Wet Oxidation of Fine Soil Contaminated with Petroleum Hydrocarbons: a Way Towards a Remediation Cycle

Total Page:16

File Type:pdf, Size:1020Kb

Wet Oxidation of Fine Soil Contaminated with Petroleum Hydrocarbons: a Way Towards a Remediation Cycle environments Article Wet Oxidation of Fine Soil Contaminated with Petroleum Hydrocarbons: A Way towards a Remediation Cycle Maria Cristina Collivignarelli 1 ID , Mentore Vaccari 2 ID , Alessandro Abbà 1,* ID , Matteo Canato 1 and Sabrina Sorlini 2 1 Department of Civil and Architectural Engineering, University of Pavia, via Ferrata 1, 27100 Pavia, Italy; [email protected] (M.C.C.); [email protected] (M.C.) 2 Department of Civil, Environmental, Architectural Engineering and Mathematics, University of Brescia, via Branze 43, 25123 Brescia, Italy; [email protected] (M.V.); [email protected] (S.S.) * Correspondence: [email protected]; Tel.: +39-0382-985-314; Fax: +39-0382-985-589 Received: 16 May 2018; Accepted: 6 June 2018; Published: 8 June 2018 Abstract: The aim of this experimental study was to assess the feasibility of using a wet oxidation (WO) process for treating fine soil with a high level of total petroleum hydrocarbons (TPHs). Two samples of soil were spiked with two different contaminants (motor oil, and motor oil + diesel). The samples were subjected to a WO bench plant test, where the effect of the main process parameters (i.e., temperature and reaction time) on the removal of TPHs was investigated. Results show that the WO process is effective for the decontamination of hydrocarbons, and a strong reduction (>85%) can be obtained with the typical working conditions of a full-scale plant (temperature = 250 ◦C, reaction time = 30 min). The solid residue resulting from the WO process was characterized in order to evaluate the recovery options. In terms of chemical characterization, the contents of the pollutants comply with the Italian regulations for commercial and industrial site use. Moreover, the results of the leaching test suggested that these residues could be reused for ceramic and brick manufacturing processes. Keywords: chemical oxidation; contaminated soil remediation; leaching test; recovery options 1. Introduction The rapid and effective removal of total petroleum hydrocarbons (TPHs) from soil can be theoretically obtained through chemical–physical treatments, such as solvent extraction, low temperature thermal desorption, or chemical oxidation. The application of these technologies enables the attainment of high TPHs removal efficiency, even if some drawbacks must be taken into account. For instance, when solvent extraction is applied, the toxicity of the solvent is an important factor, as traces of solvent may remain within the treated soil [1], thereby compromising its quality. On the other hand, for chemical oxidation, reagent costs have to be carefully evaluated during the design phase [2]; for instance, in Fenton’s process, high carbonate and bicarbonate concentrations in the soil (as well as the organic matter) can lead to a high dosage of reagents [3], with respect to the stoichiometric amount. Furthermore, the composition of the soil (in terms of granulometry) can also affect the decontamination process; to give an example, soils characterized by a high content of silt and clay cannot be treated effectively with cheaper biological processes, or by soil vapor extraction, because of their low air permeability. Moreover, due to the tendency of the fine fraction of soil to form aggregates, pre-treatments such as shredding could be necessary prior to the decontamination process, increasing the treatment costs. Environments 2018, 5, 69; doi:10.3390/environments5060069 www.mdpi.com/journal/environments Environments 2018, 5, 69 2 of 13 In addition, it must be taken into account that due to the tendency of contaminants to accumulate in the fine fraction of soil [4], in many cases, that fraction is not treated, but instead directly landfilled, and the remediation cycle is not completed; something that occurs, as reported by Dermont et al. [5], in soil washing treatment. Another aspect to be taken into account is the change in the partition of the contaminant amongst the different fractions of the soils due to the washing process [6]. In recent times, the European Commission has adopted an ambitious Circular Economy Package [7], aiming to stimulate Europe’s transition towards a circular economy. The proposed actions will contribute to “closing the loop” of product life cycles through greater recycling and reuse, and will bring benefits for both the environment and the economy. Therefore, the technicians are motivated to improve or find alternative remediation technologies finalized to close the remediation cycle, and give a new life to waste. A technology that can be useful in reaching the aforementioned targets is the wet oxidation (WO) process, which is reliable and effective in the treatment of a wide spectrum of organic aqueous waste, even toxic waste, produced by various branches of industrial activity [8,9], and sewage sludge [10]. Typical treatment conditions for sludge and hazardous wastes reported in the literature are as follows: 200–325 ◦C for