SSW STARRY STONEWORT Nitellopsis obtusa • SSW may be spread in ballast water (Mills et al 1993). • SSW was believed to have been introduced in ship ballast water into the St. Lawrence Seaway (Geis et al 1981; Schloesser et al 1986). Global Distribution STARRY STONEWORT (SSW) Nitellopsis obtusa Native Range: SSW is native to Eurasia, from the west coast of Europe to Japan (Mills et al 1993; Soulie-Marsche et al 2002). SSW is now in decline in parts of Europe & endangered in the UK (Hackett et al 2014) where it is afforded general protection under the Wildlife & Countryside Act, 1981. Invaded: See Escobar et al 2016. Distribution STARRY STONEWORT (SSW) Nitellopsis obtusa Present: United States range includes much of the Great Lake Region & • Parts of the Upper Mississippi-Crow-Rum Basin • The Rock Basin • The Upper Illinois Basin • The Allegheny Basin • The Upper Susquehanna Basin • The St. Francois River Basin (Source: U. S. Dept. of the Interior, U. S. Geological Survey. Nonindigenous Aquatic Species Database, Gainesville, Florida. URL:nas.er.usgs.gov.). This website actually lists collection information for SSW sites in the Great Lakes Region and other sites as listed here. Distribution STARRY STONEWORT (SSW), Nitellopsis obtusa Present Range in the Great Lakes Region • Status: SSW is established in Indiana, Michigan, Minnesota, New York, Ohio, Pennsylvania, Vermont, Wisconsin, & Ontario. • Years SSW 1st found in these states or province: 1978 New York; Michigan 1983; Indiana 2008; Pennsylvania 2009; Ontario 2013; Wisconsin 2014; Vermont 2015; Minnesota 2015; Ohio 2017. • SSW is not a problematic invasive in locations outside the St. Lawrence Seaway, Michigan, New York, & Indiana (Hackett et al 2014). • Although SSW has established invasive populations in lakes in the above locations, little data have been published regarding ideal environmental conditions or nutrient levels that promote invasive SSW growth in lake ecosystems (Brown 2014). Most of what is known comes from observations (Hackett et al 2014). (Source: U. S. Dept. of the Interior, U. S. Geological Survey. Nonindigenous Aquatic Species Database, Gainesville, Florida. URL:nas.er.usgs.gov.). Distribution STARRY STONEWORT (SSW) Nitellopsis obtusa Present Range in the Great Lakes Region • Although Brown (2015) does list the basic physiological needs of SSW which are identified in existing scientific literature as follows: • Minimum Secchi disk water transparency of ≥
Recommended publications
  • Anders Langangen Charophytes (Charales) from Samos and Ikaria (Greece) Collected in 2013 and Report on Some Localities in Skiath
    Fl. Medit. 24: 139-151 doi: 10.7320/FlMedit24.139 Version of Record published online on 30 December 2014 Anders Langangen Charophytes (Charales) from Samos and Ikaria (Greece) collected in 2013 and report on some localities in Skiathos (Greece) Abstract Langangen, A.: Charophytes (Charales) from Samos and Ikaria (Greece) collected in 2013 and report on some localities in Skiathos (Greece). — Fl. Medit. 24: 139-151. 2014. — ISSN: 1120- 4052 printed, 2240-4538 online. In 2013 three Greek islands, Samos, Ikaria and Skiathos were visited. Charophytes were found in Samos and Ikaria but not in Skiathos. Out of 23 visited localities charophytes were found in 12. Seven species of charophytes were found in Samos (Lamprothamnium papulosum, Chara canescens, C. vul- garis, C. gymnophylla, C. corfuensis, Tolypella nidifica and T. glomereta) and in Ikaria one species (Chara vulgaris). Species richness in Samos is due to a variety of different habitats including brack- ish water lakes, running brackish water, fresh water pools and slowly moving rivers. Key words: Tolypella nidifica, T. glomerata, Lamprothamnium papulosum, Chara canescens, C, vulgaris, C. gymnophylla, C. corfuensis. Introduction Samos and Ikaria are the two southernmost islands of the Northeast Agean Islands. Several water bodies including lakes, reservoirs, brackish water, brooks and springs were visited. Localities with charophytes are listed in Table 1 and localities without charophytes in Table 2. Skiathos, an island in the Northern Sporades, where no charophytes were found, was also visited. Materials and methods This work is based on material collected in the localities on Samos and Ikaria in May (Fig. 1) and Skiathos in September 2013.
