Orthopedic Sports Medicine Board Review

Total Page:16

File Type:pdf, Size:1020Kb

Orthopedic Sports Medicine Board Review Orthopedic Sports Medicine Board Review • Trey Remaley, DO • Assistant Professor • Department of Orthopedics and Sports Medicine • University of South Florida Conflicts • I have no conflicts of interest for this lecture or topic Content • Upper Extremity • Lower Extremity • Sports Physician Topics SHOULDER Upper Extremity • Shoulder • Instability • SLAP/Labral tears • Thrower’s shoulder Shoulder Anatomy • Glenohumeral complex • Humeral head retroverted 30o • Greater tuberosity • Lesser tuberosity • Posterior humeral circumflex artery • Scapula • Glenoid 5o retroverted • Upward tilt 5o-10o • Pear shaped • Coarcoid tip • Clavicle is S-shaped • First to ossify last to calcify Shoulder • Static restraints to stability • Glenohumeral ligaments • Glenoid labrum • Articular congruity and version • Negative intraarticular pressure • Dynamic restraints • Rotator cuff musculature • Biceps • Periscapular muscles Shoulder Stabilizing Ligaments • SGHL: limits inferior translation in adduction • MGHL: limits anterior translation at 45o • IGHL • Anterior band: limits anterior translation at 90o • Posterior band: aids internal rotation Relate Age to Common injuries • Young • Shoulder instability • AC joint injuries • Distal clavicle osteolysis • Old • Rotator cuff tears • Glenohumeral arthritis • Proximal humerus fracture • Mechanism • Directs blow: AC joint • Arm in ABD/ER position: Instability • Night pain/Overhead pain: Rotator cuff tears Evaluation • Visual inspection • ROM • Palpation • Special tests • Impingement: Neer’s, Hawkins • Cuff: Empty can, ER strength, Hornblower’s • Subscap: Inc ER, Lift off, Belly press • Pec: Resisted Adduction • Anterior Instability: Apprehension/Relocation, Load and Shift • Posterior Instability: Jerk test, Load and Shift • MDI: Remember Beighton’s criteria, Sulcus sign • Bicep tendon: Crank, Speed’s, O’Brien Imaging of the Shoulder • Xrays – Always for initial evaluation • AP • True AP (Grashey) • Axillary – Never forget • Valpeau • Scap Y • CT Scan • Fracture characteristics • Glenoid version or bone loss • MRI • Rotator cuff • Labrum – needs to be an arthrogram Radiographs CT/MRI Shoulder Instability Shoulder Instability • TUBS • AMBRI • Traumatic • Atraumatic • Unilateral/Unidirectional • Multidirectional • Bankart • Bilateral • Surgical • Rehabilitation • Inferior capsular shift Shoulder • Multidirectional Instability • AMBRI • Generally seen in the 2nd to 3rd decade of life • Microtrauma or overuse • Baseball throwers, swimmers, volleyball, gymnasts • May have an underlying connective tissue disorder – Ehler’s Danlos • Generalized ligamentous laxity MDI • Patients present with pain and instability with easy activities • Shoulder comes out while sleeping • Clinically must have instability in two planes to be defined as MDI • Keep in mind that cuff impingement in <20 y/o may be a sign of MDI MDI • Ligamentous laxity • Beighton’s criteria (out of 9 points) • Palms to floor • Genu recurvatum • Elbow hyperextension • MCP hyperextension • Thumb to forearm MDI Workup • X-rays • Likely normal in MDI • MRI • Consider arthrogram to eval for enlarged capsule volume • +/- Bankart lesion • +/- Kim lesion • Patulous capsule MDI Workup • Positive load and shift • Anterior and Posterior • Apprehension and relocation • Sulcus sign MDI Treatment • Non-operative management • Non-operative management • Non-operative management • 3-6 months of conservative • Dynamic stabilization PT • Closed kinetic chain exercises to stimulate co-contraction of muscle groups MDI Treatment • Avoid voluntary dislocators • Capsular shift • Capsular plication • Rotator interval closure • Produces the biggest loss of motion in external rotation with the arm at the side • Make sure to address any labral pathology as well • Address any bony deficiency? MDI Treatment • Open treatment • Subscap Tenotomy (Neer) • Longitudinal tenotomy • Labral repair • Humeral based shift (anteroinferior) • More powerful – hyperlax individuals • Subscap split (Jobe) • Horizontal capsulotomy • Labral repair • Glenoid based shift • Tailored – overhead athletes Traumatic Shoulder Instability • Most common shoulder injury • 1.7% among the general population • High recurrence rate in younger population • 90% in patients under 20 years of age • Position of vulnerability – abducted and ER TUBS • Injury can range from soft tissue only to including bony lesions on glenoid, humerus, or both • Lesions • Bankart – anterior inferior lesion involving the anterior band of the IGHL • 80—90% of patients with TUBS • HAGL • Higher recurrence rate if missed/not diagnosed • You may not have seen it, but is has seen you • Open repair? • GLAD • Sheared cartilage with labral tear • ALPSA • Anterior labral tear periosteal sleeve avulsion • Labrum can heal along medial aspect of glenoid neck • Higher failure rate after arthroscopic repair • Rotator cuff tears • 30% of TUBS >40 years • 80% of TUBS >60 years TUBS • Bony injuries • Bony Bankart • Anterior inferior glenoid fracture • Present in up to 50% of recurrent cases • 20%-25% is known as critical bone loss* • Need to address bony stabilization • Hill-Sachs defect • Posterior humeral head impaction fracture • 80% of traumatic dislocations, 25% of subluxations • Engaging versus non-engaging • Greater tuberosity fracture • Lesser tuberosity fracture TUBS Treatment • Treatment of first time dislocators in controversial • Sling and rehab as initial treatment • Age <20 years • Male • Contact athletics • Hyperlaxity • Glenoid bone loss (critical bone loss) TUBS Operative Treatment • Arthroscopic Bankart repair • 1st time dislocators with Bankart lesion in athlete under 25 years of age • High demand athletes • +/- Remplissage with engaging Hill-Sachs lesion • Similar outcomes with open repair, less pain and greater restoration of motion • Minimum of three abchors • Remplissage • Engaging Hill-Sachs deficits • Off-track lesions • Posterior capsule and infraspinatus sutured into Hill-Sachs defect TUBS Operative Treatment • Bony loss 20%-25%* • Latarjet (Triple effect) • Bony – coracoid bone restores glenoid loss • Sling – conjoined tendon across subscap • Capsule reconstruction– coracoacromial ligament • Autograft/allograft • Iliac crest tricortical graft • Tibial allograft TUBS Recurrence/Complications • Soft tissue only procedures with critical bony loss 25%* • Increased risk with young patients, contact athletes, male patients, unrecognized bony or soft tissue lesions (HAGL, off-track lesions, etc.) • Seizure disorder – exhaust all medical management prior to surgical intervention • Shoulder pain • Nerve injury • Musculocutaneous* • Axillary • Stiffness – ER • Infection • Graft lysis • Hardware complications • Chondrolysis Thrower’s Shoulder • Large forces • GIRD • Increased ER, decreased IR – Same total ARC of motion • Tight posterior capsule, loose anterior capsule • Increased humeral and glenoid retroversion • Posteroinferior capsular tightness leads to posterosuperior humeral translation • Internal Impingement • Rest • Posterior capsular stretches Phases of Throwing • Wind up • Minimal forces • Cocking • Early – Deltoid • Late – elbow valgus stress is greatest • Supraspinatus, infraspinatus, teres minor • Acceleration • Triceps; Pec major, Latissimus dorsi, Serratus anterior • Deceleration • Most harmful phase of throwing • Eccentric contraction of all muscles • SLAP tear, biceps tendon injury, brachialis injury, teres minor injury • Follow Through • Body rebalances Phases of Throwing GIRD • Increased external rotation • Decreased internal rotation • Remember – The total ARC of motion is the same • Increased humeral retroversion • Treatment • Posterior capsular stretch • Pec minor stretch • Subscap strengthening • Posterior inferior capsular release versus anterior capsular imbrication Internal Impingement • Late cocking/early acceleration phase • Posterior superior capsule, labrum, and cuff get entrapped • SLAP tear – peel back lesion • Bennett lesion – glenoid exostosis • Partial articular sided cuff tear near junction of supraspinatus and infraspinatus Internal Impingement • Treatment • Rest, stop throwing • NSAID • Posteroinferior capsular stretch • Pec minor • SICK scapula • Injection • Ultrasound guided glenohumeral or subacromial Internal Impingement • Treatment • Failed non-op: 3-6 month minimum • Arthroscopy • Debridement • SLAP repair* • Posterior capsular release – uncommon • Anterior capsular repair – rare • Concomitant rotator cuff repair – avoid if possible Little Leaguer’s Shoulder • Salter Harris I epiphyseal injury • Males > females • 11-16 years of age • Number of pitches is biggest indicator, breaking pitches are an