Comparative Transcriptome Analysis to Identify Putative Genes Involved In
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Thymus Vulgaris L) and Salvia Officinalis (Sage
ISSN 2664-4142 (Print) & ISSN 2664-6749 (Online) South Asian Research Journal of Pharmaceutical Sciences Abbreviated Key Title: South Asian Res J Pharm Sci | Volume-3 | Issue-4 | July-Aug- 2021 | DOI: 10.36346/sarjps.2021.v03i04.001 Original Research Article Determination antioxidant activity of Green tea (Camellia sinensis), Thyme (Thymus vulgaris L) and Salvia officinalis (Sage) Ahmed M A Hamad1* 1High Institute for Medical Profession Albaida – Libya *Corresponding Author Ahmed M A Hamad Article History Received: 07.07.2021 Accepted: 10.08.2021 Published: 16.08.2021 Abstract: The methanolic crude extracts of some commonly used medicinal plants were screened for their free radical scavenging properties using ascorbic acid as standard antioxidant. Free radical scavenging activity was evaluated using 1,1-diphenyl-2-picrylhydrazyl (DPPH) free radical. The overall antioxidant activity of green tea Camellia sinensis, was the strongest, followed in descending order by Thyme (Thymus vulgaris L.) (Salvia officinalis L.) Showed less free radical scavenging activity with the DPPH method. All the methanolic extracts exhibited antioxidant activity significantly. The IC50 of the methanolic extracts ranged between 7.4 ± 0.1 and 14.9 ± 0.2 µg/ml and that of ascorbic acid was 9.8 ± 1 µg/ml. The study reveals that the consumption of these spices would exert several beneficial effects by virtue of their antioxidant activity. Keywords: DPPH, green tea Camellia sinensis, Thyme (Thymus vulgaris) (Salvia officinalis L. INTRODUCTION Nowadays, there are increasing consumer demands for foods, which contain ingredients that may impart health benefits beyond basic nutrition, including herbal. They represent not only a suitable medium for the dissolution of functional components, but also a convenient method of consumption [1]. -
Molecular Identification of Commercialized Medicinal Plants in Southern Morocco
Molecular Identification of Commercialized Medicinal Plants in Southern Morocco Anneleen Kool1*., Hugo J. de Boer1.,A˚ sa Kru¨ ger2, Anders Rydberg1, Abdelaziz Abbad3, Lars Bjo¨ rk1, Gary Martin4 1 Department of Systematic Biology, Evolutionary Biology Centre, Uppsala University, Uppsala, Sweden, 2 Department of Botany, Stockholm University, Stockholm, Sweden, 3 Laboratory of Biotechnology, Protection and Valorisation of Plant Resources, Faculty of Science Semlalia, Cadi Ayyad University, Marrakech, Morocco, 4 Global Diversity Foundation, Dar Ylane, Marrakech, Morocco Abstract Background: Medicinal plant trade is important for local livelihoods. However, many medicinal plants are difficult to identify when they are sold as roots, powders or bark. DNA barcoding involves using a short, agreed-upon region of a genome as a unique identifier for species– ideally, as a global standard. Research Question: What is the functionality, efficacy and accuracy of the use of barcoding for identifying root material, using medicinal plant roots sold by herbalists in Marrakech, Morocco, as a test dataset. Methodology: In total, 111 root samples were sequenced for four proposed barcode regions rpoC1, psbA-trnH, matK and ITS. Sequences were searched against a tailored reference database of Moroccan medicinal plants and their closest relatives using BLAST and Blastclust, and through inference of RAxML phylograms of the aligned market and reference samples. Principal Findings: Sequencing success was high for rpoC1, psbA-trnH, and ITS, but low for matK. Searches using rpoC1 alone resulted in a number of ambiguous identifications, indicating insufficient DNA variation for accurate species-level identification. Combining rpoC1, psbA-trnH and ITS allowed the majority of the market samples to be identified to genus level. -
