Controlled Mechanical Motions of Microparticles in Optical Tweezers

Total Page:16

File Type:pdf, Size:1020Kb

Controlled Mechanical Motions of Microparticles in Optical Tweezers micromachines Review Controlled Mechanical Motions of Microparticles in Optical Tweezers Jing Liu 1 and Zhiyuan Li 2,* 1 Institute of Laser and Intelligent Manufacturing Technology, South-Central University for Nationalities, Wuhan 430074, China; [email protected] 2 School of Physics and Optoelectronics, South China University of Technology, Guangzhou 510640, China * Correspondence: [email protected]; Tel.: +86-020-8711-4175 Received: 15 April 2018; Accepted: 9 May 2018; Published: 12 May 2018 Abstract: Optical tweezers, formed by a highly focused laser beam, have intriguing applications in biology and physics. Inspired by molecular rotors, numerous optical beams and artificial particles have been proposed to build optical tweezers trapping microparticles, and extensive experiences have been learned towards constructing precise, stable, flexible and controllable micromachines. The mechanism of interaction between particles and localized light fields is quite different for different types of particles, such as metal particles, dielectric particles and Janus particles. In this article, we present a comprehensive overview of the latest development on the fundamental and application of optical trapping. The emphasis is placed on controllable mechanical motions of particles, including rotation, translation and their mutual coupling under the optical forces and torques created by a wide variety of optical tweezers operating on different particles. Finally, we conclude by proposing promising directions for future research. Keywords: optical tweezers; mechanical motions; optical force; micromachine; Janus particles 1. Introduction Light can drive the mechanical motions of micro- and nano-objects because light carries both energy and momentum that can exchange with these objects. However, this is not an intuitive and obvious concept because the force is extremely weak in usual situations. Thus, in our daily life, optical forces are invisible. Despite this, the light pressure had been hypothesized in the explanation of the nature of comet tails by Kepler (1696). In fact, the electromagnetic theory developed by Maxwell has proposed the optical force, which was described by the term “radiation pressure”. Until the 1960s, the advent of lasers greatly broadened the knowledge on light and made it possible to clearly demonstrate the concept of optical force. In 1986, Ashkin, the pioneer of optical tweezers, creatively used a highly focused laser beam to implement three-dimensional (3D) trapping of dielectric particles around the focus spot [1], as shown in Figure1a. To understand the principle of this trap (see Figure1b), the total optical force acting on a particle can be decomposed into two contributions: (1) the radiation pressure, known as the scattering force, which is proportional to the Poynting vector of optical field and points along the direction of the incident beam, tends to destabilize the trap; and (2) the gradient force, which is proportional to the gradient of the light intensity and points toward the tarp focus, confines the particle near the focal spot. The gradient force represents the attraction of particles to the highest intensity region. Thus, the condition for 3D optical trapping is that the gradient force is larger than the sum of the scattering force and stochastic force due to Brownian motion. Micromachines 2018, 9, 232; doi:10.3390/mi9050232 www.mdpi.com/journal/micromachines Micromachines 2018, 9, 232 2 of 28 Micromachines 2018, 9, x FOR PEER REVIEW 2 of 28 Figure 1. (a) A sketch of optical tweezers generated by a strongly focused laser beam to trap objects; Figure 1. (a) A sketch of optical tweezers generated by a strongly focused laser beam to trap objects; and (b) a schematic illustration of optical forces exerted on a colloidal particle around the focus spot. and (b) a schematic illustration of optical forces exerted on a colloidal particle around the focus spot. (Reprinted with permission from Springer Nature [2].) (Reprinted with permission from Springer Nature [2].) Since then, research on optical tweezers has begun to spread out and expand. Essentially, the basicSince principle then, of research optical ontweezers optical is tweezers the interaction has begun between to spread light outand and matter, expand. through Essentially, momentum the basicand energy principle transfer of optical and tweezersexchange, is to the achieve interaction manipulation between light of objects. and matter, As is throughwell known, momentum optical andtweezers energy can transfer limit objects and exchange, bound by tooptical achieve potential manipulation well in a of small objects. space As range. is well It can known, trap various optical tweezersobjects as can small limit as objectsnanometer bound-size by particles optical potentialand