associated culprit • Hypertrophic zone of the growth plate • Treatment • Rest • NSAID’s • Return after progressive throwing program and evaluation of mechanics • PITCH COUNT* Pitch Count SLAP Tears • Mechanism • Traumatic • Attritional/aging • Internal impingement • Risk factors • GIRD • Internal impingement • Rotator cuff tears – usually articular sided • Shoulder instability • Scapular dyskinesis • Tight P-IGHL may cause increased shear force of superior labrum due to the shift of the glenohumeral contact point posterosuperiorly • SLAP lesion increases strain on the A-IGHL which results in shoulder instability SLAP Tears • Treatments have been controversial • Evolved over time • Used to fix every one of them • Now either treat non-op or tenodesis • General outcomes OK if indication is appropriate • RTP not as predictable, overhead throwers less predictable SLAP Tears • Classification SLAP Tears SLAP
Recommended publications
  • Bony Bankart Lesions and Shoulder Dislocations
    Shoulder Dislocations and Bony Bankart Lesions The shoulder is the most mobile and the most commonly dislocated large joint in the body. Dislocation means that the joint is moved out of position, such that the joint surfaces at the ends of the bones are no longer in contact. In the shoulder, most dislocations are anterior (moving forward from the body); however, they can occur in several directions. When a dislocation occurs, the soft tissues that stabilize the shoulder can be torn, and the bone that forms the socket also can be broken at the same time. Traumatic dislocations of the shoulder can result in a Bankart lesion (tear). The head of the humerus (ball of upper arm bone) is stabilized against the glenoid (socket of the shoulder joint) using a combination of muscles, labrum, and ligaments. Ligaments run from the glenoid to the humeral head, and they blend with fibrous tissue called the capsule that encloses the entire joint. When the humeral head is forced forward in a dislocation, the soft tissues stretch or tear, and in some cases, bone is fractured off the glenoid rim, resulting in a bony Bankart lesion. X-ray of a patient with a bony Bankart facture of 3-D scan of the same patient more clearly the glenoid (socket), secondary to shoulder recreating the fracture. dislocation. Orthopaedic Surgery & Sports Medicine 630-324-0402 ⚫ [email protected] Teaching & Research Foundation stevenchudikmd.com otrfund.org Schedule online now © 2018 Steven Chudik MD Shoulder, Knee & Sports Medicine. All rights reserved. Frequent Signs and
    [Show full text]
  • 34Th Annual Meeting of the Japan Shoulder Society
    34TH ANNUAL MEETING OF THE JAPAN SHOULDER SOCIETY 1 F Wave Monitoring After Arthroscopic Shoulder Surgery gers may be used to evaluate the functions of the shoulder joint. It is IWATA Yoshio, Department of Orthopaedics, Uji Takeda Hospital also believed that people can perform approximately half of the ac- MORIHARA Toru, HAYASHIDA Tatsurou, OGURA Akiko, KUBO tions even if the diseased hand is on their dominant side. Toshikazu, Department of Orthopaedics, Kyoto Prefectural Univer- sity of Medicine, Graduate School of Medical Science HORII Motoyuki, Department of Orthopaedic Surgery, Kyoto Inter- 3 The Shoulder Function of Congenital Clavicle Anomalies disciplinary Institute Hospital of Community Medicine KENMOKU Tomonori, Department of Orthopaedics Surgery, Chiba KUROKAWA Masao, Department of Orthopaedic Surgery, Saisei- Univercity Graduate School of Medicine kai Suita Hospital SAISU Takashi, KAMEGAYA Makoto, Division of Orthopaedics Sur- The purpose of this study was to evaluate the modulation of excit- gery, Chiba Children’s Hospital ability of spinal motor neuron function. We investigated F waves af- MIKASA Motohiko, Matsudo Orthopaedic Hospital ter arthroscopic shoulder surgery. We evaluated 7 subjects who There was no report on the shoulder function of congenital clav- underwent an arthroscopic shoulder surgery. There were 5 men icle anomalies. Our purpose was to clarify the role of the clavicle, and 2 women; the mean age at the time of surgery was 33.6 years investigating the shoulder function in patients with clavicle defect old. In our study, F waves were recorded from the abductor pollicis or pseudoarthrosis. muscle after transcutaneous median nerve stimulation at bilateral Thirteen shoulders of 9 patients with congenital clavicle anoma- wrists.