    [Show full text]
  • Starry Stonewort
    Nitellopsis obtusa, Starry Stonewort A Non-Native Submerged Aquatic Lower Plant STARRY STONEWORT (SSW) Nitellopsis obtusa • Scientific name of SSW: Nitellopsis obtusa (Desvaux in Loiseleur) J. Groves (1919) • Common name: Starry Stonewort (SSW) • Synonyms & Other Names: Chara obtusa, C. ulvoides, C. stelligera, Lychnothamnus stelliger, Nitella stelligera, N. stelligera var. ulvoides, N. ulvoides, N. bertolonii, Nitellopsis aculeolata, N. obtusa var. ulvoides, N. obtusa f. ulvoides, N. stelligera, Tolypellopsis obtusa, T. stelligera, T. ulvoides. STARRY STONEWORT (SSW) Nitellopsis obtusa General Characteristics • SSW is a nonindigenous submerged aquatic lower plant. • SSW is a filamentous alga. It has straight branches arranged in whorls of 4 to 6 long branchlets, & are attached at acute angles to stem nodes. • SSW is a summer annual, but can overwinter as a perennial during mild winters. However, SSW in some Michigan inland lakes appears to thrive in the cooler waters of fall, winter, & spring, & becomes dormant or less active during hottest parts of summer lakes (Pullman & Crawford 2010). STARRY STONEWORT (SSW) Nitellopsis obtusa General Characteristics • Most stem & branch cells are around 1 mm in diameter (Hargeby 1990). • Stems can extend up to 80 cm long, or 31.5 inches (Hargeby 1990). • Growth up to 2 meters (6.5 ft) observed at depth of 9 m (29.5 ft) in one Michigan Lake (Pullman and Crawford, 2010). Source: www.seagrant.sunysb.edu. SSW STARRY STONEWORT (SSW) Nitellopsis obtusa General Characteristics The “squeeze test” may be used to distinguish SSW from Chara spp. • In SSW, the protoplasm will pop out of the cell when squeezed. The remaining cell wall becomes limp straw (G.
    [Show full text]
  • Plant Photos and Descriptions
    A Field Guide of Aquatic Plant Species Found in Chautauqua Lake along with Potential Exotic Invaders Chautauqua Lake Association 429 E. Terrace Avenue Lakewood, NY 14750-1538 1 The following plant photographs and descriptions are an introduction to aquatic plant identification for Chautauqua Lake stakeholders. The purpose of this plant summary is to inform lakeshore residents, anglers, and other recreational users about the different types of aquatic plants that they may encounter while at the lake. This booklet is not a taxonomic text for identification of specific plant species. You can use several excellent books listed in the references for a more in-depth study of Chautauqua Lake’s aquatic plants. We encourage lake users to associate names with the plants they encounter while on the lake by reference to this booklet. Our goal is to promote the public understanding that not all aquatic plants are a nuisance and that, in fact, most are beneficial to the ecosystem of the lake. We include native plants that are indigenous to the surrounding area and to New York State. Native plants species are essential to the health of the lake. While at times these plants may become overabundant and detract from the utility of the lake, we usually find them at low densities and not an impediment to recreation. A high diversity and moderate density of native plants is the most favorable plant mix for the lake’s ecosystem. We also include exotic plants that are not native to Chautauqua and neighboring lakes but found in Chautauqua Lake. These plants deserve special attention because many become over abundant and will push out desirable native species.