can exert well inoptical a small forces space with range. controllable It can trap amount various at objectsthe femtonewton as small as resolution, nanometer-size which particles is the ideal and range can exert for the optical study forces of molecule with controllable mechanica amountl property. at theTherefore, femtonewton optical resolution, tweezers have which become is the a ideal promising range fortool the to studyinvestigate of molecule the mechanical mechanical properties property. of Therefore,biological specimens, optical tweezers and examples have become include a promisingthe force measurements tool to investigate of DNA the- and mechanical RNA-based properties motors of[3– biological6]. This tool specimens, has been and widely examples applied include to inve thestigate force measurements cell cytometry, of artificial DNA- and fertilization RNA-based of motorsmammalian [3–6]. cells, This tooland haseven been micro widely-surgery applied [7,8].to investigate cell cytometry, artificial fertilization of mammalianIn the early cells, years, and even the micro-surgerytechnique of optical [7,8]. tweezers were successfully applied to capture and manipulateIn the early micrometer years, the particles technique [9], even of optical atoms tweezers[10]. However, were successfullyoptical forces applied on the captured to capture objects and manipulatedepend crucially micrometer on the particles interaction [9], evenbetween atoms the [10 laser]. However, field and optical the objects forces onthemselves. the captured Therefore, objects dependmultiple crucially degrees onand the freedoms interaction of control between over the optical laser force field can and be the greatly objects aroused themselves. by shaping Therefore, either multiplethe beam degrees or the particles. and freedoms To achieve of control various over motions optical forceof trapped can be micro greatly-objects, aroused two by typical shaping schemes either thehave beam been or successfully the particles. adopted To achieve in an variousoptical tweezers motions ofsystem. trapped One micro-objects, scheme is to modulate two typical laser schemes beams, havefor instance been successfully using optical adopted vortex beams in an optical[11], Bessel tweezers beams system. [12], Laguer Onere scheme–Gaussian is to beams modulate (LG beam) laser beams,[13], and for novel instance beams using [14] optical, to build vortex optical beams tweezers. [11], Bessel The beams other [12 scheme], Laguerre–Gaussian makes use of beamsthe special (LG beam)properties [13], andof particles, novel beams for instance [14], to build introducing optical tweezers.precisely Thefabricated other scheme asymmetric makes micro use of-objects the special [15] propertiesrather than of usual particles, homogeneous for instance spherical introducing particles, precisely such fabricatedas micro-turbines asymmetric or gammadion micro-objects shaped [15] rathermicro- thanrotors, usual birefringent homogeneous particles spherical [16,17] particles,and Janus such particles as micro-turbines [18] into an optical or gammadion tweezers shapedsystem. micro-rotors,These asymmetric birefringent particles, particles when [embedded16,17] and within Janus particlesusual Gaussian [18] into or an other optical special tweezers optical system. traps, Thesewill exhibit asymmetric interesting particles, mechanical when embedded motion behaviors. within usual Applications Gaussian or have other been special explored optical in traps, the fields will exhibitof Janus interesting motors [19,20] mechanical, switchable motion devices behaviors. [21], Applicationsand optical probes have been [22] explored. Henceforward, in the fields optical of Janustweezers motors have [19 opened,20], switchable research deviceson micro [21-objects], and opticaldynamic probes processes [22]. Henceforward, with the aid of optical high-resolution tweezers havemicroscope opened and research laser ontechnologies. micro-objects dynamic processes with the aid of high-resolution microscope and laserInspired technologies. by the complex organization of biological organisms, the design of artificial microInspiredmachines by that the exhibit complex controlled organization mechanical of biological motion and organisms, perform thesophisticated design of tasks artificial is an micromachinesultimate pursuit that of exhibitmicro-scale controlled engineering. mechanical A micro motionmachine and allows perform flexible sophisticated control of tasks both is the an ultimatedirection pursuit and speed of micro-scaleof motion. A engineering.t the same time, Amicromachine expanding the allowsscope of flexible their utility control in ofpractice both thehas led to the large-scale production of micromachines. Along
Recommended publications
  • TOOLS and EQUIPMENT Orthotic 561