    [Show full text]
  • Presentations
    7/4/2019 30th Brucosport Football Medicine: What’s New 2017 Bruges, Belgium 11 March 2017 Aspetar Orthopaedic and Sports Medicine Hospital 1 Dr. Scott Gillogly Chief Medical Officer 26 February 2017 2 1 7/4/2019 Articular Cartilage Injuries in the Knee: Evaluation and Surgical Treatment Options based on Return to Play Scott D. Gillogly, MD 34th FIMS World Sports Medicine Congress Ljubljana, Slovenia 29 September - 2 October 2016 Aspetar Orthopaedic and Sports Medicine Hospital 3 ICRS Annual Meeting 29 September 2016 Aspetar Orthopaedics and Sorrento, Italy Sports Medicine Hospital 4 2 7/4/2019 Articular Cartilage Injuries in the Knee: Evaluation and Surgical Treatment Options based on Return to Play Scott D. Gillogly, MD AFC Team Physiotherapist Sports Medicine Course Doha, Qatar 13-15 June 2016 Aspetar Orthopaedic and Sports Medicine Hospital 5 Cartilage Defects in Athletes: Return To Play (RTP) Scott D. Gillogly, MD 1st GCC Sports Medicine Conference Doha, Qatar 23 April 2016 Aspetar Orthopaedic and Sports Medicine Hospital 6 3 7/4/2019 AAOS Articular Cartilage Restoration: The Modern Frontier 1 April 2016 Aspetar Orthopaedics and Sports Medicine Hospital Chicago, Illinois 7 AAOS Articular Cartilage Restoration: The Modern Frontier 2 April 2016 Aspetar Orthopaedics and Chicago, Illinois Sports Medicine Hospital 8 4 7/4/2019 8 April 2016 Aspetar Orthopaedics and Washington, D.C. Sports Medicine Hospital 9 8 April 2016 Aspetar Orthopaedics and Washington, D.C. Sports Medicine Hospital 10 5 7/4/2019 Return to Play (RTP) After Cartilage Repair of the Knee Scott D. Gillogly, MD Challenges in Football Injuries Doha, Qatar 11‐12 February, 2016 Aspetar Orthopaedic and Sports Medicine Hospital 11 Partial Osteochondral Fractures of the Condyles (Osteochondral Defects) Scott D.
