'Mothcatcher' (Araujia Sericifera Brot.; Asclepiadoideae)

Total Page:16

File Type:pdf, Size:1020Kb

'Mothcatcher' (Araujia Sericifera Brot.; Asclepiadoideae) AoB PLANTS http://aobplants.oxfordjournals.org/ Open access – Research article The invasive ‘mothcatcher’ (Araujia sericifera Brot.; Asclepiadoideae) co-opts native honeybees as its primary pollinator in South Africa Downloaded from https://academic.oup.com/aobpla/article/doi/10.1093/aobpla/plq021/203705 by guest on 19 October 2020 Gareth Coombs* and Craig I. Peter Department of Botany, Rhodes University, PO Box 94, Grahamstown 6140, South Africa Received: 29 July 2010; Returned for revision: 5 September 2010; Accepted: 30 November 2010; Published: 9 December 2010 Citation details: Coombs G, Peter CI. 2010. The invasive ‘mothcatcher’ (Araujia sericifera Brot.; Asclepiadoideae) co-opts native honeybees as its primary pollinator in South Africa. AoB PLANTS 2010: plq021, doi:10.1093/aobpla/plq021 Abstract Background Successful invasive plants such as Araujia sericifera usually either are capable of automatic and aims self-pollination or maintain pollinator services by having generalized pollination systems to make use of local pollinators in the invaded range. Alternatively, plants must co-opt new pol- linators with similar morphology to native pollinators or reproduce asexually. We aimed to document the pollination biology of A. sericifera in South Africa. Given the success of this species as an invader, we predicted that sexual reproduction occurs either through self-polli- nation or because A. sericifera has successfully co-opted native insect pollinators. Methodology We examined the pollination biology of the South American A. sericifera in South Africa. We documented the effective pollinators including a comparison of the efficacy of nocturnal versus diurnal pollinators as well as the breeding system and long-term natural levels of the pollination success of this species. Principal results We found that native honeybees (Apis mellifera) were the main pollinators of A. sericifera in South Africa. Visiting moths are unimportant pollinators despite being attracted by the pale colour and nocturnal scent of the flowers. Plants from the Grahamstown population were incapable of autonomous self-pollination but pollinator-mediated self-pollination does occur. However, the highest fruit initiation resulted from out-crossed pollination treatments. The high pollen transfer efficiency of this species was comparable to other hymenopteran- pollinated exotic and native milkweeds, suggesting that A. sericifera maintains pollinator ser- vices at levels experienced by indigenous asclepiad species. Conclusions Araujia sericifera reproduces successfully in South Africa due to a combined ability of this species to attract and exploit native honeybees as its pollinators and of individual plants to set fruit from pollinator-mediated self-pollination. Introduction pollination failure if they cannot shift to new pollinators Invasive species introduced into new environments in (Parker 1997; Larson et al. 2002; Parker and Haubensak small numbers could experience pollen limitation or 2002). However, pollination failure (lack of seed set due * Corresponding author’s e-mail address: [email protected] AoB PLANTS Vol. 2010, plq021, doi:10.1093/aobpla/plq021, available online at www.aobplants.oxfordjournals.org & The Authors 2010. Published by Oxford University Press. This is an Open Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/by-nc/2.5/uk/) which permits unrestricted non- commercial use, distribution, and reproduction in any medium, provided the original work is properly cited. AoB PLANTS Vol. 2010, plq021, doi:10.1093/aobpla/plq021 & The Authors 2010 1 Coombs and Peter — Invasive milkweed co-opts native honeybee pollinators to pollinator absence) rarely occurs in invasive species rise