temperature; 5000–17,500 kPa for pressure; and 15–120 min for the reaction time. The preferred COD load ranges from 10–80 kg·m−3. One of the biggest advantages related to the WO process is that decontamination is obtained with low polluting output gases, composed mainly of CO2, water steam, and oxygen, without hazardous by-products and low organic content in the final residue [8,11,12]. In addition, the WO effluent can be conveniently treated in a conventional wastewater treatment plant because of its high biodegradability, and, in some cases, it could also be used as a carbon source for the denitrification process, and as a substrate for the production of biopolymers [12]. Moreover, other researchers have also demonstrated that WO effluent represents an interesting energy vector; in fact, if it is treated by anaerobic digestion, biogas can be produced, and electric and thermal energy could be recovered [13]. Today, about 200 plants are in operation around the world (two of them in Italy), mostly to treat waste streams from petrochemical, chemical, and pharmaceutical industries, as well as residual sludge from urban wastewater treatment [12]. Detailed reviews about the WO process and its application are reported in Debellefontaine and Foussard [8], and Bhargava et al. [14]. According to Italian regulations [15], the soil and stones not containing dangerous substances (classified using the European Waste Code 17 05 04 [16]) can be recovered, in simplified procedure, for the following uses: ceramic and brick manufacturing processes, environmental recovery, road embankments, and foundations. With the exception of the first recovery route, the release of pollutants (by means of a leaching test provided for UNI EN 1247-2 [17]) must be lower than the limit values reported in the regulations. According to Italian regulations, the simplified procedure (where no actual permission is necessary, only the notification of competent local authorities) is provided for a limited class of recovery operations that are completely defined by the law, both in terms of qualitative description, and the threshold quantities to be handled. These residues could also be recovered by an ordinary procedure for further applications. The conventional use of fine particles falls mainly in the civil construction field, employed for the following uses: in the production of bitumen-based binder [18]; as unbound aggregate (usually mixed with lime) in road bases and subbases [19–21]; in the production of cement and concrete [22–25] and bricks [26,27]. These kinds of recovery could be limited due to the uncertainty regarding the physical properties of residues, and the effects on the products obtained. The objective of this work was to carry out a detailed investigation of the WO technology as a treatment option for the decontamination of fine-grained soil, and to demonstrate that the remediation of the soil is achievable. To this end, two samples of fine soil, spiked with contaminants based on petroleum hydrocarbons, were subjected to the WO treatment. The first sample was contaminated with motor oil, while the second one was contaminated with a mix of motor oil and diesel only. Environments 2018, 5, 69 3 of 13 This work is original. In fact, few studies have been reported that deal with the chemical oxidation process for the treatment of wastewater originating from the soil washing process [28–30], or with hot water extraction combined with in situ wet oxidation for the removal of polycyclic aromatic hydrocarbons (PAHs) from soil [31,32]. To our knowledge, no research dealing solely with the direct application of the WO process for the remediation of contaminated soils has been published. 2. Materials and Methods 2.1. Soil Characteristics For the tests, two samples of fine soil (about 90% of soil passes through an ASTM (American Society for Testing and Materials) 200 mesh sieve) were spiked with the following: motor oil (soil #1) and motor oil + diesel (soil #2). The contamination with motor oil was carried out using a heavy-duty synthetic engine oil designed for the lubrication of diesel engines (15W-40 type), while the other contamination was achieved using a commercial diesel fuel. The artificial contamination was carried out by spiking the contaminants on 5 kg of samples. Specifically, the soil samples were put into two different vessels, after which the contaminants were spread on the soils (by means of a spray equipment). The soils were also mixed with trowels. Two days of aging (in a covered basin) were also provided for. The main characteristics of the soil samples (before and after the artificial contamination) are summarized in Table1. The soils, from the granulometric point of view, are similar to the fine fraction of residues derived from mining activities. About 90% of the soil tested is silt and clay. Table 1. Characteristics of the soils treated by wet oxidation. Soil #1 Soil #2 Parameter Measurement Unit As Raw Motor Oil As Raw Motor Oil + Diesel Contaminating medium Total Petroleum mg·kg −1 <20 1455 ± 220 <20 4736 ± 600 Hydrocarbons (TPHs) dw Total Polycyclic Aromatic mg·kg −1 <0.1 0.12 ± 0.10 <0.1 0.20 ± 0.05 Hydrocarbons (PAHs) dw pH - n.a.