Variability of Two Essential Oils of Ammi Visnaga (L.) Lam
Journal of Medicinal Plants Research Vol. 5(20), pp. 5079-5082, 30 September, 2011 Available online at http://www.academicjournals.org/JMPR ISSN 1996-0875 ©2011 Academic Journals Full Length Research Paper Variability of two essential oils of Ammi visnaga (L.) Lam. a traditional Tunisian medicinal plant Ayda Khadhri 1*, Ridha El Mokni 2, Khaled Mguis 3, Inès Ouerfelli 4 and Maria Eduarda M. Araújo 5 1Unity of Research of Vegetal Ecology, Faculty of Sciences, University of El-Manar II, Campus Academia, 2092 Tunis, Tunisia. 2Laboratory of Botany and Plant Ecology, Department of Life Sciences, Faculty of Sciences, University of Carthage, Jarzouna 7021, Bizerta, Tunisia. 3Unité de physiologie et de biochimie de la tolérance au sel chez les plantes, Faculté des Sciences de Tunis, Université Tunis-El-Manar, 2092 Tunis, Tunisie. 4Laboratory of Organic Synthesis and heterocyclic, Department of Chemistry, Faculty of Sciences, University of El-Manar II, Campus Academia, 2092 Tunis, Tunisia. 5CQB, Department of Chemistry and Biochemistry, Faculty of Sciences, University of Lisbon, Edifício C-8, Campo Grande, 1749-016 Lisbon, Portugal. Accepted 9 June, 2011 This study deals with the valorization of medicinal and aromatic plants of the Tunisian flora, in order to find new bioactive natural products. The essential oil constituents from the fruits of Ammi visnaga , collected from two Tunisian localities, Ichkeul and Djebba the North of Tunisia, were extracted by hydrodistillation and analyzed by gas chromatography-mass spectrometry (GC-MS). Forty-one compounds were identified. Both samples showed similar chemical composition, the major components were linalool, isoamyl 2-methyl butyrate and isopentyl isovalerate. Key words: Apiaceae, Ammi visnaga , essential oil composition, Gas chromatography-mass spectrometry (GC-MS) analysis. -
Flowering Plants Eudicots Apiales, Gentianales (Except Rubiaceae)
Edited by K. Kubitzki Volume XV Flowering Plants Eudicots Apiales, Gentianales (except Rubiaceae) Joachim W. Kadereit · Volker Bittrich (Eds.) THE FAMILIES AND GENERA OF VASCULAR PLANTS Edited by K. Kubitzki For further volumes see list at the end of the book and: http://www.springer.com/series/1306 The Families and Genera of Vascular Plants Edited by K. Kubitzki Flowering Plants Á Eudicots XV Apiales, Gentianales (except Rubiaceae) Volume Editors: Joachim W. Kadereit • Volker Bittrich With 85 Figures Editors Joachim W. Kadereit Volker Bittrich Johannes Gutenberg Campinas Universita¨t Mainz Brazil Mainz Germany Series Editor Prof. Dr. Klaus Kubitzki Universita¨t Hamburg Biozentrum Klein-Flottbek und Botanischer Garten 22609 Hamburg Germany The Families and Genera of Vascular Plants ISBN 978-3-319-93604-8 ISBN 978-3-319-93605-5 (eBook) https://doi.org/10.1007/978-3-319-93605-5 Library of Congress Control Number: 2018961008 # Springer International Publishing AG, part of Springer Nature 2018 This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation, broadcasting, reproduction on microfilms or in any other physical way, and transmission or information storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now known or hereafter developed. The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication does not imply, even in the absence of a specific statement, that such names are exempt from the relevant protective laws and regulations and therefore free for general use. -
Thymus Vulgaris Against Alternaria Citri E-Gnosis, Núm