    [Show full text]
  • Starry Stonewort: Is Your Lake Capable of Hosting the “Connoisseur of Clean Waters”
    Starry Stonewort: Is Your Lake Capable of Hosting the “Connoisseur of Clean Waters” Pre Presentation and Photos by Scott Brown Michigan Lake & Stream Associations Executive Director Introduction Starry Stonewort Scientific Name: Nitellopsis obtusa common name: Starry Stonewort submerged aquatic macrophyte (Characeae)In native to Europe bio-indicator of healthy aquatic ecosystems Extant Geographic Distribution E Modified Graphic: NASA Reference: Soulie-Marsche et al. (2002) Taxonomy Empire: Eukaryota Kingdom: Plantae Phylum: Charophyta T Class: Charophyceae Order: Charales Family: Characeae Genus: Nitellopsis Species: Nitellopsis obtusa Reference: Lewis and McCourt (2004) Graphic: Lewis and McCourt (2004) Basic Morphology Starry Stonewort highly evolved multi-cellular organism small apex coronula T two to five inferior nodes and internodes whorl that consists of five or six thin upwardly radiating branchlets length ranges from 24 cm - 2.0 meters Reference: Bharathan (1983) Starry Stonewort: The Subject of Numerous Cytological Studies Photo: W. S. Brown inter-node cells 0.4 to 1 mm in diameter and up to 30 cm in length ideal in size for manipulation and observation considered to be discrete living organisms perpetuates cytoplasmic streaming following separation from thallus Reference: Johnson et al. (2002) Reproductive Capabilities of Starry Stonewort capable of sexual and asexual reproduction sexual reproduction occurs through production and fertilization of oospores North American colonies all male plants Rep[ asexual
    [Show full text]
  • A Review of the Late Jurassic–Early Cretaceous Charophytes from The
    A review of the Late Jurassic–Early Cretaceous charophytes from the northern Aquitaine Basin in south-west France Roch-Alexandre Benoit, Didier Néraudeau, Carles Martin-Closas To cite this version: Roch-Alexandre Benoit, Didier Néraudeau, Carles Martin-Closas. A review of the Late Jurassic– Early Cretaceous charophytes from the northern Aquitaine Basin in south-west France. Cretaceous Research, Elsevier, 2017, 79, pp.199-213. <10.1016/j.cretres.2017.07.009>. <insu-01574653> HAL Id: insu-01574653 https://hal-insu.archives-ouvertes.fr/insu-01574653 Submitted on 16 Aug 2017 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Accepted Manuscript A review of the Late Jurassic–Early Cretaceous charophytes from the northern Aquitaine Basin in south-west France Roch-Alexandre Benoit, Didier Neraudeau, Carles Martín-Closas PII: S0195-6671(17)30121-0 DOI: 10.1016/j.cretres.2017.07.009 Reference: YCRES 3658 To appear in: Cretaceous Research Received Date: 13 March 2017 Revised Date: 5 July 2017 Accepted Date: 17 July 2017 Please cite this article as: Benoit, R.-A., Neraudeau, D., Martín-Closas, C., A review of the Late Jurassic–Early Cretaceous charophytes from the northern Aquitaine Basin in south-west France, Cretaceous Research (2017), doi: 10.1016/j.cretres.2017.07.009.
    [Show full text]
  • Aquatic Plant
    Macroalga Starry Stonewort I. Current Status and Distribution Nitellopsis obtusa a. Range Global/Continental Wisconsin Native Range Eurasia1,,,,2 3 4 5 Not recorded in Wisconsin Figure 1: U.S Distribution Map6 Abundance/Range Widespread: Lake Ontario, Michigan and New York7 Not applicable Locally Abundant: Lake Oneida, New York8 Not applicable Sparse: Endangered in the United Kingdom9 and Not applicable Japan10 Range Expansion Date Introduced: St. Lawrence River, 197811 Not applicable Rate of Spread: Introduction to widespread in 13 years in Not applicable Lake Ontario11; Lake Oneida – more biomass by weight than any native8 Density Risk of Monoculture: Likely; often colonizes deep water that Unknown naturally hosts few species Facilitated By: Undocumented Unknown b. Habitat Deep lakes and slow-running water at low altitudes9 Tolerance Chart of tolerances: Increasingly dark color indicates increasingly optimal range4,9,12 Preferences Calcareous water near coasts (brackish conditions)9; cold, oligotrophic and alkaline lakes4; low nutrient levels9; areas sheltered from wave action13; soft substrate6; deeper habitats with low light transmittance6 Page 1 of 5 Wisconsin Department of Natural Resources – Aquatic Invasive Species Literature Review c. Regulation Noxious/Regulated: Not regulated Minnesota Regulations: Not regulated Michigan Regulations: Not regulated Washington Regulations: Not regulated II. Establishment Potential and Life History Traits a. Life History Green benthic floating macroalga7 Fecundity Undocumented Reproduction Spores, bulbils13 Importance of Spores: Rarely produces spores; usually from July-September in UK13 Vegetative: Primarily with star-shaped bulbils which stay viable for several years13 Hybridization Undocumented Overwintering Winter Tolerance: Generally a summer annual in the United Kingdom, may not die back completely in mild winters9; dominant plant under the ice in St.