    [Show full text]
  • MUSCULOSKELETAL MRI Temporomandibular Joints (TMJ) Temporomandibular Joints (TMJ) MRI - W/O Contrast
    MUSCULOSKELETAL MRI Temporomandibular Joints (TMJ) Temporomandibular joints (TMJ) MRI - W/O Contrast . CPT Code 70336 • Arthritis • TMJ disc abnormality • Osteonecrosis (AVN) Temporomandibular joints (TMJ) MRI - W and W/O Contrast . CPT Code 70336 • Arthritis/Synovitis • Mass/Tumor Chest Chest Wall/Rib, Sternum, Bilateral Pectoralis Muscles, Bilateral Clavicles MRI - W/O Contrast . CPT Code 71550 • Rib fracture, costochondral cartilage injury • Muscle, tendon or nerve injury Chest Wall/Rib, Sternum, Bilateral Pectoralis Muscles, Bilateral Clavicles MRI - W and W/O Contrast . CPT Code 71552 • Mass/Tumor • Infection Upper Extremity (Non-Joint) Scapula MRI - W/O Contrast . CPT Code 73218 • Fracture • Muscle, tendon or nerve injury Scapula MRI - W and W/O Contrast . CPT code 73220 • Mass/Tumor • Infection Humerus, Arm MRI - W/O Contrast . CPT Code 73218 • Fracture • Muscle, tendon or nerve injury Humerus, Arm MRI - W and W/O Contrast . CPT Code 73220 • Mass/Tumor • Infection Forearm MRI - W/O Contrast . CPT Code 73218 • Fracture • Muscle, tendon or nerve injury Forearm MRI - W and W/O Contrast . CPT Code 73220 • Mass/Tumor • Infection Hand MRI - W/O Contrast. CPT Code 73218 • Fracture • Muscle, tendon or nerve injury Hand MRI - W and W/O Contrast . CPT Code 73220 • Mass/Tumor • Infection • Tenosynovitis Finger(s) MRI - W/O Contrast. CPT Code 73218 • Fracture • Muscle, tendon or nerve injury Finger(s) MRI - W and W/O Contrast . CPT Code 73220 • Mass/Tumor • Infection • Tenosynovitis Upper Extremity (Joint) Shoulder MRI - W/O Contrast. CPT Code 73221 • Muscle, tendon (rotator cuff) or nerve injury • Fracture • Osteoarthritis Shoulder MRI - W Contrast (Arthrogram only; no IV contrast) . CPT Code 73222 • Labral (SLAP) tear • Rotator cuff tear Shoulder MRI - W and W/O Contrast .
    [Show full text]
  • Anatomic Anterolateral Ligament Reconstruction of the Knee Leads to Overconstraint at Any Fixation Angle
    AJSM PreView, published on July 12, 2016 as doi:10.1177/0363546516652607 Winner of the 2016 Excellence In Research Award Anatomic Anterolateral Ligament Reconstruction of the Knee Leads to Overconstraint at Any Fixation Angle Jason M. Schon,* BS, Gilbert Moatshe,*yz MD, Alex W. Brady,* MSc, Raphael Serra Cruz,*§ MD, Jorge Chahla,* MD, Grant J. Dornan,* MSc, || # Travis Lee Turnbull,* PhD, Lars Engebretsen,y MD, PhD, and Robert F. LaPrade,*{ MD, PhD Investigation performed at the Department of Biomedical Engineering of the Steadman Philippon Research Institute, Vail, Colorado, USA Background: Anterior cruciate ligament (ACL) tears are one of the most common injuries among athletes. However, the ability to fully restore rotational stability with ACL reconstruction (ACLR) remains a challenge, as evidenced by the persistence of rotational instability in up to 25% of patients after surgery. Advocacy for reconstruction of the anterolateral ligament (ALL) is rapidly increasing because some biomechanical studies have reported that the ALL is a significant contributor to internal rotational stability of the knee. Hypothesis/Purpose: The purpose of this study was to assess the effect of ALL reconstruction (ALLR) graft fixation angle on knee joint kinematics in the clinically relevant setting of a concomitant ACLR and to determine the optimal ALLR graft fixation angle. It was hypothesized that all fixation angles would significantly reduce rotational laxity compared with the sectioned ALL state. Study Design: Controlled laboratory study. Methods: Ten nonpaired fresh-frozen human cadaveric knees underwent a full kinematic assessment in each of the following states: (1) intact; (2) anatomic single-bundle (SB) ACLR with intact ALL; (3) anatomic SB ACLR with sectioned ALL; (4) anatomic SB ACLR with 7 anatomic ALLR states using graft fixation angles of 0°, 15°, 30°, 45°, 60°, 75°, and 90°; and (5) sectioned ACL and ALL.