    TOOLS AND EQUIPMENT Orthotic 561 Tools Shoe Stretchers............................562 Brannock Measuring Device..................562 Mixing Bowls ..............................562 Aluminum Cast Mandrels ....................562 Laminating Fixtures.........................563 Vises and Yates Clamps.................563-564 Measuring Devices .....................564-567 Hex Sets and Balldrivers.................567-569 Screw and Drill Gages ......................569 Cutting Nippers ............................570 Plastering Tools............................571 Shears and Scissors ....................571-572 Blades, Knives and Surforms .............572-575 Rivets, Punch Sets and Eyelets ...........576-579 Reamers .................................579 Needle Kit ................................579 Deburring Tool.............................579 Rout-A-Burr ...............................579 Precision Oiler.............................580 Countersinks ..............................580 Adjustable Bits.............................580 Tools Ball Set Tool . 580 Micro Torches and Heat Guns ............580-582 Cast Spreaders and Cutters ..............583-584 Alignment Fixtures .........................584 Benders and Contouring Iron .............584-585 Equipment Carvers, Cutters and Routers.............585-588 Sanding Accessories............ 589-591, 601-603 Sewing and Patching Machines ...............592 Drill Press ................................593 Band Saws . .594-595 Dust Collectors ........................596-597
    [Show full text]
  • Generation of Vortex Optical Beams Based on Chiral Fiber-Optic Periodic Structures
    sensors Article Generation of Vortex Optical Beams Based on Chiral Fiber-Optic Periodic Structures Azat Gizatulin *, Ivan Meshkov, Irina Vinogradova, Valery Bagmanov, Elizaveta Grakhova and Albert Sultanov Department of Telecommunications, Ufa State Aviation Technical University, 450008 Ufa, Russia; [email protected] (I.M.); [email protected] (I.V.); [email protected] (V.B.); [email protected] (E.G.); [email protected] (A.S.) * Correspondence: [email protected] Received: 22 August 2020; Accepted: 17 September 2020; Published: 18 September 2020 Abstract: In this paper, we consider the process of fiber vortex modes generation using chiral periodic structures that include both chiral optical fibers and chiral (vortex) fiber Bragg gratings (ChFBGs). A generalized theoretical model of the ChFBG is developed including an arbitrary function of apodization and chirping, which provides a way to calculate gratings that generate vortex modes with a given state for the required frequency band and reflection coefficient. In addition, a matrix method for describing the ChFBG is proposed, based on the mathematical apparatus of the coupled modes theory and scattering matrices. Simulation modeling of the fiber structures considered is carried out. Chiral optical fibers maintaining optical vortex propagation are also described. It is also proposed to use chiral fiber-optic periodic structures as sensors of physical fields (temperature, strain, etc.), which can be applied to address multi-sensor monitoring systems due to a unique address parameter—the orbital angular momentum of optical radiation. Keywords: fiber Bragg gratings; chiral structures; orbital angular momentum; apodization; chirp; coupled modes theory 1. Introduction Nowadays, the demand for broadband multimedia services is still growing, which leads to an increase of transmitted data volume as part of the development of the digital economy and the expansion of the range of services (video conferencing, telemedicine, online broadcasting, streaming, etc.).
    [Show full text]
  • Beam Profiling by Michael Scaggs
    Beam Profiling by Michael Scaggs Haas Laser Technologies, Inc. Introduction Lasers are ubiquitous in industry today. Carbon Dioxide, Nd:YAG, Excimer and Fiber lasers are used in many industries and a myriad of applications. Each laser type has its own unique properties that make them more suitable than others. Nevertheless, at the end of the day, it comes down to what does the focused or imaged laser beam look like at the work piece? This is where beam profiling comes into play and is an important part of quality control to ensure that the laser is doing what it intended to. In a vast majority of cases the laser beam is simply focused to a small spot with a simple focusing lens to cut, scribe, etch, mark, anneal, or drill a material. If there is a problem with the beam delivery optics, the laser or the alignment of the system, this problem will show up quite markedly in the beam profile at the work piece. What is Beam Profiling? Beam profiling is a means to quantify the intensity profile of a laser beam at a particular point in space. In material processing, the "point in space" is at the work piece being treated or machined. Beam profiling is accomplished with a device referred to a beam profiler. A beam profiler can be based upon a CCD or CMOS camera, a scanning slit, pin hole or a knife edge. In all systems, the intensity profile of the beam is analyzed within a fixed or range of spatial Haas Laser Technologies, Inc.
