A Generalized Vector Space Model for Text Retrieval Based on Semantic Relatedness

Total Page:16

File Type:pdf, Size:1020Kb

A Generalized Vector Space Model for Text Retrieval Based on Semantic Relatedness A Generalized Vector Space Model for Text Retrieval Based on Semantic Relatedness George Tsatsaronis and Vicky Panagiotopoulou Department of Informatics Athens University of Economics and Business, 76, Patision Str., Athens, Greece [email protected], [email protected] Abstract et al. (2003) improved performance, while sev- Generalized Vector Space Models eral years before, Krovetz and Croft (1992) had (GVSM) extend the standard Vector already pointed out that resolving word senses can Space Model (VSM) by embedding addi- improve searches requiring high levels of recall. tional types of information, besides terms, In this work, we argue that the incorporation in the representation of documents. An of semantic information into a GVSM retrieval interesting type of information that can model can improve performance by considering be used in such models is semantic infor- the semantic relatedness between the query and mation from word thesauri like WordNet. document terms. The proposed model extends Previous attempts to construct GVSM the traditional VSM with term to term relatedness reported contradicting results. The most measured with the use of WordNet. The success of challenging problem is to incorporate the the method lies in three important factors, which semantic information in a theoretically also constitute the points of our contribution: 1) a sound and rigorous manner and to modify new measure for computing semantic relatedness the standard interpretation of the VSM. between terms which takes into account relation In this paper we present a new GVSM weights, and senses’ depth; 2) a new GVSM re- model that exploits WordNet’s semantic trieval model, which incorporates the aforemen- information. The model is based on a new tioned semantic relatedness measure; 3) exploita- measure of semantic relatedness between tion of all the semantic information a thesaurus terms. Experimental study conducted can offer, including semantic relations crossing in three TREC collections reveals that parts of speech (POS). Experimental evaluation semantic information can boost text in three TREC collections shows that the pro- retrieval performance with the use of the posed model can improve in certain cases the proposed GVSM. performance of the standard TF-IDF VSM. The rest of the paper is organized as follows: Section 1 Introduction 2 presents preliminary concepts, regarding VSM The use of semantic information into text retrieval and GVSM. Section 3 presents the term seman- or text classification has been controversial. For tic relatedness measure and the proposed GVSM. example in Mavroeidis et al. (2005) it was shown Section 4 analyzes the experimental results, and that a GVSM using WordNet (Fellbaum, 1998) Section 5 concludes and gives pointers to future senses and their hypernyms, improves text clas- work. sification performance, especially for small train- ing sets. In contrast, Sanderson (1994) reported 2 Background that even 90% accurate WSD cannot guarantee 2.1 Vector Space Model retrieval improvement, though their experimental methodology was based only on randomly gen- The VSM has been a standard model of represent- erated pseudowords of varying sizes. Similarly, ing documents in information retrieval for almost Voorhees (1993) reported a drop in retrieval per- three decades (Salton and McGill, 1983; Baeza- formance when the retrieval model was based on Yates and Ribeiro-Neto, 1999). Let D be a docu- WSD information. On the contrary, the construc- ment collection and Q the set of queries represent- tion of a sense-based retrieval model by Stokoe ing users’ information needs. Let also ti symbol- Proceedings of the EACL 2009 Student Research Workshop, pages 70–78, Athens, Greece, 2 April 2009. c 2009 Association for Computational Linguistics 70 ize term i used to index the documents in the col- vectors, respectively, as before, a´ki, q´j are the new lection, with i = 1,..,n. The VSM assumes that weights, and n´ the new space dimensions. for each term t there exists a vector t~ in the vector i i n´ n´ ~ ~ space that represents it. It then considers the set of j=1 i=1 a´kiq´jtitj cos(d~k, ~q)= P P (2) all term vectors {t~i} to be the generating set of the n´ 2 n´ 2 q i=1 a´ki j=1 q´j vector space, thus the space basis. If each dk,(for P P k = 1,..,p) denotes a document of the collection, From equation 2 it follows that the term vectors then there exists a linear combination of the term t~i and t~j need not be known, as long as the cor- vectors {t~i} which represents each dk in the vector relations between terms ti and tj are known. If space. Similarly, any query q can be modelled as one assumes pairwise orthogonality, the similarity a vector ~q that is a linear combination of the term measure is reduced to that of equation 1. vectors. 