e-Gnosis E-ISSN: 1665-5745 [email protected] Universidad de Guadalajara México Soto Mendívil, Erica A.; Moreno Rodríguez, Juan F.; Estarrón Espinosa, Mirna; García Fajardo, Jorge A.; Obledo Vázquez, Eva N. Chemical composition and fungicidal activity of the essential oil of Thymus vulgaris against Alternaria citri e-Gnosis, núm. 4, 2006, p. 0 Universidad de Guadalajara Guadalajara, México Available in: http://www.redalyc.org/articulo.oa?id=73000416 How to cite Complete issue Scientific Information System More information about this article Network of Scientific Journals from Latin America, the Caribbean, Spain and Portugal Journal's homepage in redalyc.org Non-profit academic project, developed under the open access initiative © 2006, e-Gnosis [online] Vol. 4, Art. 16 Chemical composition and fungicidal…Soto M. E. et al. CHEMICAL COMPOSITION AND FUNGICIDAL ACTIVITY OF THE ESSENTIAL OIL OF Thymus vulgaris AGAINST Alternaria citri COMPOSICIÓN QUÍMICA Y ACTIVIDAD FUNGICIDA DEL ACEITE ESENCIAL DE THYMUS VULGARIS L. CONTRA ALTERNARIA CITRI Erica A. Soto-Mendívil 1, Juan F. Moreno-Rodríguez 2, Mirna Estarrón-Espinosa 3, Jorge A. García-Fajardo 3 and Eva N. Obledo-Vázquez 3 [email protected] / [email protected] / [email protected] / [email protected] / [email protected] Recibido: abril 07, 2006 / Aceptado: noviembre 15, 2006 / Publicado: noviembre 23, 2006 ABSTRACT. An essential oil extracted from thyme (Thymus vulgaris L.) was chemically analyzed by Gas Chromatography/Mass Spectroscopy and evaluated for its fungicidal activity. The main constituents were borneol (28.4%), thymol (16.6%), carvacrol methyl ether (9.6%), camphene (6.9%), α-humulene (6.4%) and carvacrol (5.0%). -
A Review on Iranian Carum Copticum (L.) : Composition and Biological Activities
European Journal of Medicinal Plants 12(1): 1-8, 2016, Article no.EJMP.17584 ISSN: 2231-0894, NLM ID: 101583475 SCIENCEDOMAIN international www.sciencedomain.org A Review on Iranian Carum copticum (L.) : Composition and Biological Activities Bahman Fazeli-nasab 1* and Ziba Fooladvand 1 1Center of Agricultural Biotechnology and Center of Agricultural Research, University of Zabol, Iran. Authors’ contributions This work was carried out in collaboration between both authors. Authors BFN and ZF designed the study, wrote the first draft of the manuscript. Both authors read and approved the final manuscript. Article Information DOI: 10.9734/EJMP/2016/17584 Editor(s): (1) Ahmed Moussa, Pharmacognosy and Api-Phytotherapy Research Laboratory, Mostaganem University, Algeria. (2) Marcello Iriti, Professor of Plant Biology and Pathology, Department of Agricultural and Environmental Sciences, Milan State University, Italy. Reviewers: (1) Daniela Benedec, Iuliu Ha țieganu University of Medicine and Pharmacy, Romania. (2) Daniela Hanganu, Iuliu Ha țieganu University of Medicine and Pharmacy, Romania. (3) Banu Kaskatepe, Ankara University, Turkey. (4) Anonymous, Federal Polytechnic Mubi, Adamawa State, Nigeria. (5) Anonymous, Amity University, India. Complete Peer review History: http://sciencedomain.org/review-history/12409 Received 19 th March 2015 th Review Article Accepted 15 July 2015 Published 24 th November 2015 ABSTRACT Aims: This paper examined thoroughly chemical composition and biological properties of Carum copticum. Study Design: Introduction on curtain characteristic of medicinal Ajowan ( Carum copticum (L.)). Place and Duration of Study: Center of Agricultural Biotechnology, University of Zabol, 2015. Introduction: Carum copticum medicinal plant with the scientific name of Carum copticum Heirn is belong to Umbelliferae family and Trachyspermum copticum genus and the Latin name of the species Ajowan is also similar to the local pronunciation Sistani ajqu. -
Evolutionary Shifts in Fruit Dispersal Syndromes in Apiaceae Tribe Scandiceae