    [Show full text]
  • An Overview of Common Injuries and Imaging Findings
    SPORTS RADIOLOGY SHOULDER DISLOCATION AMONG ATHLETES AN OVERVIEW OF COMMON INJURIES AND IMAGING FINDINGS – Written by Nima Hafezi–Nejad, Shadpour Demehri and John A Carrino, USA The Glenohumeral (GH) joint has a mobility is often termed hyperlaxity, a during sports activities. Second, SD may arise large range of motion that leaves it prone common feature among many athletes. as a result of chronic injuries, mostly in the to shoulder instability, ranging from Hyperlaxity may help athletes by enhancing form of recurrent microtrauma and overuse. subluxation to frank shoulder dislocation their range of motion. However, this may Secondary forms of impingement and (SD). Due to the shallow depth of the glenoid’s become a problem when it is accompanied injury to the dynamic soft tissue stabilisers osseous structure, shoulder stability is by a functional deficit and pathological may arise from recurrent microtrauma as achieved through a number of additional symptoms. Typical symptoms include well2. soft tissue stabilisers (including the glenoid pain and a subjective feeling of instability labrum). Rotator cuff muscles are the most or apprehension. While instability and ADVANCED IMAGING FINDINGS – AN important dynamic stabilisers of the GH hyperlaxity are two distinct phenomena, OVERVIEW joint. Other muscles that cross the GH joint, they frequently occur together in athletes Radiography remains the primary such as pectoralis major and latissimus dorsi, suffering from SD1. modality of choice when SD is suspected may potentially act as stabilisers as well. SD While purely atraumatic causes may (Figure 1). However, advanced imaging may arise from abnormal function of either account for a number of SDs among athletes, modalities including computed tomo- osseous (glenoid fossa and coracoacromial there are two main etiologies, behind athlete graphy (CT) and magnetic resonance arch) or soft tissue (glenoid labrum, articular SD.
    [Show full text]
  • Triple Dislocation Around the Knee Joint – a Case Report
    ical C lin as Chew et al., J Clin Case Rep 2019, 9:9 C e f R o l e a p n o r r t u s o J Journal of Clinical Case Reports ISSN: 2165-7920 Case Report Open Access Triple Dislocation around the Knee Joint – A Case Report Chew E1, Sharma A2 and Gupte C2 1Epsom and St Helier NHS Trust, Dorking Road, Epsom KT18 7EG, UK 2Imperial College Healthcare NHS Trust, South Wharf Road, Paddington, London W2 1NY, UK Abstract Dislocation of the knee is a serious and potentially limb threatening injury. There are 3 types of dislocation around the knee joint: patellofemoral, tibiofemoral and tibiofibular. Tibiofemoral dislocation is the variant that is deemed the most serious, with a higher risk of compromise to the popliteal artery and common peroneal nerve. Although simultaneous dislocations of two types have been described, there has been no such description of all three types occurring simultaneously. In this case we present a case of simultaneous dislocations of all 3 articulations around the knee. Diagnosis was achieved with clinical examination, plain films, CT and MRI scans. Management consisted of initial surgical debridement and reduction with stabilisation of the affected joints. Keywords: Knee; Dislocation; Trauma; Orthopaedic Surgery was unaffected and maintained its normal motor and sensory function throughout. She was then transferred by air ambulance to our specialist Introduction knee trauma unit where she underwent repeat secondary survey and The knee is a synovial joint formed by the articulations of the patella, radiological investigations including, MRI and CT. femur and tibia.
    [Show full text]
  • The Anterolateral Ligament of the Knee: What the Radiologist Needs to Know
    26 The Anterolateral Ligament of the Knee: What the Radiologist Needs to Know Pieter Van Dyck, MD, PhD1 ElineDeSmet,MD1 Valérie Lambrecht, MD2 Christiaan H. W. Heusdens, MD3 Francis Van Glabbeek, MD, PhD3 Filip M. Vanhoenacker, MD, PhD1,2,4 Jan L. Gielen, MD, PhD1 Paul M. Parizel, MD, PhD1 1 Department of Radiology, Antwerp University Hospital and Address for correspondence Pieter Van Dyck, MD, PhD, Department University of Antwerp, Edegem, Belgium of Radiology, Antwerp University Hospital and University of Antwerp 2 Department of Radiology, Ghent University Hospital, Ghent, Belgium Wilrijkstaat 10, 2650 Edegem, Belgium 3 Department of Orthopaedics, Antwerp University Hospital and (e-mail: [email protected]). University of Antwerp, Edegem, Belgium 4 Department of Radiology, AZ Sint-Maarten, Duffel, Belgium Semin Musculoskelet Radiol 2016;20:26–32. Abstract The anterolateral ligament (ALL) was recently identified as a distinct component of the anterolateral capsule of the human knee joint with consistent origin and insertion sites. Biomechanical studies revealed that the current association between the pivot shift and Keywords an injured anterior cruciate ligament (ACL) should be loosened and that the rotational ► anterolateral component of the pivot shift is significantly affected by the ALL. This may change the ligament clinical approach toward ACL-injured patients presenting with anterolateral rotatory ► anterior cruciate instability (ALRI), the most common instability pattern after ACL rupture. Radiologists ligament rupture should be aware of the importance of the ALL to ACL injuries. They should not overlook ► anterolateral rotatory pathology of the anterolateral knee structures, including the ALL, when reviewing MR instability images of the ACL-deficient knee.
