Cosmochemistry of the Rare Earth Elements: Meteorite Studies
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Meteorites, Asteroids, and Comets
Space Sci Rev (2018) 214:36 https://doi.org/10.1007/s11214-018-0474-9 Water Reservoirs in Small Planetary Bodies: Meteorites, Asteroids, and Comets Conel M.O’D. Alexander1 · Kevin D. McKeegan2 · Kathrin Altwegg3 Received: 10 January 2018 / Accepted: 11 January 2018 / Published online: 23 January 2018 © Springer Science+Business Media B.V., part of Springer Nature 2018 Abstract Asteroids and comets are the remnants of the swarm of planetesimals from which the planets ultimately formed, and they retain records of processes that operated prior to and during planet formation. They are also likely the sources of most of the water and other volatiles accreted by Earth. In this review, we discuss the nature and probable origins of asteroids and comets based on data from remote observations, in situ measurements by spacecraft, and laboratory analyses of meteorites derived from asteroids. The asteroidal par- ent bodies of meteorites formed ≤ 4 Ma after Solar System formation while there was still a gas disk present. It seems increasingly likely that the parent bodies of meteorites spectro- scopically linked with the E-, S-, M- and V-type asteroids formed sunward of Jupiter’s orbit, while those associated with C- and, possibly, D-type asteroids formed further out, beyond Jupiter but probably not beyond Saturn’s orbit. Comets formed further from the Sun than any of the meteorite parent bodies, and retain much higher abundances of interstellar mate- rial. CI and CM group meteorites are probably related to the most common C-type asteroids, and based on isotopic evidence they, rather than comets, are the most likely sources of the H and N accreted by the terrestrial planets. -
Formation Mechanisms of Ringwoodite: Clues from the Martian Meteorite
Zhang et al. Earth, Planets and Space (2021) 73:165 https://doi.org/10.1186/s40623-021-01494-1 FULL PAPER Open Access Formation mechanisms of ringwoodite: clues from the Martian meteorite Northwest Africa 8705 Ting Zhang1,2, Sen Hu1, Nian Wang1,2, Yangting Lin1* , Lixin Gu1,3, Xu Tang1,3, Xinyu Zou4 and Mingming Zhang1 Abstract Ringwoodite and wadsleyite are the high-pressure polymorphs of olivine, which are common in shocked meteorites. They are the major constituent minerals in the terrestrial mantle. NWA 8705, an olivine-phyric shergottite, was heavily shocked, producing shock-induced melt veins and pockets associated with four occurrences of ringwoodite: (1) the lamellae intergrown with the host olivine adjacent to a shock-induced melt pocket; (2) polycrystalline assemblages preserving the shapes and compositions of the pre-existing olivine within a shock-induced melt vein (60 μm in width); (3) the rod-like grains coexisting with wadsleyite and clinopyroxene within a shock-induced melt vein; (4) the microlite clusters embedded in silicate glass within a very thin shock-induced melt vein (20 μm in width). The frst two occurrences of ringwoodite likely formed via solid-state transformation from olivine, supported by their mor- phological features and homogeneous compositions (Mg# 64–62) similar to the host olivine (Mg# 66–64). The third occurrence of ringwoodite might fractionally crystallize from the shock-induced melt, based on its heterogeneous and more FeO-enriched compositions (Mg# 76–51) than those of the coexisting wadsleyite (Mg# 77–67) and the host olivine (Mg# 66–64) of this meteorite. The coexistence of ringwoodite, wadsleyite, and clinopyroxene suggests a post- shock pressure of 14–16 GPa and a temperature of 1650–1750 °C. -
March 21–25, 2016
FORTY-SEVENTH LUNAR AND PLANETARY SCIENCE CONFERENCE PROGRAM OF TECHNICAL SESSIONS MARCH 21–25, 2016 The Woodlands Waterway Marriott Hotel and Convention Center The Woodlands, Texas INSTITUTIONAL SUPPORT Universities Space Research Association Lunar and Planetary Institute National Aeronautics and Space Administration CONFERENCE CO-CHAIRS Stephen Mackwell, Lunar and Planetary Institute Eileen Stansbery, NASA Johnson Space Center PROGRAM COMMITTEE CHAIRS David Draper, NASA Johnson Space Center Walter Kiefer, Lunar and Planetary Institute PROGRAM COMMITTEE P. Doug Archer, NASA Johnson Space Center Nicolas LeCorvec, Lunar and Planetary Institute Katherine Bermingham, University of Maryland Yo Matsubara, Smithsonian