2.3 Semantic Information and GVSM In the standard VSM, the term vectors are con- sidered pairwise orthogonal, meaning that they are Since the introduction of the first GVSM model, linearly independent. But this assumption is un- there are at least two basic directions for em- realistic, since it enforces lack of relatedness be- bedding term to term relatedness, other than ex- tween any pair of terms, whereas the terms in a act keyword matching, into a retrieval model: language often relate to each other. Provided that (a) compute semantic correlations between terms, the orthogonality assumption holds, the similarity or (b) compute frequency co-occurrence statistics between a document vector d~k and a query vec- from large corpora. In this paper we focus on the tor ~q in the VSM can be expressed by the cosine first direction. In the past, the effect of WSD infor- measure given in equation 1. mation in text retrieval was studied (Krovetz and Croft, 1992; Sanderson, 1994), with the results re- n a q vealing that under circumstances, senses informa- ~ j=1 kj j cos(dk, ~q)= P (1) tion may improve IR. More specifically, Krovetz n a2 n q2 qPi=1 ki Pj=1 j and Croft (1992) performed a series of three exper- iments in two document collections, CACM and where akj, qj are real numbers standing for the TIMES. The results of their experiments showed weights of term j in the document dk and the that word senses provide a clear distinction be- query q respectively. A standard baseline retrieval tween relevant and nonrelevant documents, reject- strategy is to rank the documents according to their ing the null hypothesis that the meaning of a word cosine similarity to the query. is not related to judgments of relevance. Also, they reached the conclusion that words being worth 2.2 Generalized Vector Space Model of disambiguation are either the words with uni- Wong et al. (1987) presented an analysis of the form distribution of senses, or the words that in problems that the pairwise orthogonality assump- the query have a different sense from the most tion of the VSM creates. They were the first to popular one. Sanderson (1994) studied the in- address these problems by expanding the VSM. fluence of disambiguation in IR with the use of They introduced term to term correlations, which pseudowords and he concluded that sense ambi- deprecated the pairwise orthogonality assumption, guity is problematic for IR only in the cases of but they kept the assumption that the term vectors retrieving from short queries. Furthermore, his are linearly independent1, creating the first GVSM findings regarding the WSD used were that such model. More specifically, they considered a new a WSD system would help IR if it could perform space, where each term vector t~i was expressed as with very high accuracy, although his experiments n n a linear combination of 2 vectors ~mr, r = 1..2 . were conducted in the Reuters collection, where The similarity measure between a document and a standard queries with corresponding relevant doc- query then became as shown in equation 2, where uments (qrels) are not provided. n t~i and t~j are now term vectors in a 2 dimensional Since then, several recent approaches have vector space, d~k, ~q are the document and the query incorporated semantic information in VSM. Mavroeidis et al. (2005) created a GVSM ker- 1It is known from Linear Algebra that if every pair of vec- tors in a set of vectors is orthogonal, then this set of vectors nel based on the use of noun senses, and their is linearly independent, but not the inverse. hypernyms from WordNet. They experimentally 71 showed that this can improve text categorization. stronger edge types. The intuition behind the as- Stokoe et al. (Stokoe et al., 2003) reported an im- sumption of edges’ weighting is the fact that some provement in retrieval performance using a fully edges provide stronger semantic connections than sense-based system. Our approach differs from others. In the next subsection we propose a can- the aforementioned ones in that it expands the didate method of computing weights. The com- VSM model using the semantic information of a pactness of two senses s1 and s2, can take differ- word thesaurus to interpret the orthogonality of ent values for all the different paths that connect terms and to measure semantic relatedness, in- the two senses. All these paths are examined, as stead of directly replacing terms with senses, or explained later, and the path with the maximum adding senses to the model. weight is eventually selected (definition 3). An- other parameter that affects term relatedness is the 3 A GVSM Model based on Semantic depth of the sense nodes comprising the path. A Relatedness of Terms standard means of measuring depth in a word the- saurus is the hypernym/hyponym hierarchical re- Synonymy (many words per sense) and polysemy lation for the noun and adjective POS and hyper- (many senses per word) are two fundamental prob- nym/troponym for the verb POS.