    [Show full text]
  • Trends in Submersed Aquatic Plant Communities in a Large, Inland Lake: Impacts of an Invasion by Starry Stonewort ( Nitellopsis Obtusa )
    See discussions, stats, and author profiles for this publication at: https://www.researchgate.net/publication/348645198 Trends in submersed aquatic plant communities in a large, inland lake: impacts of an invasion by starry stonewort ( Nitellopsis obtusa ) Article in Lake and Reservoir Management · January 2021 DOI: 10.1080/10402381.2020.1859025 CITATIONS READS 0 28 3 authors, including: Brian Ginn Lake Simcoe Region Conservation Authority 36 PUBLICATIONS 777 CITATIONS SEE PROFILE Some of the authors of this publication are also working on these related projects: Aquatic plant communities in Lake Simcoe View project Status of invasive Dreissenid mussels in Lake Simcoe View project All content following this page was uploaded by Brian Ginn on 22 January 2021. The user has requested enhancement of the downloaded file. LAKE AND RESERVOIR MANAGEMENT https://doi.org/10.1080/10402381.2020.1859025 Trends in submersed aquatic plant communities in a large, inland lake: impacts of an invasion by starry stonewort (Nitellopsis obtusa) Brian K. Ginn, Emma F. S. Dias and Toshia Fleischaker Lake Simcoe Region Conservation Authority, Newmarket, ON, Canada ABSTRACT KEYWORDS Ginn BK, Dias EFS, Fleischaker T. 2021. Trends in submersed aquatic plant communities in a large, Aquatic plants; Eurasian inland lake: impacts of an invasion by starry stonewort (Nitellopsis obtusa). Lake Reserv Manage. watermilfoil; invasive XX:XXX–XX. species; invasive species competition; Lake Simcoe; macrophytes; Aquatic plant and macroalgae (collectively, macrophyte) communities from Lake Simcoe starry stonewort (Ontario, Canada) were studied in lakewide, >200 site surveys in 2008, 2013, and 2018. Over this period, mean macrophyte biomass increased 5-fold, from 29.9 g (dry)/m2 in 2008 to 153.9 g (dry)/ m2 in 2018, due to the arrival and expansion of invasive starry stonewort (Nitellopsis obtusa).
    [Show full text]
  • The Charophytes of Israel: Historical and Contemporary Species Richness, Distribution, and Ecology
    Biodiv. Res. Conserv. 25: 67-74, 2012 BRC www.brc.amu.edu.pl DOI 10.2478/v10119-012-0015-4 The charophytes of Israel: historical and contemporary species richness, distribution, and ecology Roman E. Romanov1 & Sophia S. Barinova2 1Central Siberian Botanical Garden of the Siberian Branch of the Russian Academy of Sciences, Zolotodolinskaja Str., 101, Novosibirsk, 630090, Russia, e-mail: [email protected] 2Institute of Evolution, University of Haifa, Mount Carmel, Haifa, 31905, Israel Abstract: The historical and contemporary species richness, distribution, and ecology of Israel charophytes are described. The first charophyte collection in this region was made in the 19th century. Almost all reported localities were found earlier than 1970; some of them were not described. At the end of the 20th century, only two localities of two species were reported. According to the literature, 13 species, including two undetermined species of Chara, and nearly 23 exact localities are known from Northern and Central Israel. We found seven species and one variety of charophytes in 23 new localities in eight river drainage basins from six ecological regions of Israel during the period extending from 2001-2011. One genus ñ Tolypella, and two species ñ Chara intermedia and Tolypella glomerata, were found for the first time in Israel. There are 15 species and four genera of charophytes known from the studied territory based on published and original data. The common habitats of charophytes in Israel are river channels, pools, and, especially, artificial water bodies. The Chara vulgaris var. longibracteata, C. gymnophylla and C. contraria are the most frequently encountered species.