Plant Systematics and Evolution (2019) 305:401–414 https://doi.org/10.1007/s00606-019-01579-1 ORIGINAL ARTICLE Evolutionary shifts in fruit dispersal syndromes in Apiaceae tribe Scandiceae Aneta Wojewódzka1,2 · Jakub Baczyński1 · Łukasz Banasiak1 · Stephen R. Downie3 · Agnieszka Czarnocka‑Cieciura1 · Michał Gierek1 · Kamil Frankiewicz1 · Krzysztof Spalik1 Received: 17 November 2018 / Accepted: 2 April 2019 / Published online: 2 May 2019 © The Author(s) 2019 Abstract Apiaceae tribe Scandiceae includes species with diverse fruits that depending upon their morphology are dispersed by gravity, carried away by wind, or transported attached to animal fur or feathers. This diversity is particularly evident in Scandiceae subtribe Daucinae, a group encompassing species with wings or spines developing on fruit secondary ribs. In this paper, we explore fruit evolution in 86 representatives of Scandiceae and outgroups to assess adaptive shifts related to the evolutionary switch between anemochory and epizoochory and to identify possible dispersal syndromes, i.e., patterns of covariation of morphological and life-history traits that are associated with a particular vector. We also assess the phylogenetic signal in fruit traits. Principal component analysis of 16 quantitative fruit characters and of plant height did not clearly separate spe- cies having diferent dispersal strategies as estimated based on fruit appendages. Only presumed anemochory was weakly associated with plant height and the fattening of mericarps with their accompanying anatomical changes. We conclude that in Scandiceae, there are no distinct dispersal syndromes, but a continuum of fruit morphologies relying on diferent dispersal vectors. Phylogenetic mapping of ten discrete fruit characters on trees inferred by nrDNA ITS and cpDNA sequence data revealed that all are homoplastic and of limited use for the delimitation of genera. -
Unesco – Eolss Sample Chapters
CULTIVATED PLANTS, PRIMARILY AS FOOD SOURCES – Vol. II– Spices - Éva Németh SPICES Éva Németh BKA University, Department of Medicinal and Aromatic Plants, Budapest, Hungary Keywords: culinary herbs, aromatic plants, condiment, flavoring plants, essential oils, food additives. Contents 1. Introduction 2. Spices of the temperate zone 2.1. Basil, Ocimum basilicum L. (Lamiaceae). (See Figure 1). 2.2. Caraway Carum carvi L. (Apiaceae) 2.3. Dill, Anethum graveolens L. (Apiaceae) 2.4. Mustard, Sinapis alba and Brassica species (Brassicaceae) 2.5. Oregano, Origanum vulgare L. (Lamiaceae) 2.6. Sweet marjoram, Majorana hortensis Mönch. (Lamiaceae) 3. Spices of the tropics 3.1. Cinnamon, Cinnamomum zeylanicum Nees, syn. C. verum J.S.Presl. (Lauraceae) 3.2. Clove, Syzyngium aromaticum L syn. Eugenia caryophyllata Thunb. (Myrtaceae) 3.3. Ginger, Zingiber officinale Roscoe (Zingiberaceae) 3.4. Pepper, Piper nigrum L. (Piperaceae) Glossary Bibliography Biographical Sketch Summary In ancient times no sharp distinction was made between flavoring plants, spices, medicinal plants and sacrificial species. In the past, spices were very valuable articles of exchange, for many countries they assured a source of wealth and richness. Today, spices are lower in price, but they are essential of foods to any type of nation. In addition to synthetic aromatic compounds, spices from natural resources have increasing importance again. UNESCO – EOLSS The majority of spices not only add flavor and aroma to our foods, but contribute to their preservationSAMPLE and nutritive value. Although CHAPTERS the flavoring role of spices in our food cannot be separated from their other (curing, antimicrobal, antioxidant, etc.) actions, in this article we try to introduce some of the most important plants selected according to their importance as condiments. -
Flora Mediterranea 26