    [Show full text]
  • Diagnosis and Treatment of Multiligament Knee Injury: State of the Art Gilbert Moatshe,1,2,3 Jorge Chahla,2,4 Robert F Laprade,2,5 Lars Engebretsen1,3
    Journal of ISAKOS: Joint Disorders & Orthopaedic Sports Medicine Publish Ahead of Print, published on March 8, 2017 as doi:10.1136/jisakos-2016-000072 State of the Art J ISAKOS: first published as 10.1136/jisakos-2016-000072 on 8 March 2017. Downloaded from Diagnosis and treatment of multiligament knee injury: state of the art Gilbert Moatshe,1,2,3 Jorge Chahla,2,4 Robert F LaPrade,2,5 Lars Engebretsen1,3 1Oslo University Hospital and ABSTRact diagnostic workup and treatment plan is mandatory University of Oslo, Oslo, Norway when dealing with these injuries. The purpose of 2 Multiligament knee injuries constitute a complex and Steadman Philippon Research this article is to review specific focused principles Institute, Vail, Colorado, USA challenging entity, not only because of the diagnosis 3OSTRC, The Norwegian School and reconstruction procedure itself, but also because of of multiligament knee injuries, classification, diag- of Sports Sciences, Oslo, Norway the rehabilitation programme after the index procedure. nosis, treatment options and rehabilitation guide- 4Hospital Britanico de Buenos A high level of suspicion and a comprehensive clinical lines for addressing these complex injuries. Key Aires, Buenos Aires, Argentina and radiographic examination are required to identify information and articles on these injuries can be 5The Steadman Clinic, Vail, Colorado, USA all injured structures. Concomitant meniscal, chondral found in box 1 and box 2 respectively. and nerve injuries are common in multiligament injuries Correspondence to necessitating a detailed evaluation. Stress radiographs Classification Dr Robert F LaPrade, The are valuable in evaluating patients preoperatively Schenck described the most widely used classifica- Steadman Philippon Research and postoperatively.
    [Show full text]
  • Management of Knee Dislocation Prior to Ligament Reconstruction: What Is the Current Evidence? Update of a Universal Treatment Algorithm
    European Journal of Orthopaedic Surgery & Traumatology https://doi.org/10.1007/s00590-018-2148-4 GENERAL REVIEW • KNEE - BIOMECHANICS Management of knee dislocation prior to ligament reconstruction: What is the current evidence? Update of a universal treatment algorithm Alexander Maslaris1 · Olaf Brinkmann1 · Matthias Bungartz1 · Christian Krettek2 · Michael Jagodzinski2 · Emmanouil Liodakis2 Received: 25 August 2017 / Accepted: 3 February 2018 © Springer-Verlag France SAS, part of Springer Nature 2018 Abstract Traumatic knee dislocation is a rare but potentially limb-threatening injury. Thus proper initial diagnosis and treatment up to final ligament reconstruction are extremely important and a precondition to successful outcomes. Reports suggest that evidence-based systematic approaches lead to better results. Because of the complexity of this injury and the inhomogeneity of related literature, there are still various controversies and knowledge gaps regarding decision-making and step-sequencing in the treatment of acute multi-ligament knee injuries and knee dislocations. The use of ankle-brachial index, routine or selective angiography, braces, joint-spanning or dynamic external fixation, and the necessity of initial ligament re-fixation during acute surgery constitutes current topics of a scholarly debate. The aim of this article was to provide a comprehensive literature review bringing light into some important aspects about the initial treatment of knee dislocation (vascular injury, neural injury, immobilization techniques) and finally develop an accurate data-based universal algorithm, enabling attending physicians to become more acquainted with the management of acute knee dislocation. Keywords Knee dislocation · MLKI · Initial management · Protocol · Vascular injury · Nerve injury · Immobilization · Fixator · Brace · Cast Introduction Traumatic knee dislocation (KD) is a rare injury, reach- ing incidences between 0.001% of general population and 0.072% of orthopaedic traumata [1–6].