    [Show full text]
  • Freshwater Algae in Britain and Ireland - Bibliography
    Freshwater algae in Britain and Ireland - Bibliography Floras, monographs, articles with records and environmental information, together with papers dealing with taxonomic/nomenclatural changes since 2003 (previous update of ‘Coded List’) as well as those helpful for identification purposes. Theses are listed only where available online and include unpublished information. Useful websites are listed at the end of the bibliography. Further links to relevant information (catalogues, websites, photocatalogues) can be found on the site managed by the British Phycological Society (http://www.brphycsoc.org/links.lasso). Abbas A, Godward MBE (1964) Cytology in relation to taxonomy in Chaetophorales. Journal of the Linnean Society, Botany 58: 499–597. Abbott J, Emsley F, Hick T, Stubbins J, Turner WB, West W (1886) Contributions to a fauna and flora of West Yorkshire: algae (exclusive of Diatomaceae). Transactions of the Leeds Naturalists' Club and Scientific Association 1: 69–78, pl.1. Acton E (1909) Coccomyxa subellipsoidea, a new member of the Palmellaceae. Annals of Botany 23: 537–573. Acton E (1916a) On the structure and origin of Cladophora-balls. New Phytologist 15: 1–10. Acton E (1916b) On a new penetrating alga. New Phytologist 15: 97–102. Acton E (1916c) Studies on the nuclear division in desmids. 1. Hyalotheca dissiliens (Smith) Bréb. Annals of Botany 30: 379–382. Adams J (1908) A synopsis of Irish algae, freshwater and marine. Proceedings of the Royal Irish Academy 27B: 11–60. Ahmadjian V (1967) A guide to the algae occurring as lichen symbionts: isolation, culture, cultural physiology and identification. Phycologia 6: 127–166 Allanson BR (1973) The fine structure of the periphyton of Chara sp.
    [Show full text]
  • Irgc News 29
    IRGC NEWS INTERNATIONAL RESEARCH GROUP ON CHAROPHYTES ISSN 1834-6030 Edited by: K. Torn, M. Casanova, S. Schneider, A. Pukacz and E. Nat 29 March 2018 CONTENTS Editorial 1 IRGC homepage 16 Welcome to new IRGC members 2 IRGC in Facebook 16 Report on past meetings 2 Conservation of charophytes 17 Forthcoming meetings 8 Reference article 19 22nd GEC: first circular 10 Charophytes in Australia 24 IRGC in Tunisia 13 PhD thesis completion 25 Other meetings 14 Membership fees 26 New electronic key 16 E-mail addresses of IRGC members 27 Special issue 16 Group photograph 21st GEC, Valencia 28 EDITORIAL We are happy to present the new issue of the IRGC news, filled with information which you will hopefully find interesting. Duringthe last year, we had a very nice and interesting GEC meeting, excellently organized in Valencia by Maria Rodrigo, with the help of Carmen Rojo, Sara Calero, Eric Puche, and Mati Segura. Many thanks to all the organizers, for the fantastic location, the perfect organization, the very nice food and the interesting field trips! Our organization is small but very active, and this means we have already plans for the forthcoming three meetings. These will be: (1) a GEC meeting in September 2018, inSicily (you will find more information about it in this issue of the News). (2) Then we will have an IRGC meeting in March 2020, in Tunisia: more information is available in this issue of the News. Please note that – contrary to what was our usual practice, the IRGC meeting will be held in March! The reason is the warm and dry summer in Tunisia, which generally causes the smaller water bodies (containing charophytes) to dry out.