FLORA MEDITERRANEA 26 Published under the auspices of OPTIMA by the Herbarium Mediterraneum Panormitanum Palermo – 2016 FLORA MEDITERRANEA Edited on behalf of the International Foundation pro Herbario Mediterraneo by Francesco M. Raimondo, Werner Greuter & Gianniantonio Domina Editorial board G. Domina (Palermo), F. Garbari (Pisa), W. Greuter (Berlin), S. L. Jury (Reading), G. Kamari (Patras), P. Mazzola (Palermo), S. Pignatti (Roma), F. M. Raimondo (Palermo), C. Salmeri (Palermo), B. Valdés (Sevilla), G. Venturella (Palermo). Advisory Committee P. V. Arrigoni (Firenze) P. Küpfer (Neuchatel) H. M. Burdet (Genève) J. Mathez (Montpellier) A. Carapezza (Palermo) G. Moggi (Firenze) C. D. K. Cook (Zurich) E. Nardi (Firenze) R. Courtecuisse (Lille) P. L. Nimis (Trieste) V. Demoulin (Liège) D. Phitos (Patras) F. Ehrendorfer (Wien) L. Poldini (Trieste) M. Erben (Munchen) R. M. Ros Espín (Murcia) G. Giaccone (Catania) A. Strid (Copenhagen) V. H. Heywood (Reading) B. Zimmer (Berlin) Editorial Office Editorial assistance: A. M. Mannino Editorial secretariat: V. Spadaro & P. Campisi Layout & Tecnical editing: E. Di Gristina & F. La Sorte Design: V. Magro & L. C. Raimondo Redazione di "Flora Mediterranea" Herbarium Mediterraneum Panormitanum, Università di Palermo Via Lincoln, 2 I-90133 Palermo, Italy [email protected] Printed by Luxograph s.r.l., Piazza Bartolomeo da Messina, 2/E - Palermo Registration at Tribunale di Palermo, no. 27 of 12 July 1991 ISSN: 1120-4052 printed, 2240-4538 online DOI: 10.7320/FlMedit26.001 Copyright © by International Foundation pro Herbario Mediterraneo, Palermo Contents V. Hugonnot & L. Chavoutier: A modern record of one of the rarest European mosses, Ptychomitrium incurvum (Ptychomitriaceae), in Eastern Pyrenees, France . 5 P. Chène, M. -
Chemical Composition of Trachyspermum Ammi L. and Its
Journal of Pharmacognosy and Phytochemistry 2017; 6(3): 131-140 E-ISSN: 2278-4136 P-ISSN: 2349-8234 Chemical composition of Trachyspermum ammi L. and JPP 2017; 6(3): 131-140 Received: 04-03-2017 its biological properties: A review Accepted: 05-04-2017 KK Chahal KK Chahal, K Dhaiwal, A Kumar, D Kataria and N Singla Department of Chemistry, Punjab Agricultural University, Ludhiana, Punjab, India Abstract Trachyspermum ammi L. (Apiaceae) commonly known as ajwain is an important medicinal, aromatic K Dhaiwal and spice plant. It was originated in Egypt and widely distributed throughout the World. Ajwain seeds Department of Chemistry, yield 2-5% brownish essential oil, with thymol as the major constituent along with p-cymene, γ- Punjab Agricultural University, terpinene, α-pinene, β-pinene and α-terpinene. Due to presence of various chemical constituents in Ludhiana, Punjab, India ajwain, various biological and pharmacological properties have been reported. The present study is an effort to collect all the information regarding chemical composition and biological activities of ajwain. A Kumar Department of Chemistry, Punjab Agricultural University, Keywords: Trachyspermum ammi (L.), Essential oil, Chemical composition, Biological properties Ludhiana, Punjab, India 1. Introduction D Kataria Natural products, such as essential oils are produced by the secondary metabolism in plants. Department of Chemistry, Their constituents are used in human consumption as functional food, food additives, Punjab Agricultural University, Ludhiana, Punjab, India medicines, nutritional supplements and for the manufacture of cosmetics (Burt and Reinders [15] 2003) . The volatile components of essential oils mainly consist of monoterpenes, N Singla sesquiterpenes and their oxygenated derivatives such as alcohols, aldehyde, ketones, acids and Department of Chemistry, esters (Suntar et al. -
Pharmacological and Phytochemical Profile of Trachyspermum Ammi