Institute Janice Bishop, SETI and NASA Ames Research Center Francis McCubbin, NASA Johnson Space Center Jeremy Boyce, University of California, Los Angeles Andrew Needham, Carnegie Institution of Washington Lisa Danielson, NASA Johnson Space Center Lan-Anh Nguyen, NASA Johnson Space Center Deepak Dhingra, University of Idaho Paul Niles, NASA Johnson Space Center Stephen Elardo, Carnegie Institution of Washington Dorothy Oehler, NASA Johnson Space Center Marc Fries, NASA Johnson Space Center D. Alex Patthoff, Jet Propulsion Laboratory Cyrena Goodrich, Lunar and Planetary Institute Elizabeth Rampe, Aerodyne Industries, Jacobs JETS at John Gruener, NASA Johnson Space Center NASA Johnson Space Center Justin Hagerty, U.S. Geological Survey Carol Raymond, Jet Propulsion Laboratory Lindsay Hays, Jet Propulsion Laboratory Paul Schenk, -
I-Xe Analysis of Enstatite Meteorites and a Eucrite
Testing an integrated chronology: I-Xe analysis of enstatite meteorites and a eucrite Item Type Article; text Authors Busfield, A.; Turner, G.; Gilmour, J. D. Citation Busfield, A., Turner, G., & Gilmour, J. D. (2008). Testing an integrated chronology: IXe analysis of enstatite meteorites and a eucrite. Meteoritics & Planetary Science, 43(5), 883-897. DOI 10.1111/j.1945-5100.2008.tb01087.x Publisher The Meteoritical Society Journal Meteoritics & Planetary Science Rights Copyright © The Meteoritical Society Download date 26/09/2021 21:32:45 Item License http://rightsstatements.org/vocab/InC/1.0/ Version Final published version Link to Item http://hdl.handle.net/10150/656429 Meteoritics & Planetary Science 43, Nr 5, 883–897 (2008) AUTHOR’S PROOF Abstract available online at http://meteoritics.org Testing an integrated chronology: I-Xe analysis of enstatite meteorites and a eucrite A. BUSFIELD, G. TURNER, and J. D. GILMOUR* School of Earth, Atmospheric and Environmental Science, University of Manchester, Oxford Road, Manchester M13 9PL, UK *Corresponding author. E-mail: [email protected] (Supplementary tables and figures are available online at http://meteoritics.org/online supplements.htm) (Received 06 October 2006; revision accepted 21 November 2007) Abstract–We have determined initial 129I/127I ratios for mineral concentrates of four enstatite meteorites and a eucrite. In the case of the enstatite meteorites the inferred ages are associated with the pyroxene-rich separates giving pyroxene closure ages relative to the Shallowater standard of Indarch (EH4, 0.04 ± 0.67 Ma), Khairpur (EL6, −4.22 ± 0.67 Ma), Khor Temiki (aubrite, −0.06 Ma), and Itqiy (enstatite achondrite, −2.6 ± 2.6 Ma), negative ages indicate closure after Shallowater. -
Discovery of Amino Acids from Didwana-Ra Jod
DISCUSSION DISCOVERY OF AMINO ACIDS FROM DIDWANA-RAJOD METEORITE AND ITS IMPLICATIONS ON ORIGIN OF LIFE by Vinod C. Tewari et al. Jour. Geol. SQC.India, v.60,2002, pp. 107-1 10. geochemistry of meteorite amino acids is scanty at present \ for any meaningful interpretation of isotope data. Therefore, P-IL Sukumaran, Geological Survey of Xrrdia, Alandi the presence of three a amino acids reported by the auaars Road, Pune - 411 OQ6, Ernail: [email protected];.o.uk, cannot be taken as conclusive evidence for their biogenicity, comments: more so in the absence of stereochemical and stable isotope data. The greatest mystery in science is the origin of life and Another point that calls for attention is the serious the greatest discovery in science will be the discovery of problem of contamination faced while studying meteoritic life beyond earth, if at all extt-aterrestriaF life would ever be organic compounds. The authors cIaim that their samples discovered. ft is in this context that I read with interest the are free of contamination without giving any details. Many research communication by Vinod C. Tewari et al. on the studies published earlier in the literature on meteorite discovery of amino acids in the Didwana-Rajod meteorite. organics have subsequently been rejected based on the fact However, there is little description of the meteorite, as to that they are all terrestrial contaminants. when did it fall, its repository, etc., as these aspects are Attention of the authors is also drawn to two papers that very important while studying the amino acids in the appeared in March 2002 issue of Nature. -
CHAPTER 1 Introduction