    [Show full text]
  • Quantitative Force Measurements with Optical Tweezers: the JPK Nanotracker™
    Quantitative force measurements with optical tweezers: The JPK NanoTracker™ Introduction to optical tweezers manipulate biomolecules and cells, but also to directly and accurately measure the minute forces (on the order of Optical tweezers methodology has developed from proof-of- fractions of picoNewtons) involved. Most often, the principle experiments to an established quantitative biomolecules of interest are not trapped themselves technique in fields ranging from (bio)physics through cell directly, but manipulated through functionalized biology. As the name suggests, optical tweezers are a microspheres. means to manipulate objects with light. With this technique, The correct physical description of optical trapping depends microscopically small objects can be held and manipulated. on the size of the trapped object. One speaks of the ‘ray- At the same time, the forces exerted on the trapped objects optics’ regime when the object’s dimension d is much larger can be accurately measured. The basic physical principle than the wavelength of the trapping light: d>>λ. In this case, underlying optical tweezers is the radiation pressure diffraction effects can be neglected and the trapping forces exerted by light when colliding with matter. For macroscopic of the light can be understood in terms of ray optics. The objects, the radiation pressure exerted by typical light regime where d<<λ is called the Rayleigh regime. In this sources is orders of magnitude too small to have any case, the trapped particles can be treated as point dipoles, measurable effect: we do not feel the light power of the sun as the electromagnetic field is constant on the scale of the pushing us away.
    [Show full text]
  • A Quantum Origin of Life?
    June 26, 2008 11:1 World Scientific Book - 9in x 6in quantum Chapter 1 A Quantum Origin of Life? Paul C. W. Davies The origin of life is one of the great unsolved problems of science. In the nineteenth century, many scientists believed that life was some sort of magic matter. The continued use of the term “organic chemistry” is a hangover from that era. The assumption that there is a chemical recipe for life led to the hope that, if only we knew the details, we could mix up the right stuff in a test tube and make life in the lab. Most research on biogenesis has followed that tradition, by assuming chemistry was a bridge—albeit a long one—from matter to life. Elucidat- ing the chemical pathway has been a tantalizing goal, spurred on by the famous Miller-Urey experiment of 1952, in which amino acids were made by sparking electricity through a mixture of water and common gases [Miller (1953)]. But this concept turned out to be something of a blind alley, and further progress with pre-biotic chemical synthesis has been frustratingly slow. In 1944, Erwin Schr¨odinger published his famous lectures under the ti- tle What is Life? [Schr¨odinger (1944)] and ushered in the age of molecular biology. Sch¨odinger argued that the stable transmission of genetic infor- mation from generation to generation in discrete bits implied a quantum mechanical process, although he was unaware of the role of or the specifics of genetic encoding. The other founders of quantum mechanics, including Niels Bohr, Werner Heisenberg and Eugene Wigner shared Schr¨odinger’s belief that quantum physics was the key to understanding the phenomenon Received May 9, 2007 3 QUANTUM ASPECTS OF LIFE © Imperial College Press http://www.worldscibooks.com/physics/p581.html June 26, 2008 11:1 World Scientific Book - 9in x 6in quantum 4 Quantum Aspects of Life of life.