Recommended publications
  • Document and Topic Models: Plsa
    10/4/2018 Document and Topic Models: pLSA and LDA Andrew Levandoski and Jonathan Lobo CS 3750 Advanced Topics in Machine Learning 2 October 2018 Outline • Topic Models • pLSA • LSA • Model • Fitting via EM • pHITS: link analysis • LDA • Dirichlet distribution • Generative process • Model • Geometric Interpretation • Inference 2 1 10/4/2018 Topic Models: Visual Representation Topic proportions and Topics Documents assignments 3 Topic Models: Importance • For a given corpus, we learn two things: 1. Topic: from full vocabulary set, we learn important subsets 2. Topic proportion: we learn what each document is about • This can be viewed as a form of dimensionality reduction • From large vocabulary set, extract basis vectors (topics) • Represent document in topic space (topic proportions) 푁 퐾 • Dimensionality is reduced from 푤푖 ∈ ℤ푉 to 휃 ∈ ℝ • Topic proportion is useful for several applications including document classification, discovery of semantic structures, sentiment analysis, object localization in images, etc. 4 2 10/4/2018 Topic Models: Terminology • Document Model • Word: element in a vocabulary set • Document: collection of words • Corpus: collection of documents • Topic Model • Topic: collection of words (subset of vocabulary) • Document is represented by (latent) mixture of topics • 푝 푤 푑 = 푝 푤 푧 푝(푧|푑) (푧 : topic) • Note: document is a collection of words (not a sequence) • ‘Bag of words’ assumption • In probability, we call this the exchangeability assumption • 푝 푤1, … , 푤푁 = 푝(푤휎 1 , … , 푤휎 푁 ) (휎: permutation) 5 Topic Models: Terminology (cont’d) • Represent each document as a vector space • A word is an item from a vocabulary indexed by {1, … , 푉}. We represent words using unit‐basis vectors.
    [Show full text]
  • Redalyc.Latent Dirichlet Allocation Complement in the Vector Space Model for Multi-Label Text Classification
    International Journal of Combinatorial Optimization Problems and Informatics E-ISSN: 2007-1558 [email protected] International Journal of Combinatorial Optimization Problems and Informatics México Carrera-Trejo, Víctor; Sidorov, Grigori; Miranda-Jiménez, Sabino; Moreno Ibarra, Marco; Cadena Martínez, Rodrigo Latent Dirichlet Allocation complement in the vector space model for Multi-Label Text Classification International Journal of Combinatorial Optimization Problems and Informatics, vol. 6, núm. 1, enero-abril, 2015, pp. 7-19 International Journal of Combinatorial Optimization Problems and Informatics Morelos, México Available in: http://www.redalyc.org/articulo.oa?id=265239212002 How to cite Complete issue Scientific Information System More information about this article Network of Scientific Journals from Latin America, the Caribbean, Spain and Portugal Journal's homepage in redalyc.org Non-profit academic project, developed under the open access initiative © International Journal of Combinatorial Optimization Problems and Informatics, Vol. 6, No. 1, Jan-April 2015, pp. 7-19. ISSN: 2007-1558. Latent Dirichlet Allocation complement in the vector space model for Multi-Label Text Classification Víctor Carrera-Trejo1, Grigori Sidorov1, Sabino Miranda-Jiménez2, Marco Moreno Ibarra1 and Rodrigo Cadena Martínez3 Centro de Investigación en Computación1, Instituto Politécnico Nacional, México DF, México Centro de Investigación e Innovación en Tecnologías de la Información y Comunicación (INFOTEC)2, Ags., México Universidad Tecnológica de México3 – UNITEC MÉXICO [email protected], {sidorov,marcomoreno}@cic.ipn.mx, [email protected] [email protected] Abstract. In text classification task one of the main problems is to choose which features give the best results. Various features can be used like words, n-grams, syntactic n-grams of various types (POS tags, dependency relations, mixed, etc.), or a combinations of these features can be considered.