Recommended publications
  • New Trends in Environmental Catalytic Technologies for Water Remediation
    water Editorial New Trends in Environmental Catalytic Technologies for Water Remediation Zacharias Frontistis Department of Chemical Engineering, University of Western Macedonia, GR-50100 Kozani, Greece; [email protected] Due to climate change, industrialization, and overpopulation, water resources man- agement is becoming a crucial sector. Consequently, as the limits of legislation for effluents’ reuse and recycling and use in crops or aquifers enrichment are becoming increasingly stringent, advanced wastewater treatment is becoming very demanding. Simultaneously, in recent years, a new generation of pollutants has emerged. The xenobiotic compounds present a disproportionately high degree of toxicity even though they are detected in mini- mal quantities, which is why they are called micro pollutants. This category contains many compounds belonging to different families, such as endocrine disruptors, pharmaceutical compounds, and personal care products. One of the main problems of this new generation of pollutants is their extremely low biodegradation or their tendency to accumulate in the sludge of conventional biological wastewater treatment systems. On the other hand, in the scientific community and the environmental restoration industry, the search for the optimal solution for removing recalcitrant organic pollutants such as humic acid and inorganics such as heavy metals from environmental matrices continues at an intensive pace. In this light, the scientific interest has turned to a new generation of physicochemical methods called advanced oxidation processes (AOPs). These processes are based on the in situ generation of reactive oxygen Citation: Frontistis, Z. New Trends species. AOPs include technologies such as photocatalysis, photo Fenton and Fenton-like in Environmental Catalytic reactions, activated persulfate, ozonation, wet air oxidation, UV/H2O2, hydrodynamic or Technologies for Water Remediation.
    [Show full text]
  • Application of Catalytic Wet Peroxide Oxidation for Industrial and Urban Wastewater Treatment: a Review
    catalysts Review Application of Catalytic Wet Peroxide Oxidation for Industrial and Urban Wastewater Treatment: A Review Juan José Rueda Márquez 1,*, Irina Levchuk 2 and Mika Sillanpää 1 1 Laboratory of Green Chemistry, Lappeenranta University of Technology, Sammonkatu 12 (Innovation Centre for Safety and Material Technology, TUMA), 50130 Mikkeli, Finland; mika.sillanpaa@lut.fi 2 Water and Wastewater Engineering Research Group, School of Engineering, Aalto University, PO Box 15200, FI-00076 Aalto, Finland; irina.levchuk@aalto.fi * Correspondence: juan.rueda.marquez@lut.fi Received: 12 November 2018; Accepted: 14 December 2018; Published: 19 December 2018 Abstract: Catalytic wet peroxide oxidation (CWPO) is emerging as an advanced oxidation process (AOP) of significant promise, which is mainly due to its efficiency for the decomposition of recalcitrant organic compounds in industrial and urban wastewaters and relatively low operating costs. In current study, we have systemised and critically discussed the feasibility of CWPO for industrial and urban wastewater treatment. More specifically, types of catalysts the effect of pH, temperature, and hydrogen peroxide concentrations on the efficiency of CWPO were taken into consideration. The operating and maintenance costs of CWPO applied to wastewater treatment and toxicity assessment were also discussed. Knowledge gaps were identified and summarised. The main conclusions of this work are: (i) catalyst leaching and deactivation is one of the main problematic issues; (ii) majority of studies were performed in semi-batch and batch reactors, while continuous fixed bed reactors were not extensively studied for treatment of real wastewaters; (iii) toxicity of wastewaters treated by CWPO is of key importance for possible application, however it was not studied thoroughly; and, (iv) CWPO can be regarded as economically viable for wastewater treatment, especially when conducted at ambient temperature and natural pH of wastewater.