to common names of ‘mothcatcher’ or ‘cruelplant’ and is more likely to prevent species with highly special- (Hicken 1928; Forster and Bruyns 1992). Smaller ized pollination systems and intricate flower mor- insects may also be trapped in the corpusculum and phologies (e.g. figs and orchids) from becoming are incapable of escaping as these insects are too invasive (Richardson et al. 2000), although exceptions small to remove pollinaria. Araujia sericifera is polli- occur (e.g. Ficus spp.: Nadel et al. 1992; Gardner and nated by honeybees in Australia (Coleman 1935) and Early 1996; orchids: Liu and Pemberton 2010). Many bumble bees (Bombus spp.) and Scoliid wasps (Scolia invasive species typically either have generalized pollina- spp.—Scoliidae) in Europe (Romeo 1933). Several Downloaded from https://academic.oup.com/aobpla/article/doi/10.1093/aobpla/plq021/203705 by guest on 19 October 2020 tion systems and flowers with open accessible rewards notes and papers have enumerated insects that visit (Richardson et al. 2000; Bjerknes et al. 2007) or over- the flowers of A. sericifera in other countries (see come pollinator limitation through autonomous or Romeo 1933 and references therein; Hicken 1928; pollinator-mediated self-pollination (Baker 1974; van Coleman 1935), although records from the native Kleunen et al. 2008). range are limited to a single observation (Morong The mechanism of pollination in milkweeds (Asclepia- 1889). doideae-Apocynaceae) is mechanically complex and Given the success of this species as an invader in requires the accurate re-insertion of pollinia (aggregated South Africa and the rarity of autonomous self- compact pollen masses) that are removed as pairs and pollination in the Asclepiadoideae, we hypothesized deposited individually into a snugly fitting stigmatic that A. sericifera successfully utilizes native pollinators groove (Wyatt and Broyles 1994; Ollerton et al. 2003; to maintain pollination success. We therefore set out Fig. 1C). Two pollinia are suspended off a clam-like mech- to (i) determine the reliance of A. sericifera on anical clip (the corpusculum) that attaches to the pollina- pollinators by documenting its breeding system, (ii) tor, and constitute a single structure, the pollinarium, that determine the functional pollinators of A. sericifera in is removed by pollinators. Pollinia are deposited when the South Africa, (iii) quantify the consistency of pollination insect that is already bearing a pollinarium drags a polli- success in this species for several consecutive nium through one of the five specialized stigmatic flowering seasons, (iv) determine the relative contri- grooves where it may become lodged, breaking off to bution of diurnal and nocturnal pollinators to pollina- effect pollination (Wyatt 1976; Wyatt and Broyles 1994). tion success and (v) compare whether the levels of This relatively specialized floral morphology translates pollination success in A. sericifera are similar to those into specialized interactions with pollinators in 70 % of of a native milkweed with similar growth form and examined asclepiads that have less than five species of pollination biology. pollinators, while 38 % have only a single pollinator (Ollerton and Liede 1997). Nevertheless, several milk- weeds, including the well-known North American Materials and methods species in the genus Asclepias, have highly generalized pollination systems (Ollerton and Liede 1997). Despite Study species such generalizations, many of these are functionally Araujia sericifera (Apocynaceae-Asclepiadoideae) is specialized (sensu Fenster et al. 2004) to a group or indigenous to tropical (including Peru, Argentina, Para- family of pollinators with the right morphology and be- guay and Brazil) and temperate (Uruguay) regions of haviour (Wolff et al. 2008). South America, and has become invasive in several Ten of the 94 