    [Show full text]
  • Evaluating Vector-Space Models of Word Representation, Or, the Unreasonable Effectiveness of Counting Words Near Other Words
    Evaluating Vector-Space Models of Word Representation, or, The Unreasonable Effectiveness of Counting Words Near Other Words Aida Nematzadeh, Stephan C. Meylan, and Thomas L. Griffiths University of California, Berkeley fnematzadeh, smeylan, tom griffi[email protected] Abstract angle between word vectors (e.g., Mikolov et al., 2013b; Pen- nington et al., 2014). Vector-space models of semantics represent words as continuously-valued vectors and measure similarity based on In this paper, we examine whether these constraints im- the distance or angle between those vectors. Such representa- ply that Word2Vec and GloVe representations suffer from the tions have become increasingly popular due to the recent de- same difficulty as previous vector-space models in capturing velopment of methods that allow them to be efficiently esti- mated from very large amounts of data. However, the idea human similarity judgments. To this end, we evaluate these of relating similarity to distance in a spatial representation representations on a set of tasks adopted from Griffiths et al. has been criticized by cognitive scientists, as human similar- (2007) in which the authors showed that the representations ity judgments have many properties that are inconsistent with the geometric constraints that a distance metric must obey. We learned by another well-known vector-space model, Latent show that two popular vector-space models, Word2Vec and Semantic Analysis (Landauer and Dumais, 1997), were in- GloVe, are unable to capture certain critical aspects of human consistent with patterns of semantic similarity demonstrated word association data as a consequence of these constraints. However, a probabilistic topic model estimated from a rela- in human word association data.
    [Show full text]
  • Gensim Is Robust in Nature and Has Been in Use in Various Systems by Various People As Well As Organisations for Over 4 Years
    Gensim i Gensim About the Tutorial Gensim = “Generate Similar” is a popular open source natural language processing library used for unsupervised topic modeling. It uses top academic models and modern statistical machine learning to perform various complex tasks such as Building document or word vectors, Corpora, performing topic identification, performing document comparison (retrieving semantically similar documents), analysing plain-text documents for semantic structure. Audience This tutorial will be useful for graduates, post-graduates, and research students who either have an interest in Natural Language Processing (NLP), Topic Modeling or have these subjects as a part of their curriculum. The reader can be a beginner or an advanced learner. Prerequisites The reader must have basic knowledge about NLP and should also be aware of Python programming concepts. Copyright & Disclaimer Copyright 2020 by Tutorials Point (I) Pvt. Ltd. All the content and graphics published in this e-book are the property of Tutorials Point (I) Pvt. Ltd. The user of this e-book is prohibited to reuse, retain, copy, distribute or republish any contents or a part of contents of this e-book in any manner without written consent of the publisher. We strive to update the contents of our website and tutorials as timely and as precisely as possible, however, the contents may contain inaccuracies or errors. Tutorials Point (I) Pvt. Ltd. provides no guarantee regarding the accuracy, timeliness or completeness of our website or its contents including this tutorial. If you discover any errors on our website or in this tutorial, please notify us at [email protected] ii Gensim Table of Contents About the Tutorial ..........................................................................................................................................
    [Show full text]
  • Deconstructing Word Embedding Models
    Deconstructing Word Embedding Models Koushik K. Varma Ashoka University, [email protected] Abstract – Analysis of Word Embedding Models through Analysis, one must be certain that all linguistic aspects of a a deconstructive approach reveals their several word are captured within the vector representations because shortcomings and inconsistencies. These include any discrepancies could be further amplified in practical instability of the vector representations, a distorted applications. While these vector representations have analogical reasoning, geometric incompatibility with widespread use in modern natural language processing, it is linguistic features, and the inconsistencies in the corpus unclear as to what degree they accurately encode the data. A new theoretical embedding model, ‘Derridian essence of language in its structural, contextual, cultural and Embedding,’ is proposed in this paper. Contemporary ethical assimilation. Surface evaluations on training-test embedding models are evaluated qualitatively in terms data provide efficiency measures for a specific of how adequate they are in relation to the capabilities of implementation but do not explicitly give insights on the a Derridian Embedding. factors causing the existing efficiency (or the lack there of). We henceforth present a deconstructive review of 1. INTRODUCTION contemporary word embeddings using available literature to clarify certain misconceptions and inconsistencies Saussure, in the Course in General Linguistics, concerning them. argued that there is no substance in language and that all language consists of differences. In language there are only forms, not substances, and by that he meant that all 1.1 DECONSTRUCTIVE APPROACH apparently substantive units of language are generated by other things that lie outside them, but these external Derrida, a post-structualist French philosopher, characteristics are actually internal to their make-up.