    [Show full text]
  • Chemical Oxidation Applications for Industrial Wastewaters
    ©2019 The Author(s) This is an Open Access book distributed under the terms of the Creative Commons Attribution Licence (CC BY 4.0), which permits copying and redistribution for non- commercial purposes, provided the original work is properly cited and that any new works are made available on the same conditions (http://creativecommons.org/licenses/by/4.0/). This does not affect the rights licensed or assigned from any third party in this book. This title was made available Open Access through a partnership with Knowledge Unlatched. IWA Publishing would like to thank all of the libraries for pledging to support the transition of this title to Open Access through the KU Select 2018 program. Downloaded from http://iwaponline.com/ebooks/book-pdf/521267/wio9781780401416.pdf by guest on 24 September 2021 Chemical Oxidation Applications for Industrial Wastewaters Chemical Oxidation Applications for Industrial This book covers the most recent scientific and technological developments (state-of-the-art) in the field of chemical oxidation processes applicable for the Chemical Oxidation efficient treatment of biologically-difficult-to-degrade, toxic and/or recalcitrant effluents originating from different manufacturing processes. It is a comprehensive Applications for review of process and pollution profiles as well as conventional, advanced and emerging treatment processes & technologies developed for the most relevant and pollution (wet processing)-intensive industrial sectors. Industrial Wastewaters It addresses chemical/photochemical oxidative treatment processes, case- Olcay Tünay, Işık Kabdaşlı, Idil Arslan-Alaton and Tuğba Ölmez-Hancı specific treatability problems of major industrial sectors, emerging (novel) as well as pilot/full-scale applications, process integration, treatment system design & sizing criteria (figure-of merits), cost evaluation and success stories in the application of chemical oxidative treatment processes.
    [Show full text]
  • Devdopment of the Monolith Froth Reactor for Catalytic Wet Oxidation Of
    05-19-99 15:2_ TU RESEARCH ID=9182246298 P03/09 Devdopment of the Monolith Froth Reactor for Catalytic Wet Oxidation of CELSS Mo_ Final Report on Jt_t_z-_l_ --_ J Martin Abraham" Department of Chemical Engineering The University of Toledo Toledo, OH 43606 John W. Fisher MS 239-1 l NASA - Ames Research Center Moffett Field, CA 94035 The aqueous phase oxidation of acetic acid, used as a model compound for the treatment of CELSS (Controlled Ecological Life Support System) waste, was carried out in the monolith froth reactor which utilizes two-phase flow in the monolith channels. The catalytic oxidation of acetic acid was carried out over a Pt/AI.,O_ catalyst, prepared at The University of Tulsa, at temperatures and pressures below the critical point of water. The effect of ex'temally controllable parameters (temperature, liquid flow rate, distributor plate orifice size, pitch, and catalyst distance from the distributor plate) on the rate of acetic acid oxidation was investigated. Results indicate reaction rate increased with increasing temperature and exhibited a maximum with respect to liquid flow rate. The apparent activation energy calculated from reaction rate data ,,,,,as 99.7 kJ/mol. This value is similar to values reported for the oxidation of acetic acid in other systems and is comparable to intrinsic values calculated for oxidation reactions. The "kinetic data were modeled using simple power law kinetics. The effect of "froth" feed system characteristics was also investigated. Results indicate that the reaction rate exhibits a maximum with respect to distributor plate orifice size, pitch, and catalyst distance from the distributor plate.