International Journal of Unani and Integrative Medicine 2020; 4(2): 19-23 E-ISSN: 2616-4558 P-ISSN: 2616-454X IJUIM 2020; 4(2): 19-23 Pharmacological and phytochemical profile of Impact Factor (RJIF): 6.3 Peer Reviewed Journal Trachyspermum ammi: evidence from the traditional Received: 18-06-2020 medicine and recent research Accepted: 22-08-2020 Dr. Md. Abdur Razzak Assistant Professor, Hamdard Dr. Md. Abdur Razzak Unani Medical College and Hospital, Betgari, Banani, Abstract Sajahanpur, Bogra. Medicinal plants always played an important role in the health development of mankind. Bangladesh Trachyspermum ammi is one of the oldest spice plants which, due to its economic importance and significant pharmaceutical industry applications, are considered as one of the world’s most important medicinal plants. In order to gather the information the keywords Trachyspermum ammi, therapeutic, and pharmacology have been searched until August 30, 2020 from journals accessible in databases such as Science Direct, Scopus, EBSCO, Medline, PubMed, Embase, SID, and Iran Medex. The results showed that this plant has various pharmacological properties including analgesic, antioxidant, digestive, anti-cancer activity, anti-inflammatory, antifungal, Anti-bacterial and estrogenic effects which are probably due to the presence of aromatic compounds such as carvone, limonene, thymol, hygroscopic saponin, crystalline flavone and dillapiole. Trachyspermum ammi possesses various pharmacological properties and play an important role in human health; hence, it might be used for different drug productions. Keywords: medicinal plants, Trachyspermum ammi, unani medicine, analgesic, digestive, anti- inflammatory Introduction Trachyspermum ammi Linn, belonging to Umbelliferae family, is a plant with important medicinal properties. Trachyspermum ammi is native of Egypt and grows widely around Mediterranean Sea and in Southwest Asia. -
Antifungal Activity of Thapsia Villosa Essential Oil Against Candida, Cryptococcus, Malassezia, Aspergillus and Dermatophyte Species
molecules Article Antifungal Activity of Thapsia villosa Essential Oil against Candida, Cryptococcus, Malassezia, Aspergillus and Dermatophyte Species Eugénia Pinto 1,2,* ID , Maria-José Gonçalves 3, Carlos Cavaleiro 3 and Lígia Salgueiro 3 1 Laboratory of Microbiology, Biological Sciences Department, Faculty of Pharmacy of University of Porto, Rua Jorge Viterbo Ferreira n◦ 228, 4050-313 Porto, Portugal 2 Interdisciplinary Centre of Marine and Environmental Research (CIIMAR/CIMAR), University of Porto, Terminal de Cruzeiros do Porto de Leixões Av. General Norton de Matos s/n, 4450-208 Matosinhos, Portugal 3 CNC.IBILI, Faculty of Pharmacy, University of Coimbra, Azinhaga de S. Comba, 3000-354 Coimbra, Portugal; [email protected] (M.-J.G.); [email protected] (C.C.); [email protected] (L.S.) * Correspondence: [email protected]; Tel.: +351-220-428-585; Fax: +351-226-093-390 Received: 31 July 2017; Accepted: 20 September 2017; Published: 22 September 2017 Abstract: The composition of the essential oil (EO) of Thapsia villosa (Apiaceae), isolated by hydrodistillation from the plant’s aerial parts, was analysed by GC and GC-MS. Antifungal activity of the EO and its main components, limonene (57.5%) and methyleugenol (35.9%), were evaluated against clinically relevant yeasts (Candida spp., Cryptococcus neoformans and Malassezia furfur) and moulds (Aspergillus spp. and dermatophytes). Minimum inhibitory concentrations (MICs) were measured according to the broth macrodilution protocols by Clinical and Laboratory Standards Institute (CLSI). The EO, limonene and methyleugenol displayed low MIC and MFC (minimum fungicidal concentration) values against Candida spp., Cryptococcus neoformans, dermatophytes, and Aspergillus spp. Regarding Candida species, an inhibition of yeast–mycelium transition was demonstrated at sub-inhibitory concentrations of the EO (MIC/128; 0.01 µL/mL) and their major compounds in Candida albicans.