    [Show full text]
  • The Acutely Dislocated Knee: Evaluation and Management
    The Acutely Dislocated Knee: Evaluation and Management Jeffrey A. Rihn, MD, Peter S. Cha, MD, Yram J. Groff, MD, and Christopher D. Harner, MD 02/25/2021 on BhDMf5ePHKav1zEoum1tQfN4a+kJLhEZgbsIHo4XMi0hCywCX1AWnYQp/IlQrHD3i3D0OdRyi7TvSFl4Cf3VC4/OAVpDDa8KKGKV0Ymy+78= by http://journals.lww.com/jaaos from Downloaded Abstract Downloaded Acute knee dislocations are uncommon orthopaedic injuries. Because they often spon- (within 3 weeks of injury).6,8,13,14 Most taneously reduce before initial evaluation, the true incidence is unknown. Dislo- of the principles of evaluation and from http://journals.lww.com/jaaos cation involves injury to multiple ligaments of the knee, resulting in multidirec- management of the patient with an tional instability. Associated meniscal, osteochondral, and neurovascular injuries acutely dislocated knee are well es- are often present and can complicate management. The substantial risk of associ- tablished;15 recent advances have cen- ated vascular injury mandates that vascular integrity be confirmed by angiography tered on improvements in surgical in all suspected knee dislocations. Evaluation and initial management must be per- technique. by BhDMf5ePHKav1zEoum1tQfN4a+kJLhEZgbsIHo4XMi0hCywCX1AWnYQp/IlQrHD3i3D0OdRyi7TvSFl4Cf3VC4/OAVpDDa8KKGKV0Ymy+78= formed expeditiously to prevent limb-threatening complications. Definitive manage- ment of acute knee dislocation remains a matter of debate; however, surgical recon- struction or repair of all ligamentous injuries likely can help in achieving the return Classification
    [Show full text]
  • Leg Problems in Athletes
    ACMS Team Physician CourseSan AntonioFeb 2015 LEG PROBLEMS IN ATHLETES Marlene DeMaio, MD Prof, Dept of Orthopaedic Surgery, Marshall University VAMC Huntington, WV LEG PROBLEMS • LIMB THREATENING Approach – AcuteEmergency treatment – ChronicUrgent workup and treatment S1.totalprosports.com • NOT LIMB THREATENING Approach – Usually chronic – Systematic work up Edc2.healthtap.com – Comprehensive treatment Limb Threatening Leg Disorders • Loss of oxygenation – Vascular compromise – Amputation – Crush Injury – Acute compartment syndrome • Vascular compromise – NEVER ASSUME ARTERIAL SPASM – Vessel compression or injury (tear, laceration) • From bone fragment or bone displacement • Associated with KNEE dislocation Limb Threatening Leg Problems EXTREME SPORTS – NO VEHICLES • Jumpers – Bungee jumpers – Helo skiers – Parachuters • Skate boarders • Skiers • Parasailers INJURY COMBINATIONS • Any lower extremity fracture → acute compartment syndrome • Mechanism of injury • Other injuries • Immobilization • Compressive Dressings Injury Combinations – Medial tibial plateau fractures → knee dislocation – Femoral shaft fracture → knee dislocation (Giannoudis, J Ortho Trauma 2005) www.trauma.org Knee Dislocation IMMEDIATEMENT ASSESSMENT: Vascular status TREATMENT: Reduce and stabilize (Knee immobilizer) Restore blood flow Manage compartment syndrome BEWARE: posterolateral dislocations Photo from C. Roberts, MD Limb Threatening Leg Problems • Acute compartment syndrome – Multiple trauma versus isolated injury – ATLS • Even for isolated trauma • ABC’s
    [Show full text]