    [Show full text]
  • CATALYTIC WET AIR OXIDATION of INDUSTRIAL WASTEWATERS Oxidation of Bisphenol a Over Cerium Supported Metal Catalysts
    A 651 OULU 2015 A 651 UNIVERSITY OF OULU P.O. Box 8000 FI-90014 UNIVERSITY OF OULU FINLAND ACTA UNIVERSITATISUNIVERSITATIS OULUENSISOULUENSIS ACTA UNIVERSITATIS OULUENSIS ACTAACTA SCIENTIAESCIENTIAEA A RERUMRERUM Anne Heponiemi NATURALIUMNATURALIUM Anne Heponiemi Professor Esa Hohtola CATALYTIC WET AIR University Lecturer Santeri Palviainen OXIDATION OF INDUSTRIAL Postdoctoral research fellow Sanna Taskila WASTEWATERS OXIDATION OF BISPHENOL A OVER CERIUM Professor Olli Vuolteenaho SUPPORTED METAL CATALYSTS University Lecturer Veli-Matti Ulvinen Director Sinikka Eskelinen Professor Jari Juga University Lecturer Anu Soikkeli Professor Olli Vuolteenaho UNIVERSITY OF OULU GRADUATE SCHOOL; UNIVERSITY OF OULU FACULTY OF SCIENCE Publications Editor Kirsti Nurkkala ISBN 978-952-62-0898-5 (Paperback) ISBN 978-952-62-0899-2 (PDF) ISSN 0355-3191 (Print) ISSN 1796-220X (Online) ACTA UNIVERSITATIS OULUENSIS A Scientiae Rerum Naturalium 651 ANNE HEPONIEMI CATALYTIC WET AIR OXIDATION OF INDUSTRIAL WASTEWATERS Oxidation of bisphenol A over cerium supported metal catalysts Academic dissertation to be presented with the assent of the Doctoral Training Committee of Technology and Natural Sciences of the University of Oulu for public defence in Kuusamonsali (YB210), Linnanmaa, on 25 September 2015, at 12 noon UNIVERSITY OF OULU, OULU 2015 Copyright © 2015 Acta Univ. Oul. A 651, 2015 Supervised by Professor Ulla Lassi Docent Toivo Kuokkanen Reviewed by Professor Albin Pintar Doctor Sylvain Keav Opponent Professor Claude Descorme ISBN 978-952-62-0898-5 (Paperback) ISBN 978-952-62-0899-2 (PDF) ISSN 0355-3191 (Printed) ISSN 1796-220X (Online) Cover Design Raimo Ahonen JUVENES PRINT TAMPERE 2015 Heponiemi, Anne, Catalytic wet air oxidation of industrial wastewaters. Oxidation of bisphenol A over cerium supported metal catalysts University of Oulu Graduate School; University of Oulu, Faculty of Science Acta Univ.