    [Show full text]
  • Vector Space Models for Words and Documents Statistical Natural Language Processing ELEC-E5550 Jan 30, 2019 Tiina Lindh-Knuutila D.Sc
    Vector space models for words and documents Statistical Natural Language Processing ELEC-E5550 Jan 30, 2019 Tiina Lindh-Knuutila D.Sc. (Tech) Lingsoft Language Services & Aalto University tiina.lindh-knuutila -at- aalto dot fi Material also by Mari-Sanna Paukkeri (mari-sanna.paukkeri -at- utopiaanalytics dot com) Today’s Agenda • Vector space models • word-document matrices • word vectors • stemming, weighting, dimensionality reduction • similarity measures • Count models vs. predictive models • Word2vec • Information retrieval (Briefly) • Course project details You shall know the word by the company it keeps • Language is symbolic in nature • Surface form is in an arbitrary relation with the meaning of the word • Hat vs. cat • One substitution: Levenshtein distance of 1 • Does not measure the semantic similarity of the words • Distributional semantics • Linguistic items which appear in similar contexts in large samples of language data tend to have similar meanings Firth, John R. 1957. A synopsis of linguistic theory 1930–1955. In Studies in linguistic analysis, 1–32. Oxford: Blackwell. George Miller and Walter Charles. 1991. Contextual correlates of semantic similarity. Language and Cognitive Processes, 6(1):1–28. Vector space models (VSM) • The use of a high-dimensional space of documents (or words) • Closeness in the vector space resembles closeness in the semantics or structure of the documents (depending on the features extracted). • Makes the use of data mining possible • Applications: – Document clustering/classification/… • Finding similar documents • Finding similar words – Word disambiguation – Information retrieval • Term discrimination: ranking keywords in the order of usefulness Vector space models (VSM) • Steps to build a vector space model 1. Preprocessing 2.
    [Show full text]
  • Word Embeddings: History & Behind the Scene
    Word Embeddings: History & Behind the Scene Alfan F. Wicaksono Information Retrieval Lab. Faculty of Computer Science Universitas Indonesia References • Bengio, Y., Ducharme, R., Vincent, P., & Janvin, C. (2003). A Neural Probabilistic Language Model. The Journal of Machine Learning Research, 3, 1137–1155. • Mikolov, T., Corrado, G., Chen, K., & Dean, J. (2013). Efficient Estimation of Word Representations in Vector Space. Proceedings of the International Conference on Learning Representations (ICLR 2013), 1–12 • Mikolov, T., Chen, K., Corrado, G., & Dean, J. (2013). Distributed Representations of Words and Phrases and their Compositionality. NIPS, 1–9. • Morin, F., & Bengio, Y. (2005). Hierarchical Probabilistic Neural Network Language Model. Aistats, 5. References Good weblogs for high-level understanding: • http://sebastianruder.com/word-embeddings-1/ • Sebastian Ruder. On word embeddings - Part 2: Approximating the Softmax. http://sebastianruder.com/word- embeddings-softmax • https://www.tensorflow.org/tutorials/word2vec • https://www.gavagai.se/blog/2015/09/30/a-brief-history-of- word-embeddings/ Some slides were also borrowed from From Dan Jurafsky’s course slide: Word Meaning and Similarity. Stanford University. Terminology • The term “Word Embedding” came from deep learning community • For computational linguistic community, they prefer “Distributional Semantic Model” • Other terms: – Distributed Representation – Semantic Vector Space – Word Space https://www.gavagai.se/blog/2015/09/30/a-brief-history-of-word-embeddings/ Before we learn Word Embeddings... Semantic Similarity • Word Similarity – Near-synonyms – “boat” and “ship”, “car” and “bicycle” • Word Relatedness – Can be related any way – Similar: “boat” and “ship” – Topical Similarity: • “boat” and “water” • “car” and “gasoline” Why Word Similarity? • Document Classification • Document Clustering • Language Modeling • Information Retrieval • ..