    [Show full text]
  • Optical Vortex Sign Determination Using Self-Interference Methods
    Optica Applicata, Vol. XL, No. 1, 2010 Optical vortex sign determination using self-interference methods PIOTR KURZYNOWSKI, MONIKA BORWIŃSKA, JAN MASAJADA Institute of Physics, Wrocław University of Technology, Wybrzeże Wyspiańskiego 27, 50-370 Wrocław, Poland We have proposed a simple method for determining the sign of optical vortex seeded in optical beam. Our method can be applied to any single optical vortex, also the one with topological charge magnitude higher than 1, as well as to the whole vortex lattice. The proposed method has been verified experimentally for all the cases. Keywords: optical vortex, interference, birefringence. 1. Introduction Optical vortices are singular lines in a phase distribution of a light field. Usually they are observed in planar cross section (on the screen) as dark points with undefined phase (vortex points) [1–3]. The wavefront takes characteristic helical form in the vicinity of the vortex line (Fig. 1) [1–4]. The twisted helical wavefront results a non-zero angular momentum carried by the beam with the optical vortex [3]. The wavefront’s helical geometry allows for vortex classification due to the helice handedness. We say that optical vortex may have ab Fig. 1. Left (a) and right (b) oriented helical wavefront. The light wave phase is undetermined along the axis of the helice. 166 P. KURZYNOWSKI, M. BORWIŃSKA, J. MASAJADA Fig. 2. Generally the vortex lines in a complex scalar field may have complicated geometry. Here, the line intersects the plane Σ twice. The phase circulation determined in plane Σ in the neighborhood of both intersection points circulates in opposite directions.
    [Show full text]
  • Depth-Resolved Measurement of Optical Radiation-Pressure Forces with Optical Coherence Tomography
    Vol. 26, No. 3 | 5 Feb 2018 | OPTICS EXPRESS 2410 Depth-resolved measurement of optical radiation-pressure forces with optical coherence tomography NICHALUK LEARTPRAPUN, RISHYASHRING R. IYER, AND STEVEN G. ADIE* Meinig School of Biomedical Engineering, Cornell University, Ithaca, NY 14853, USA *[email protected] Abstract: A weakly focused laser beam can exert sufficient radiation pressure to manipulate microscopic particles over a large depth range. However, depth-resolved continuous measurement of radiation-pressure force profiles over an extended range about the focal plane has not been demonstrated despite decades of research on optical manipulation. Here, we present a method for continuous measurement of axial radiation-pressure forces from a weakly focused beam on polystyrene micro-beads suspended in viscous fluids over a depth range of 400 μm, based on real-time monitoring of particle dynamics using optical coherence tomography (OCT). Measurements of radiation-pressure forces as a function of beam power, wavelength, bead size, and refractive index are consistent with theoretical trends. However, our continuous measurements also reveal localized depth-dependent features in the radiation- pressure force profiles that deviate from theoretical predictions based on an aberration-free Gaussian beam. The combination of long-range radiation pressure and OCT offers a new mode of quantitative optical manipulation and detection with extended spatial coverage. This may find applications in the characterization of optical tractor beams, or volumetric optical manipulation and interrogation of beads in viscoelastic media. © 2018 Optical Society of America under the terms of the OSA Open Access Publishing Agreement OCIS codes: (110.4500) Optical coherence tomography; (350.4855) Optical tweezers or optical manipulation.
    [Show full text]
  • Broadband Multichannel Optical Vortex Generators Via Patterned Double-Layer Reverse-Twist Liquid Crystal Polymer
    crystals Article Broadband Multichannel Optical Vortex Generators via Patterned Double-Layer Reverse-Twist Liquid Crystal Polymer Hanqing Zhang 1, Wei Duan 1,2,*, Ting Wei 1, Chunting Xu 1 and Wei Hu 1,* 1 National Laboratory of Solid State Microstructures, College of Engineering and Applied Sciences, Nanjing University, Nanjing 210093, China; [email protected] (H.Z.); [email protected] (T.W.); [email protected] (C.X.) 2 School of Instrumentation and Optoelectronic Engineering, Beihang University, Beijing 100191, China * Correspondence: [email protected] (W.D.); [email protected] (W.H.); Tel.: +86-25-83597400 (W.D & W.H.) Received: 31 August 2020; Accepted: 27 September 2020; Published: 29 September 2020 Abstract: The capacity of an optical communication system can be greatly increased by using separate orbital angular momentum (OAM) modes as independent channels for signal transmission and encryption. At present, a transmissive OAM mode generator compatible with wavelength division multiplexing is being highly pursued. Here, we introduce a specific double-layer reverse-twist configuration into liquid crystal polymer (LCP) to overcome wavelength dependency. With this design, broadband-applicable OAM array generators are proposed and demonstrated. A Damman vortex grating and a Damman q-plate were encoded via photopatterning two subsequent LCP layers adopted with oppositely handed chiral dopants. Rectangular and hexagonal OAM arrays with mode conversion efficiencies exceeding 40.1% and 51.0% in the ranges of 530 to 930 nm, respectively, are presented. This provides a simple and broadband efficient strategy for beam shaping. Keywords: beam shaping; liquid crystals; orbital angular momentum; geometric phase 1.