    [Show full text]
  • Condensation By-Products in Wet Peroxide Oxidation: Fouling Or Catalytic Promotion? Part I
    catalysts Article Condensation By-Products in Wet Peroxide Oxidation: Fouling or Catalytic Promotion? Part I. Evidences of an Autocatalytic Process Asunción Quintanilla 1, Jose L. Diaz de Tuesta 2,3 , Cristina Figueruelo 1, Macarena Munoz 1,* and Jose A. Casas 1 1 Chemical Engineering Department, Universidad Autónoma de Madrid, Ctra. Colmenar km 15, 28049 Madrid, Spain; [email protected] (A.Q.); cgfi[email protected] (C.F.); [email protected] (J.A.C.) 2 Centro de Investigação de Montanha (CIMO), Instituto Politécnico de Bragança, 5300-253 Bragança, Portugal; [email protected] 3 Laboratório de Processos de Separação e Reação - Laboratório de Catálise e Materiais (LSRE-LCM), Faculdade de Engenharia, Universidade do Porto, 4200-465 Porto, Portugal * Correspondence: [email protected]; Tel.: 34-91-497-3991; Fax: +34-91497-3516 Received: 22 May 2019; Accepted: 6 June 2019; Published: 11 June 2019 Abstract: The present work is aimed at the understanding of the condensation by-products role in wet peroxide oxidation processes. This study has been carried out in absence of catalyst to isolate the (positive or negative) effect of the condensation by-products on the kinetics of the process, and in presence of oxygen, to enhance the oxidation performance. This process was denoted as oxygen-assisted wet peroxide oxidation (WPO-O2) and was applied to the treatment of phenol. First, the influence of the reaction operating conditions (i.e., temperature, pH0, initial phenol concentration, H2O2 dose and O2 pressure) was evaluated. The initial phenol concentration and, overall, the H2O2 dose, were identified as the most critical variables for the formation of condensation by-products and thus, for the oxidation performance.
    [Show full text]
  • PLEASE DO NOT REMOVE THIS PAGE Accepted Manuscript
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by RMIT Research Repository Thank you for downloading this document from the RMIT Research Repository 7KH50,75HVHDUFK5HSRVLWRU\LVDQRSHHQDFFHVVGDWDEDVHVKRZFDVLQJWWKHUHVHDUFK RXWSXWVRI50,78QLYHUVLW\UHVHDUFKHUV 50,755HVHDUFK5HHSRVLWRU\KWWSUHVHDUFKEDQNUPLWHGXDX Citation: Hii, K, Baroutian, S, Parthasarathy, R, Gapes, D and Eshtiaghi, N 2014, 'A review of wet air oxidation and thermal hydrolysistechnologies in sludge treatment', Bioresource Technology, vol. 155, pp. 289-299. See this record in the RMIT Research Repository at: https://researchbank.rmit.edu.au/view/rmit:30221 Version: Accepted Manuscript Copyright Statement: © 2013 Elsevier Ltd Creative Commons Attribution-NonCommercial-NoDerivs 3.0 Australia License Link to Published Version: http://dx.doi.org/10.1016/j.biortech.2013.12.066 PLEASE DO NOT REMOVE THIS PAGE Accepted Manuscript A Review of Wet Air Oxidation and Thermal Hydrolysis Technologies in Sludge Treatment Kevin Hii, Saeid Baroutian, Raj Parthasarathy, Daniel J. Gapes, Nicky Eshtiaghi PII: S0960-8524(13)01906-8 DOI: http://dx.doi.org/10.1016/j.biortech.2013.12.066 Reference: BITE 12789 To appear in: Bioresource Technology Please cite this article as: Hii, K., Baroutian, S., Parthasarathy, R., Gapes, D.J., Eshtiaghi, N., A Review of Wet Air Oxidation and Thermal Hydrolysis Technologies in Sludge Treatment, Bioresource Technology (2013), doi: http:// dx.doi.org/10.1016/j.biortech.2013.12.066 This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final form.