    [Show full text]
  • The Worldwide Range of the Charophyte Species Native to Germany
    Rostock. Meeresbiolog. Beitr. Heft 28 45-96 Rostock 2018 Heiko KORSCH* * Schillbachstraße 19, 07743 Jena [email protected] The worldwide range of the Charophyte species native to Germany Abstract Based on extensive evaluations, the worldwide distributions of the 36 Charophyte species native to Germany are presented. Some of these species are distributed almost worldwide (e.g. Chara braunii, C. vulgaris, Nitella hyalina), while others have much smaller ranges. Chara filiformis for example is restricted to a small part of continental Europe. For many species comments are made to explain the species concept used or to give hints about doubtful data. Keywords: Plant geography, Characeae, Charophytes, range-maps, Chara, Lamprothamnium, Lychnothamnus, Nitella, Nitellopsis, Tolypella Zusammenfassung: Areale der in Deutschland heimischen Characeen-Arten. Auf der Grundlage umfangreicher Recherchen werden die weltweiten Areale der in Deutschland vorkommenden 36 Characeen-Arten dargestellt. Von diesen Arten sind einige (z. B. Chara braunii, C. vulgaris, Nitella hyalina) fast weltweit verbreitet, andere haben deutlich kleinere Areale. So ist z. B. Chara filiformis auf kleine Teile Europas beschränkt. Zu einer ganzen Reihe von Arten werden Kommentare geben. Diese erläutern die verwendeten Artumgrenzungen oder geben Hinweise zu fraglichen Angaben. 1 Introduction In recent decades and after a phase of stagnation in Germany, interest in the Characeae has markedly increased. The Habitats Directive 92/43/EC (EC1992) and the Water Framework Directive 2000/60/EC (EC 2000) of the European Union have intensified this process. Because of their size and their complex structure, the Charophytes are morphologically clearly distinguished from most other groups of Algae. The results of genetic investigations show that they are more closely related to the Mosses and higher plants rather than to the other algae (QUI 2008).
    [Show full text]
  • Desiccation Tolerance of the Invasive Alga Starry Stonewort (Nitellopsis Obtusa) As an Indicator of Overland Spread Risk
    J. Aquat. Plant Manage. 58: 7–18 Desiccation tolerance of the invasive alga starry stonewort (Nitellopsis obtusa) as an indicator of overland spread risk WESLEY J. GLISSON, CARLI K. WAGNER, MICHAEL R. VERHOEVEN, RANJAN MUTHUKRISHNAN, RAFAEL CONTRERAS-RANGEL, AND DANIEL J. LARKIN* ABSTRACT INTRODUCTION Human-assisted transport via recreational boats and Spread of aquatic invasive species (AIS) via overland trailers is thought to account for most contemporary transport is a major driver of new invasions (Johnstone et al. movement of aquatic invasive species (AIS) among lakes. 1985, Buchan and Padilla 1999, Johnson et al. 2001). The ability of invasive macrophytes to survive out of water, Although overland transport can occur via animals (Reyn- that is, their desiccation tolerance, is an important indicator olds et al. 2015, Green 2016), human-assisted transport via of capacity for spread to new water bodies through overland recreational boats and trailers likely accounts for a great transport. Invasion by the alga starry stonewort (Nitellopsis majority of recent AIS dispersal events (Johnson and obtusa [Desv. in Loisel.] J. Groves; Characeae) in North Carlton 1996, Buchan and Padilla 1999). Overland dispersal America is likely driven via overland transport, but little is of aquatic species occurs when a propagule is able to remain known regarding its ability to remain viable out of water. viable until introduction to a new water body (Vander We conducted laboratory and outdoor experiments to Zanden and Olden 2008). Hence, for an aquatic invasive evaluate desiccation tolerance of starry stonewort propa- plant species to establish in a new water body, a propagule gules, including single stem fragments, small and large must arrive with the ability to sprout, continue growth, or clumps of fragments, and bulbils (asexual reproductive regenerate from living tissue.
    [Show full text]