    [Show full text]
  • Making Optical Vortices with Computer-Generated Holograms ͒ Alicia V
    Making optical vortices with computer-generated holograms ͒ Alicia V. Carpentier,a Humberto Michinel, and José R. Salgueiro Área de Óptica, Facultade de Ciencias de Ourense, Universidade de Vigo, As Lagoas s/n, Ourense, ES-32004 Spain David Olivieri Departamento de Linguaxes e Sistemas Informáticos, Universidade de Vigo, As Lagoas s/n, Ourense, ES-32004 Spain ͑Received 22 February 2007; accepted 16 June 2008͒ An optical vortex is a screw dislocation in a light field that carries quantized orbital angular momentum and, due to cancellations of the twisting along the propagation axis, experiences zero intensity at its center. When viewed in a perpendicular plane along the propagation axis, the vortex appears as a dark region in the center surrounded by a bright concentric ring of light. We give detailed instructions for generating optical vortices and optical vortex structures by computer-generated holograms and describe various methods for manipulating the resulting structures. © 2008 American Association of Physics Teachers. ͓DOI: 10.1119/1.2955792͔ I. INTRODUCTION optical tweezers that can trap neutral particulates,2 which re- ceive the angular momentum associated with the rotation of The phase of a light beam can be twisted like a corkscrew the phase.3 In nonlinear optics, waveguiding can be achieved around its axis of propagation. If the light wave is repre- inside the central hole.4,5 In astronomy the singularity can be ⌽ sented by complex numbers of the form Aei , where A is the used to block the light from a bright star to increase the amplitude of the field and ⌽ is the phase of the wave front, contrast of astronomical observations using optical vortex the twisting is described by a helical phase distribution ⌽ coronagraphs,6 which are useful for the search of extrasolar =m␪ proportional to the azimuthal angle of a cylindrical co- planets.
    [Show full text]
  • UFS Lecture 13: Passive Modelocking
    UFS Lecture 13: Passive Modelocking 6 Passive Mode Locking 6.2 Fast Saturable Absorber Mode Locking (cont.) (6.3 Soliton Mode Locking) 6.4 Dispersion Managed Soliton Formation 7 Mode-Locking using Artificial Fast Sat. Absorbers 7.1 Kerr-Lens Mode-Locking 7.1.1 Review of Paraxial Optics and Laser Resonator Design 7.1.2 Two-Mirror Resonators 7.1.3 Four-Mirror Resonators 7.1.4 The Kerr Lensing Effects (7.2 Additive Pulse Mode-Locking) 1 6.2.2 Fast SA mode locking with GDD and SPM Steady-state solution is chirped sech-shaped pulse with 4 free parameters: Pulse amplitude: A0 or Energy: W 2 = 2 A0 t Pulse width: t Chirp parameter : b Carrier-Envelope phase shift : y 2 Pulse width Chirp parameter Net gain after and Before pulse CE-phase shift Fig. 6.6: Modelocking 3 6.4 Dispersion Managed Soliton Formation in Fiber Lasers ~100 fold energy Fig. 6.12: Stretched pulse or dispersion managed soliton mode locking 4 Fig. 6.13: (a) Kerr-lens mode-locked Ti:sapphire laser. (b) Correspondence with dispersion-managed fiber transmission. 5 Today’s BroadBand, Prismless Ti:sapphire Lasers 1mm BaF2 Laser crystal: f = 10o OC 2mm Ti:Al2O3 DCM 2 PUMP DCM 2 DCM 1 DCM 1 DCM 2 DCM 1 BaF2 - wedges DCM 6 Fig. 6.14: Dispersion managed soliton including saturable absorption and gain filtering 7 Fig. 6.15: Steady state profile if only dispersion and GDD is involved: Dispersion Managed Soliton 8 Fig. 6.16: Pulse shortening due to dispersion managed soliton formation 9 7.