    [Show full text]
  • II EURAF Conference
    capa EURAF EUROPEAN AGROFORESTRY FEDERATION nd 2 European Agroforestry Conference Integrating Science and Policy to Promote Agroforestry in Practice Book of Abstracts June 2014 Cottbus, Germany Editor-In-Chief: Organizing Committee: João HN Palma Dirk Freese Editors: Anja Chalmin Anja Chalmin Christian Dupraz Paul Burgess Rosa Mosquera-Losada Jo Smith Anastasia Panthera Mike Strachan Norbert Lammersdorf Jabier Ruiz Mirazo João HN Palma Adolfo Rosati Joana A Paulo Scientific Committee: Adolfo Rosati Anastasia Panthera Ansgar Quinkenstein Gerardo Moreno Jo Smith Joana A Paulo João HN Palma Rosa Mosquera-Losada Sami Kryeziu ISBN: 978-972-97874-4-7 cover design: Luís Fonseca (The 50 words more frequent in this document, sized proportional to their frequency) Contents Preface .............................................................................................................................................. v New insights into carbon, water and nutrient cycling in agroforestry ........................................ 2 Biophysical Interactions in the Alley Cropping System in Saskatchewan ................................................................... 3 Soil carbon sequestration in a Mediterranean agroforestry system............................................................................. 7 Pasture management under hardwood plantations: legume implantation vs. mineral fertilization ............................ 10 Carbon Sequestration in a Poplar Agroforestry System in India with Wheat and other Crops at Different Spacing and
    [Show full text]
  • Sludge Treatment by Supercritical Water Oxidation and the Optimization of Operational Conditions
    Sludge Treatment by Supercritical Water Oxidation and the Optimization of Operational Conditions by Ze Yan A thesis submitted to the Faculty of Graduate and Postdoctoral Affairs in partial fulfillment of the requirements for the degree of Master of Applied Science in Environmental Engineering Carleton University Ottawa, Ontario ©2017, Ze Yan Executive summary The overall objective of this study was to investigate the performance of the supercritical water oxidation (SCWO) technology for the treatment of wastewater sludge, and investigate the degradation of p-tert-butylcatechol (TBC) which is a recalcitrant organic compound. The first phase of the study focused on the optimization of the thickening process that precedes SCWO, and investigated the impact of sludge temperature (10 oC -100 oC) on the optimum polymer dose and conditioning of wastewater sludge. The best results were observed at 35 oC -50 oC, where the highest filtrate volume, cake solids and settling velocity were obtained. The results showed that sludge conditioning at 35 oC -50 oC using the excess heat from the SCWO process can significantly improve treatment performance and result in savings for treatment plants. In the second phase, SCWO treatment of sludge was investigated under a range of operational conditions including sludge solids content (2-12 %), TBC concentration (0.1-1 %), reactor temperature (400-550 oC), reactor pressure (18-28 MPa), oxygen excess (n=1-8) and residence time (1-30 minutes). The results showed that the optimum initial sludge solids content was in the range of 8-10 %, and the optimum SCWO operational parameters were 550 oC, 25 MPa and an oxygen excess of 5.
    [Show full text]
  • Supercritical Water Partial Oxidation
    Proceedings of the 2002 U.S. DOE Hydrogen Program Review NREL/CP-610-32405 SUPERCRITICAL WATER PARTIAL OXIDATION G.T. Hong and M.H. Spritzer General Atomics 3550 General Atomics Court San Diego, CA 92121-1122 Abstract General Atomics is developing Supercritical Water Partial Oxidation (SWPO), a gasification process involving oxidative reactions in a supercritical water environment – akin to high- pressure steam – in the presence of substoichiometric quantities of oxidant. The key potential advantage of the SWPO process is the use of partial oxidation in-situ to rapidly heat the gasification medium, resulting in less char formation and improved hydrogen yield. Another major advantage is that the high-pressure, high-density aqueous environment is ideal for reacting and gasifying organics. The high water content of the medium should encourage formation of hydrogen and hydrogen-rich products and is highly compatible with high water content feeds such as biomass materials. By the same token, the high water content of the medium is effective for gasification of hydrogen-poor materials such as coal. A versatile pilot plant for exploring gasification in supercritical water has been established at the General Atomics’ facility in San Diego. Preliminary testing of the SWPO process has found hydrogen yields of about 10 grams per 100 grams of feed, comparable to those found in prior laboratory- scale work carried out at the University of Hawaii. As in that prior work, a significant amount of the hydrogen found in the gas phase products is derived from the water/steam matrix. Introduction General Atomics is developing Supercritical Water Partial Oxidation (SWPO) for the efficient and environmentally advantageous gasification and hydrogen production from low-grade fuels such as biomass, municipal/solid waste (MSW) and high-sulfur coal.