species of milkweed occurring in Austra- countries in Europe (France, Greece, Italy, Portugal lia are naturalized invasive species (Forster 1994). In and Spain), Australia, New Zealand, North America, North America at least two species of Vincetoxicum are Israel and South Africa (Forster and Bruyns 1992; invasive (Daehler 1998; Cappuccino 2004), while there EMPPO 2008). In South Africa, it commonly grows in are two naturalized Asclepiadoideae in South Africa abandoned fields and on fences in urban environ- (Victor et al. 2000). Invasive milkweeds are likely to ments (Fig. 1A; Henderson and Anderson 1966). depend largely on co-opting new pollinators as few Flowers are white, streaked with light purple, and species can set seed through autonomous self- scented day and night. Flowers are borne on peduncu- pollination (Wyatt and Broyles 1994). late axillary inflorescences (sensu Henderson and Araujia sericifera (Brot.) is an invasive tropical vine Anderson 1966). In South Africa, flowering begins in that is famous for catching both diurnal and nocturnal late November and ends in May, with the mid-season Lepidopteran flower visitors. This results from the long peak occurring in December (pers. obs.). proboscides of these insects becoming wedged Cynanchum ellipticum (Apocynaceae-Asclepiadoideae) between the rigid anther wings of its flowers, giving is a common milkweed, endemic to southern Africa 2 AoB PLANTS Vol. 2010, plq021, doi:10.1093/aobpla/plq021 & The Authors 2010 Coombs and Peter — Invasive milkweed co-opts native honeybee pollinators (Liede 1993). Both species share broad similarities, total of 5 days in 2007 and 1 day in 2008. Bees were nor- including growth form and pollination biology. Cynan- mally caught between 0800 and 1030 h, with most chum ellipticum also grows on fences in urban environ- sampling periods not exceeding 1 h, for a total of 8h ments, forming
Recommended publications
  • Field Release of the Leaf-Feeding Moth, Hypena Opulenta (Christoph)
    United States Department of Field release of the leaf-feeding Agriculture moth, Hypena opulenta Marketing and Regulatory (Christoph) (Lepidoptera: Programs Noctuidae), for classical Animal and Plant Health Inspection biological control of swallow- Service worts, Vincetoxicum nigrum (L.) Moench and V. rossicum (Kleopow) Barbarich (Gentianales: Apocynaceae), in the contiguous United States. Final Environmental Assessment, August 2017 Field release of the leaf-feeding moth, Hypena opulenta (Christoph) (Lepidoptera: Noctuidae), for classical biological control of swallow-worts, Vincetoxicum nigrum (L.) Moench and V. rossicum (Kleopow) Barbarich (Gentianales: Apocynaceae), in the contiguous United States. Final Environmental Assessment, August 2017 Agency Contact: Colin D. Stewart, Assistant Director Pests, Pathogens, and Biocontrol Permits Plant Protection and Quarantine Animal and Plant Health Inspection Service U.S. Department of Agriculture 4700 River Rd., Unit 133 Riverdale, MD 20737 Non-Discrimination Policy The U.S. Department of Agriculture (USDA) prohibits discrimination against its customers, employees, and applicants for employment on the bases of race, color, national origin, age, disability, sex, gender identity, religion, reprisal, and where applicable, political beliefs, marital status, familial or parental status, sexual orientation, or all or part of an individual's income is derived from any public assistance program, or protected genetic information in employment or in any program or activity conducted or funded by the Department. (Not all prohibited bases will apply to all programs and/or employment activities.) To File an Employment Complaint If you wish to file an employment complaint, you must contact your agency's EEO Counselor (PDF) within 45 days of the date of the alleged discriminatory act, event, or in the case of a personnel action.