    [Show full text]
  • Multi-Vortex Laser Enabling Spatial and Temporal Encoding Zhen Qiao1†, Zhenyu Wan2†, Guoqiang Xie1*, Jian Wang2*, Liejia Qian1 and Dianyuan Fan1,3
    Qiao et al. PhotoniX (2020) 1:13 https://doi.org/10.1186/s43074-020-00013-x PhotoniX RESEARCH Open Access Multi-vortex laser enabling spatial and temporal encoding Zhen Qiao1†, Zhenyu Wan2†, Guoqiang Xie1*, Jian Wang2*, Liejia Qian1 and Dianyuan Fan1,3 * Correspondence: [email protected]. cn; [email protected] Abstract †Zhen Qiao and Zhenyu Wan contributed equally to this work. Optical vortex is a promising candidate for capacity scaling in next-generation optical 1School of Physics and Astronomy, communications. The generation of multi-vortex beams is of great importance for Key Laboratory for Laser Plasmas vortex-based optical communications. Traditional approaches for generating multi- (Ministry of Education), Collaborative Innovation center of vortex beams are passive, unscalable and cumbersome. Here, we propose and IFSA (CICIFSA), Shanghai Jiao Tong demonstrate a multi-vortex laser, an active approach for creating multi-vortex beams University, Shanghai 200240, China directly at the source. By printing a specially-designed concentric-rings pattern on 2Wuhan National Laboratory for Optoelectronics and School of the cavity mirror, multi-vortex beams are generated directly from the laser. Spatially, Optical and Electronic Information, the generated multi-vortex beams are decomposable and coaxial. Temporally, the Huazhong University of Science and multi-vortex beams can be simultaneously self-mode-locked, and each vortex Technology, Wuhan 430074, China Full list of author information is component carries pulses with GHz-level repetition rate. Utilizing these distinct available at the end of the article spatial-temporal characteristics, we demonstrate that the multi-vortex laser can be spatially and temporally encoded for data transmission, showing the potential of the developed multi-vortex laser in optical communications.
    [Show full text]
  • Optical Micromachines for Biological Studies
    micromachines Review Optical Micromachines for Biological Studies Philippa-Kate Andrew 1 , Martin A. K. Williams 2,3 and Ebubekir Avci 1,3,* 1 Department of Mechanical and Electrical Engineering, Massey University, Palmerston North 4410, New Zealand; [email protected] 2 School of Fundamental Sciences, Massey University, Palmerston North 4410, New Zealand; [email protected] 3 MacDiarmid Institute for Advanced Materials and Nanotechnology, Wellington 6140, New Zealand * Correspondence: [email protected] Received: 21 January 2020; Accepted: 9 February 2020; Published: 13 February 2020 Abstract: Optical tweezers have been used for biological studies since shortly after their inception. However, over the years research has suggested that the intense laser light used to create optical traps may damage the specimens being studied. This review aims to provide a brief overview of optical tweezers and the possible mechanisms for damage, and more importantly examines the role of optical micromachines as tools for biological studies. This review covers the achievements to date in the field of optical micromachines: improvements in the ability to produce micromachines, including multi-body microrobots; and design considerations for both optical microrobots and the optical trapping set-up used for controlling them are all discussed. The review focuses especially on the role of micromachines in biological research, and explores some of the potential that the technology has in this area. Keywords: optical tweezers; multi-component micromanipulators; radiation damage; life sciences; optical microrobots 1. Introduction Improvements in tools for the visualisation of objects at the micro- and nano- scale have given researchers the ability to investigate materials and processes previously out of reach.
    [Show full text]