    [Show full text]
  • UNIVERSITY of CALIFORNIA, SAN DIEGO Bag-Of-Concepts As a Movie
    UNIVERSITY OF CALIFORNIA, SAN DIEGO Bag-of-Concepts as a Movie Genome and Representation A Thesis submitted in partial satisfaction of the requirements for the degree Master of Science in Computer Science by Colin Zhou Committee in charge: Professor Shlomo Dubnov, Chair Professor Sanjoy Dasgupta Professor Lawrence Saul 2016 The Thesis of Colin Zhou is approved, and it is acceptable in quality and form for publication on microfilm and electronically: Chair University of California, San Diego 2016 iii DEDICATION For Mom and Dad iv TABLE OF CONTENTS Signature Page........................................................................................................... iii Dedication.................................................................................................................. iv Table of Contents....................................................................................................... v List of Figures and Tables.......................................................................................... vi Abstract of the Thesis................................................................................................ vii Introduction................................................................................................................ 1 Chapter 1 Background............................................................................................... 3 1.1 Vector Space Models............................................................................... 3 1.1.1. Bag-of-Words........................................................................
    [Show full text]
  • Analysis of a Vector Space Model, Latent Semantic Indexing and Formal Concept Analysis for Information Retrieval
    BULGARIAN ACADEMY OF SCIENCES CYBERNETICS AND INFORMATION TECHNOLOGIES • Volume 12, No 1 Sofia • 2012 Analysis of a Vector Space Model, Latent Semantic Indexing and Formal Concept Analysis for Information Retrieval Ch. Aswani Kumar1, M. Radvansky2, J. Annapurna3 1School of Information Technology and Engineering, VIT University, Vellore, India 2VSB Technical University of Ostrava, Ostrava, Czech Republic 3School of Computing Science and Engineering, VIT University, Vellore, India Email: [email protected] Abstract: Latent Semantic Indexing (LSI), a variant of classical Vector Space Model (VSM), is an Information Retrieval (IR) model that attempts to capture the latent semantic relationship between the data items. Mathematical lattices, under the framework of Formal Concept Analysis (FCA), represent conceptual hierarchies in data and retrieve the information. However, both LSI and FCA use the data represented in the form of matrices. The objective of this paper is to systematically analyze VSM, LSI and FCA for the task of IR using standard and real life datasets. Keywords: Formal concept analysis, Information Retrieval, latent semantic indexing, vector space model. 1. Introduction Information Retrieval (IR) deals with the representation, storage, organization and access to information items. IR is highly iterative in human interactive process aimed at retrieving the documents that are related to users’ information needs. The human interaction consists in submitting information needed as a query, analyzing the ranked and retrieved documents, modifying the query and submitting iteratively until the actual documents related to the need are found or the search process is terminated by the user. Several techniques including a simple keyword to advanced NLP are available for developing IR systems.