    [Show full text]
  • Brooklyn, Cloudland, Melsonby (Gaarraay)
    BUSH BLITZ SPECIES DISCOVERY PROGRAM Brooklyn, Cloudland, Melsonby (Gaarraay) Nature Refuges Eubenangee Swamp, Hann Tableland, Melsonby (Gaarraay) National Parks Upper Bridge Creek Queensland 29 April–27 May · 26–27 July 2010 Australian Biological Resources Study What is Contents Bush Blitz? Bush Blitz is a four-year, What is Bush Blitz? 2 multi-million dollar Abbreviations 2 partnership between the Summary 3 Australian Government, Introduction 4 BHP Billiton and Earthwatch Reserves Overview 6 Australia to document plants Methods 11 and animals in selected properties across Australia’s Results 14 National Reserve System. Discussion 17 Appendix A: Species Lists 31 Fauna 32 This innovative partnership Vertebrates 32 harnesses the expertise of many Invertebrates 50 of Australia’s top scientists from Flora 62 museums, herbaria, universities, Appendix B: Threatened Species 107 and other institutions and Fauna 108 organisations across the country. Flora 111 Appendix C: Exotic and Pest Species 113 Fauna 114 Flora 115 Glossary 119 Abbreviations ANHAT Australian Natural Heritage Assessment Tool EPBC Act Environment Protection and Biodiversity Conservation Act 1999 (Commonwealth) NCA Nature Conservation Act 1992 (Queensland) NRS National Reserve System 2 Bush Blitz survey report Summary A Bush Blitz survey was conducted in the Cape Exotic vertebrate pests were not a focus York Peninsula, Einasleigh Uplands and Wet of this Bush Blitz, however the Cane Toad Tropics bioregions of Queensland during April, (Rhinella marina) was recorded in both Cloudland May and July 2010. Results include 1,186 species Nature Refuge and Hann Tableland National added to those known across the reserves. Of Park. Only one exotic invertebrate species was these, 36 are putative species new to science, recorded, the Spiked Awlsnail (Allopeas clavulinus) including 24 species of true bug, 9 species of in Cloudland Nature Refuge.
    [Show full text]
  • Staff Assessment Report APP203667: an Application to Import
    EPA advice for APP203667 Staff Assessment Report APP203667: An application to import and release the moth plant beetle (Freudeita confer cupripennis) as a biological control agent for the weed moth plant (Araujia hortorum). Purpose An application to import and release the moth plant beetle, Freudeita cf. cupripennis, as a biological control agent for the weed moth plant, Araujia hortorum Application number APP203667 Application type Notified, Full Release Applicant Waikato Regional Council Date formally received 17 January 2019 1 EPA advice for APP203667 Executive Summary and Recommendation In January 2019, Waikato Regional Council submitted an application to the Environmental Protection Authority (EPA) seeking pre-approval to release the moth plant beetle, Freudeita cf. cupripennis, as a biological control agent (BCA) for the weed moth plant, Araujia hortorum. The application was publicly notified. The EPA received 53 submissions, 23 submissions supported the application, four submissions neither supported nor opposed and 26 submissions opposed the application. The EPA assessed the risks, costs and benefits of the release of F. cf. cupripennis in the context of the environment, market economy, people and communities, public health and on the relationship of Māori and their culture and traditions with their ancestral lands, water, sites, wāhi tapu, valued flora and fauna, and other taonga. The EPA assessed that there are no direct or tangible risks to public health from the release of the moth plant beetle and this was not considered in the assessment. Regarding the environment, we assessed the benefits from the release of the moth plant beetle and found that the BCA is unlikely to reduce the use of chemicals since only a small quantity of herbicide gel is used and that broad spectrum-herbicides would continue to be used to treat other weeds.
    [Show full text]
  • Targeted Vegetation Survey of Floodplains and Lower Slopes on the Far North Coast © Department of Environment and Climate Change (NSW), 2008
    Comprehensive Coastal Assessment September 2008 Targeted Vegetation Survey of Floodplains and Lower Slopes on the Far North Coast © Department of Environment and Climate Change (NSW), 2008 This document may not be re-produced without prior written permission from the Department of Environment and Climate Change (NSW). Department of Environment and Climate Change (NSW) 59-61 Goulburn Street (PO Box A290) Sydney South NSW 1232 Phone: (02) 9995 5000 (switchboard) Phone: 131 555 (information & publications requests) TTY: (02) 9211 4723 Fax: (02) 9995 5999 Email: [email protected] Website: www.environment.nsw.gov.au Requests for information regarding this document are best directed to: Paul Sheringham Locked Bag 914 North East Branch Environmental Protection and Regulation Division Department of Environment and Climate Change Coffs Harbour NSW 2450 Phone: (02) 6659 8253 The documented may be cited as: Sheringham, P.R., Dr. Benwell, A., Gilmour, P., Graham, M.S., Westaway, J., Weber, L., Bailey, D., & Price, R. (2008). Targeted Vegetation Survey of Floodplains and Lower Slopes on the Far North Coast. A report prepared by the Department of Environment and Climate Change for the Comprehensive Coastal Assessment. Department of Environment and Climate Change (NSW), Coffs Harbour, NSW. Editing: P.J. Higgins. Design and layout: Dee Rogers ISBN 978 1 74122 857 1 DECC 2008/316 Printed on recycled paper CCA08 Far North Coast Targeted Vegetation Survey TARGETED VEGETATION SURVEY OF FLOODPLAINS AND LOWER SLOPES ON THE FAR NORTH COAST P.R. Sheringham, Dr. A. Benwell, P. Gilmour, M.S. Graham, J. Westaway, L. Weber, D. Bailey, & R. Price CCA08 SEPTEMBER 2008 CCA08 Far North Coast Targeted Vegetation Survey Credits Paul Sheringham: Botanist and project manager, and responsible for the survey and stratification of sites, data entry, numerical analysis and writing of this report.