    [Show full text]
  • Design, Fabrication, and Operational Parameters of a Supercritical Water Oxidation Reactor
    Design, Fabrication, and Operational Parameters of a Supercritical Water Oxidation Reactor Stuart J. Moore A thesis submitted in partial fulfillment of the requirements for the degree of Master of Science University of Washington 2020 Committee: Igor Novosselov, Chair John Kramlich Per Reinhall Program Authorized to Offer Degree: Mechanical Engineering © Copyright 2020 Stuart J. Moore University of Washington Abstract Design, Fabrication, and Operational Parameters of a Supercritical Water Oxidation Reactor Stuart J. Moore Chair of the Supervisory Committee: Igor V. Novosselov Department of Mechanical Engineering Supercritical Water Oxidation (SCWO) has been shown to efficiently destroy wet organic wastes. The process, iterations, and lessons learned during the design and fabrication process of a continuous, inverted SCWO reactor are described. Ethanol is oxidized in a continuous inverted supercritical water oxidation reactor at 25 MPa, with oxidant and fuel preheat temperatures of 380 to 450 °C. Optimal conditions for future operation are found by operating at various premixed fuel concentrations of 0-7 mol% ethanol in water, varying the air to fuel equivalence ratio from 1.1 to 1.8, and utilizing air and hydrogen peroxide as the oxidant. Experimental conditions are chosen for analysis of reactor temperatures during complete oxidation of pilot fuel, where ethanol will rapidly oxidize. Higher premixed concentrations of ethanol produce a more localized, higher temperature reaction occurring closer to the nozzle with longer residence times. Preliminary results find the use of air results in lower reaction temperatures than hydrogen peroxide at similar operational conditions due to nitrogen loading; the experiments with air are still on-going. The results are used to determine the capability of the reactor for the destruction of toxic organic compounds.
    [Show full text]
  • Integration of Hydrothermal Processes on a Forest-Based Biorefinery Site
    INTEGRATION OF HYDROTHERMAL PROCESSES ON A FOREST-BASED BIOREFINERY SITE Linnea Häreskog EN1811 Master thesis, 30 Credits Master of Science in Energy Engineering, 300 Credits Spring term 2018 SAMMANFATTNING Massa- och pappersindustrin är en verksamhet som årligen producerar stora mängder avfall. Förutom bark som är en restprodukt produceras även stora mängder slam från de olika delarna av industrin. Bioslam kallas det slam som kommer från den biologiska avloppsvattenreningsprocessen och är känt som ett särskilt problematiskt avfall. Det är av intresse att sänka mängden slam från pappersmasseindustrin, alternativt hitta nya sätt att hantera slammet. Det vanligaste sättet att behandla slam från massa- och pappersindustrin är genom intern förbränning i industrins barkpanna. Slam är emellertid svårt att avvattna och gör ofta mer skada än nytta när det förbränns i pannorna. Olika tekniker för att försöka avvattna slammet har undersökts tidigare, en som det nyligen börjat rapporteras om är hydrotermisk behandling. Tekniken som beskrivs i denna uppsats kallas på svenska för hydrotermisk karbonisering (HTC) som använder vatten som reaktionsmedium för att förvandla slam till ett kol-liknande material som kallas hydrokol. Hydrokolet har ett högre värmevärde än det ursprungliga slammet och är mer hydrofobt vilket gör det lättare att avvattna. Detta examensarbete beskriver tekniken bakom HTC-processen och presenterar några av de senaste artiklarna inom området. Olika typer av restslam från massa- och pappersindustrin presenteras innan integreringen av en HTC-process på bioraffinaderiområdet i Domsjö, Sverige, diskuteras utifrån tidigare publicerade artiklar. En undersökning angående slam från industrier längs med Norrlandskusten genomfördes för att undersöka om avfallsmaterial liknande det från Domsjö- området finns tillgängligt inom 500 km.
    [Show full text]