    [Show full text]
  • Ontology Alignment Based on Word Embedding and Random Forest Classification
    Ontology alignment based on word embedding and random forest classification Ikechukwu Nkisi-Orji1[0000−0001−9734−9978], Nirmalie Wiratunga1, Stewart Massie1, Kit-Ying Hui1, and Rachel Heaven2 1 Robert Gordon University, Aberdeen, UK {i.o.nkisi-orji , n.wiratunga, s.massie, k.hui}@rgu.ac.uk 2 British Geological Survey, Nottingham, UK [email protected] Abstract. Ontology alignment is crucial for integrating heterogeneous data sources and forms an important component of the semantic web. Accordingly, several ontology alignment techniques have been proposed and used for discovering correspondences between the concepts (or enti- ties) of different ontologies. Most alignment techniques depend on string- based similarities which are unable to handle the vocabulary mismatch problem. Also, determining which similarity measures to use and how to effectively combine them in alignment systems are challenges that have persisted in this area. In this work, we introduce a random forest classifier approach for ontology alignment which relies on word embed- ding for determining a variety of semantic similarities features between concepts. Specifically, we combine string-based and semantic similarity measures to form feature vectors that are used by the classifier model to determine when concepts match. By harnessing background knowledge and relying on minimal information from the ontologies, our approach can handle knowledge-light ontological resources. It also eliminates the need for learning the aggregation weights of a composition of similarity measures. Experiments using Ontology Alignment Evaluation Initiative (OAEI) dataset and real-world ontologies highlight the utility of our approach and show that it can outperform state-of-the-art alignment systems. Keywords: Ontology alignment · Word embedding · Machine classifi- cation · Semantic web.
    [Show full text]
  • A Structured Vector Space Model for Word Meaning in Context
    A Structured Vector Space Model for Word Meaning in Context Katrin Erk Sebastian Pado´ Department of Linguistics Department of Linguistics University of Texas at Austin Stanford University [email protected] [email protected] Abstract all its possible usages (Landauer and Dumais, 1997; Lund and Burgess, 1996). Since the meaning of We address the task of computing vector space words can vary substantially between occurrences representations for the meaning of word oc- (e.g., for polysemous words), the next necessary step currences, which can vary widely according to context. This task is a crucial step towards a is to characterize the meaning of individual words in robust, vector-based compositional account of context. sentence meaning. We argue that existing mod- There have been several approaches in the liter- els for this task do not take syntactic structure ature (Smolensky, 1990; Schutze,¨ 1998; Kintsch, sufficiently into account. 2001; McDonald and Brew, 2004; Mitchell and La- We present a novel structured vector space pata, 2008) that compute meaning in context from model that addresses these issues by incorpo- lemma vectors. Most of these studies phrase the prob- rating the selectional preferences for words’ lem as one of vector composition: The meaning of a argument positions. This makes it possible to target occurrence a in context b is a single new vector integrate syntax into the computation of word c that is a function (for example, the centroid) of the meaning in context. In addition, the model per- forms at and above the state of the art for mod- vectors: c = a b.
    [Show full text]
  • Graph-Based Word Embedding Learning and Cross-Lingual Contextual Word Embedding Learning Zheng Zhang
    Explorations in Word Embeddings : graph-based word embedding learning and cross-lingual contextual word embedding learning Zheng Zhang To cite this version: Zheng Zhang. Explorations in Word Embeddings : graph-based word embedding learning and cross- lingual contextual word embedding learning. Computation and Language [cs.CL]. Université Paris Saclay (COmUE), 2019. English. NNT : 2019SACLS369. tel-02366013 HAL Id: tel-02366013 https://tel.archives-ouvertes.fr/tel-02366013 Submitted on 15 Nov 2019 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Explorations in word embeddings: S369 graph-based word embedding learning SACL and cross-lingual contextual word 9 embedding learning : 201 NNT Thèse de doctorat de l'Université Paris-Saclay préparée à Université Paris-Sud École doctorale n°580 Sciences et technologies de l’information et de la communication (STIC) Spécialité de doctorat : Informatique Thèse présentée et soutenue à Orsay, le 18/10/2019, par Zheng Zhang Composition du Jury : François Yvon Senior Researcher, LIMSI-CNRS Président Mathieu Lafourcade Associate Professor, Université de Montpellier Rapporteur Emmanuel Morin Professor, Université de Nantes Rapporteur Armand Joulin Research Scientist, Facebook Artificial Intelligence Research Examinateur Pierre Zweigenbaum Senior Researcher, LIMSI-CNRS Directeur de thèse Yue Ma Associate Professor, Université Paris-Sud Co-encadrant Acknowledgements Word embedding learning is a fast-moving domain.
    [Show full text]