    [Show full text]
  • Transactions of the Entomological Society of London
    — ( 309 ) XIX. Entomological Observations and Captures during the visit of the British Association to South Africa in 1905. By F. A. Dixey, M.A., M.D., F.E.S., and G. B. LoNGSTAFF, M.A., M.D., F.R.GP., F.E.S. [Read June 5th, 1907.] Plate XXV. Cape Town. Lat. 34° S. Sea level. August 8tli, 1905. Surely no one who was on deck when the " Kildonan Castle " anchored in Table Bay will forget the impressive scene. Behind the town-lights which gleamed along the front the grand mass of Table Mountain, clear cut against a streak of dawn, lay under the Southern Cross and Magellanic Clouds, while in the opposite quarter Jupiter and Venus shone brilliant beyond our experience, the latter reflected in the sea, and Orion standing on his head demonstrated that we were indeed in a Southern land. These astronomical facts had a bearing on our entomological operations, since we had to grow accus- tomed to the fact that the most promising hunting-grounds were slopes with a north-cast aspect. Faithful to our own science rather than to the associa- tion of which we were members, we had decided to go on to Durban by the same steamer, and put in as many days collecting as possible on the Natal Coast. This left us but a day and a half at Cape Town, in which to get a glimpse of its fauna and flora, and we were truly fortunate in that the Southern spring smiled upon us and provided, if indeed few insects, at any rate what Mr.
    [Show full text]
  • Gardenergardener®
    Theh American A n GARDENERGARDENER® The Magazine of the AAmerican Horticultural Societyy January / February 2016 New Plants for 2016 Broadleaved Evergreens for Small Gardens The Dwarf Tomato Project Grow Your Own Gourmet Mushrooms contents Volume 95, Number 1 . January / February 2016 FEATURES DEPARTMENTS 5 NOTES FROM RIVER FARM 6 MEMBERS’ FORUM 8 NEWS FROM THE AHS 2016 Seed Exchange catalog now available, upcoming travel destinations, registration open for America in Bloom beautifi cation contest, 70th annual Colonial Williamsburg Garden Symposium in April. 11 AHS MEMBERS MAKING A DIFFERENCE Dale Sievert. 40 HOMEGROWN HARVEST Love those leeks! page 400 42 GARDEN SOLUTIONS Understanding mycorrhizal fungi. BOOK REVIEWS page 18 44 The Seed Garden and Rescuing Eden. Special focus: Wild 12 NEW PLANTS FOR 2016 BY CHARLOTTE GERMANE gardening. From annuals and perennials to shrubs, vines, and vegetables, see which of this year’s introductions are worth trying in your garden. 46 GARDENER’S NOTEBOOK Link discovered between soil fungi and monarch 18 THE DWARF TOMATO PROJECT BY CRAIG LEHOULLIER butterfl y health, stinky A worldwide collaborative breeds diminutive plants that produce seeds trick dung beetles into dispersal role, regular-size, fl avorful tomatoes. Mt. Cuba tickseed trial results, researchers unravel how plants can survive extreme drought, grant for nascent public garden in 24 BEST SMALL BROADLEAVED EVERGREENS Delaware, Lady Bird Johnson Wildfl ower BY ANDREW BUNTING Center selects new president and CEO. These small to mid-size selections make a big impact in modest landscapes. 50 GREEN GARAGE Seed-starting products. 30 WEESIE SMITH BY ALLEN BUSH 52 TRAVELER’S GUIDE TO GARDENS Alabama gardener Weesie Smith championed pagepage 3030 Quarryhill Botanical Garden, California.
    [Show full text]
  • Ecology and Pest Status of Moth Plant, Araujia Hortorum Fournier
    Ecology and pest status of moth plant, Araujia hortorum Fournier Richard Hill and Hugh Gourlay Richard Hill & Associates, Private Bag 4704, Christchurch 8140, [email protected] and Landcare Research, PO Box 40, Lincoln 7640 This report reviews our knowledge of the biology and ecology of moth plant (Araujia hortorum Fournier) both in its home range and its exotic range. It summarises the weed status of moth plant and the current approach to weed management in New Zealand, and how the biological control programme fits with those strategies. Biology and ecology of moth plant Taxonomy Araujia hortorum Fourn. belongs to the tribe Asclepiadeae of the Family Apocynaceae. This family belongs to the Order Gentianales. Amongst others, the name A. sericifera has also been used for moth plant in the past in New Zealand (Winks and Fowler 2000), but A. hortorum is now the preferred scientific name (Waipara et al. 2006, Champion et al. 2010). Native range Araujia hortorum is native to SE Brazil, Argentina, Paraguay and Uruguay (Flora Europaea). Exotic range Elsewhere in the world it is a garden escape, and has become naturalised in Europe, Turkey (Altinozlu and Donmez 2003), Africa (Henderson 2001), and North America, and elsewhere in South America (Winks and Fowler 2000). In Australia it is present in all temperate states. It is common in coastal New South Wales and SE Queensland and is regarded as a minor weed there (DAF 2014sed 2011, PIER accessed 2011). New Zealand distribution Araujia hortorum was first recorded in New Zealand in 1888 (Webb et al. 1988), and was originally introduced as an ornamental.
    [Show full text]
  • Invasive Plants Effcts in Rivers and Riparian Zones 527
    Limnetica, 36 (2): 525-541 (2017). DOI: 10.23818/limn.36.19 Limnetica, 29 (2): x-xx (2011) c Asociación Ibérica de Limnología, Madrid. Spain. ISSN: 0213-8409 Effects of non-native riparian plants in riparian and fluvial ecosystems: a review for the Iberian Peninsula Pilar Castro-Díez∗ and Álvaro Alonso Departamento de Ciencias de la Vida, Facultad de Ciencias, Universidad de Alcalá, Ctra. Madrid-Barcelona s/n, E28805 Alcalá de Henares, Madrid, España. ∗ Corresponding author: [email protected] 2 Received: 31/10/16 Accepted: 10/03/17 ABSTRACT Effects of non-native riparian plants in riparian and fluvial ecosystems: a review for the Iberian Peninsula Riparian zones are among the natural habitats more prone to be invaded by exotic plants. In this study we review the causes and consequences of these invasions on fluvial and riparian ecosystems, as well as the effects described for the Iberian Peninsula so far. Riparian zones receive a high propagule pressure of exotic plants, their abiotic conditions are benign for plant life, and their biotic resistance from native vegetation is released by natural (floods) and anthropic (hydrological changes) disturbances. The convergence of these factors explains the high invasion rate of riparian zones. An eventual replacement of native by non- native vegetation might alter the fire regime, the depth of the water table, nutrient cycles and organic matter processing, soil properties, communities of detritivore invertebrates and vertebrates dwelling in rivers and riparian zones. In the Iberian Peninsula we found that the effects of non-native riparian plants were more often negative (e.g. alteration of the structure and activity of microbial communities) than neutral (e.g.
    [Show full text]
  • Compilation of the Literature Reports for the Screening of Vascular Plants, Algae, Fungi and Non- Arthropod Invertebrates for the Presence of Ecdysteroids
    COMPILATION OF THE LITERATURE REPORTS FOR THE SCREENING OF VASCULAR PLANTS, ALGAE, FUNGI AND NON- ARTHROPOD INVERTEBRATES FOR THE PRESENCE OF ECDYSTEROIDS Compiled by Laurie Dinan and René Lafont Biophytis, Sorbonne Université, Campus P&M Curie, 4 Place Jussieu, F-75252 Paris Cedex 05, France. Version 6: 24/10/2019 Important notice: This database has been designed as a tool to help the scientific community in research on ecdysteroids. The authors wish it to be an evolving system and would encourage other researchers to submit new data, additional publications, proposals for modifications or comments to the authors for inclusion. All new material will be referenced to its contributor. Reproduction of the material in this database in its entirety is not permitted. Reproduction of parts of the database is only permitted under the following conditions: • reproduction is for personal use, for teaching and research, but not for distribution to others • reproduction is not for commercial use • the origin of the material is indicated in the reproduction • we should be notified in advance to allow us to document that the reproduction is being made Where data are reproduced in published texts, they should be acknowledged by the reference: Lafont R., Harmatha J., Marion-Poll F., Dinan L., Wilson I.D.: The Ecdysone Handbook, 3rd edition, on-line, http://ecdybase.org Illustrations may not under any circumstances be used in published texts, commercial or otherwise, without previous written permission of the author(s). Please notify Laurie Dinan ([email protected]) of any errors or additional literature sources. © 2007: Laurence Dinan and René Lafont CONTENTS 1.
    [Show full text]
  • Universidad Politécnica De Valencia
    UNIVERSIDAD POLITÉCNICA DE VALENCIA Escuela Técnica Superior Ingenieros Agrónomos Departamento de Ecosistemas Agroforestales MÁSTER EN PRODUCCIÓN VEGETAL Y ECOSISTEMAS AGROFORESTALES Control de la germinación in vitro de Araujia sericifera con aceites esenciales de Laurus nobilis, Myrtus communis, Citrus sinensis y Citrus limon. TESIS DE MÁSTER. Alumno: Dña. Melania Calle Fernández. Director Académico: D. Herminio Boira Tortajada. Codirectora: Dña. Mª Amparo Blázquez Ferrer. Valencia, 1 diciembtre 2010 Control de la germinación in vitro de Araujia sericifera con aceites esenciales de Laurus nobilis, Myrtus communis, Citrus sinensis y Citrus limón. Máster en Producción Vegetal y Ecosistemas Agroforestales. ÍNDICE 1. Introducción .......................................................................................................... 5 2. Antecedentes ......................................................................................................... 6 2.1. La alelopatía como factor ecológico …………………………………….. 7 2.1.1. Mecanismos de acción de los agentes alelopáticos ……………… 8 2.1.2. Modos de acción de los inhibidores …………………………...…. 9 2.1.3. Modos de liberación de los agentes alelopáticos ……………...…. 9 2.1.4. Especies con potencial alelopático …………………………….... 10 2.2. Principales compuestos alelopáticos. Terpenos ………………….....… 11 2.2.1. Clases de compuestos identificados como agentes alelopáticos . 12 2.3. La flora arvense y su evolución ………………………………………... 14 2.4. Neofitos arvenses: Araujia sericifera Brot. ……………………………. 15 2.4.1. Origen
    [Show full text]
  • Cynanchum Brevipedunculatum, a New Species of Apocynaceae from Yunnan, China
    Taiwania 64(3): 217-220, 2019 DOI: 10.6165/tai.2019.64.217 Cynanchum brevipedunculatum, a new species of Apocynaceae from Yunnan, China Jian-Yong SHEN*, Xing-Da MA, Wen-Guang WANG, Ji-Pu SHI Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Xishuangbanna 666303, Yunnan, China. *Corresponding author’s email: [email protected]; Phone number: +86 15393816057; Fax: +86 0691-8715464 (Manuscript received 23 January 2019; accepted 21 May 2019; online published 14 June 2019) ABSTRACT: Cynanchum brevipedunculatum (Apocynaceae), a new species from Menghai, Yunnan, China, is described and illustrated. It is compared with two morphologically similar species, Cynanchum decipiens and C. longipedunculatum. Cynanchum brevipedunculatum differs from the preceeding species in having much bigger leaves, adaxially sparsely strigillose, abaxially glabrous or sparsely strigillose on veins, shorter peduncle and the very distinctive bowl-shaped corona. A comprehensive morphological description of C. brevipedunculatum is provided, together with photographs, and a conservation assessment for this rare vine species. KEY WORDS: Apocynaceae, Asclepiadeae, China, Cynanchum brevipedunculatum, Xishuangbanna, Yunnan. INTRODUCTION belong to Vincetoxicum. Khanum et al. (2016) advocated the inclusion of several further genera (including Apocynaceae subfamily Asclepiadoideae is one of Adelostemma, Graphistemma, Holostemma, Metaplexis, the most derived plant groups, comprising about 164 Raphistemma and Sichuania within China) within genera with around 3000 species (Endress et al., 2014). Cynanchum which would bring the number of species in The species of the subfamily are characterized by the China to 44. Phylogenetic study (Liede et al., 2012; presence of a pollinarium, enabling the plants to adopt a Liede & Meve 2018) revealed that Biondia, Blyttia, more efficient and specific pollination mechanism Diplostigma, Goydera, Pleurostelma, Rhyncharrhena mediated by animals (Endress & Bruyns, 2000).
    [Show full text]
  • Three New Alien Taxa for Europe and a Chorological Update on the Alien Vascular Flora of Calabria (Southern Italy)
    plants Article Three New Alien Taxa for Europe and a Chorological Update on the Alien Vascular Flora of Calabria (Southern Italy) 1, 1, , 2 Valentina Lucia Astrid Laface y , Carmelo Maria Musarella * y , Ana Cano Ortiz , Ricardo Quinto Canas 3,4 , Serafino Cannavò 1 and Giovanni Spampinato 1 1 Department of AGRARIA, Mediterranean University of Reggio Calabria, Loc. Feo di Vito snc, 89122 Reggio Calabria, Italy; [email protected] (V.L.A.L.); serafi[email protected] (S.C.); [email protected] (G.S.) 2 Department of Animal and Plant Biology and Ecology, Section of Botany, University of Jaén, 23071 Jaén, Spain; [email protected] 3 Faculty of Sciences and Technology, University of Algarve, Campus de Gambelas, 8005-139 Faro, Portugal; [email protected] 4 Centre of Marine Sciences (CCMAR), University of Algarve, Campus de Gambelas, 8005-139 Faro, Portugal * Correspondence: [email protected] These authors contributed equally to the work. y Received: 27 June 2020; Accepted: 8 September 2020; Published: 11 September 2020 Abstract: Knowledge on alien species is needed nowadays to protect natural habitats and prevent ecological damage. The presence of new alien plant species in Italy is increasing every day. Calabria, its southernmost region, is not yet well known with regard to this aspect. Thanks to fieldwork, sampling, and observing many exotic plants in Calabria, here, we report new data on 34 alien taxa. In particular, we found three new taxa for Europe (Cascabela thevetia, Ipomoea setosa subsp. pavonii, and Tecoma stans), three new for Italy (Brugmansia aurea, Narcissus ‘Cotinga’, and Narcissus ‘Erlicheer’), one new one for the Italian Peninsula (Luffa aegyptiaca), and 21 new taxa for Calabria (Allium cepa, Asparagus setaceus, Bassia scoparia, Beta vulgaris subsp.
    [Show full text]