Chemical analysis of organic molecules in carbonaceous meteorites Torrao Pinto Martins, Zita Carla Citation Torrao Pinto Martins, Z. C. (2007, January 24). Chemical analysis of organic molecules in carbonaceous meteorites. Retrieved from https://hdl.handle.net/1887/9450 Version: Corrected Publisher’s Version Licence agreement concerning inclusion of doctoral License: thesis in the Institutional Repository of the University of Leiden Downloaded from: https://hdl.handle.net/1887/9450 Note: To cite this publication please use the final published version (if applicable). ______________________________________________________ CHAPTER 1 ______________________________________________________ Introduction 1.1 Heavenly stones-from myth to science Ancient chronicles, from the Egyptian, Chinese, Greek, Roman and Sumerian civilizations documented the fall1 of meteorites, with Sumerian texts from around the end of the third millennium B. C. describing possibly one of the earliest words for meteoritic iron (Fig. 1.1 Left). Egyptian hieroglyphs meaning “heavenly iron” (Fig. 1.1 Right) found in pyramids together with the use of meteoritic iron in jewellery and artefacts show the importance of meteorites in early Egypt. Meteorites were worshiped by ancient Greeks and Romans, who struck coins to celebrate their fall, with the cult to worship meteorites prevailing for many centuries. For example, some American Indian tribes paid tribute to large iron meteorites, and even in modern days the Black Stone of the Ka´bah in Mecca is worshiped and regarded by Muslims as “an object from heaven”. The oldest preserved meteorite that was observed to fall (19th May 861) was found recently (October 1979) in a Shinto temple in Nogata, Japan. It weighted 472 g and it was stored in a wooden box. -
Radar-Enabled Recovery of the Sutter's Mill Meteorite, A
RESEARCH ARTICLES the area (2). One meteorite fell at Sutter’sMill (SM), the gold discovery site that initiated the California Gold Rush. Two months after the fall, Radar-Enabled Recovery of the Sutter’s SM find numbers were assigned to the 77 me- teorites listed in table S3 (3), with a total mass of 943 g. The biggest meteorite is 205 g. Mill Meteorite, a Carbonaceous This is a tiny fraction of the pre-atmospheric mass, based on the kinetic energy derived from Chondrite Regolith Breccia infrasound records. Eyewitnesses reported hearing aloudboomfollowedbyadeeprumble.Infra- Peter Jenniskens,1,2* Marc D. Fries,3 Qing-Zhu Yin,4 Michael Zolensky,5 Alexander N. Krot,6 sound signals (table S2A) at stations I57US and 2 2 7 8 8,9 Scott A. Sandford, Derek Sears, Robert Beauford, Denton S. Ebel, Jon M. Friedrich, I56US of the International Monitoring System 6 4 4 10 Kazuhide Nagashima, Josh Wimpenny, Akane Yamakawa, Kunihiko Nishiizumi, (4), located ~770 and ~1080 km from the source, 11 12 10 13 Yasunori Hamajima, Marc W. Caffee, Kees C. Welten, Matthias Laubenstein, are consistent with stratospherically ducted ar- 14,15 14 14,15 16 Andrew M. Davis, Steven B. Simon, Philipp R. Heck, Edward D. Young, rivals (5). The combined average periods of all 17 18 18 19 20 Issaku E. Kohl, Mark H. Thiemens, Morgan H. Nunn, Takashi Mikouchi, Kenji Hagiya, phase-aligned stacked waveforms at each station 21 22 22 22 23 Kazumasa Ohsumi, Thomas A. Cahill, Jonathan A. Lawton, David Barnes, Andrew Steele, of 7.6 s correspond to a mean source energy of 24 4 24 2 25 Pierre Rochette, Kenneth L. -
Elliott and Steele Revision
View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by St Andrews Research Repository The Isotope Geochemistry of Ni Tim Elliott [email protected] 5 Bristol Isotope Group, School of Earth Sciences University of Bristol Bristol, BS8 1RJ, UK Robert C. J. Steele 10 [email protected] Institute for Geochemistry and Petrology ETH Zürich Zürich, 8092, Switzerland 15 1. INTRODUCTION Nickel is an iron-peak element with 5 stable isotopes (see Table 1) which is both cosmochemically abundant and rich in the information carried in its isotopic signature. 60 60 20 Significantly, Ni is the radiogenic daughter of Fe, a short-lived nuclide (t1/2 = 2.62Ma; Rugel et al., 2009) of a major element. 60Fe has the potential to be both an important heat source and chronometer in the early solar system. 60Ni abundances serve to document the prior importance 60Fe and this is a topic of on-going debate (section 3). The four other stable Ni nuclides span a sizeable relative mass range of ~10%, including the notably neutron-rich nuclide 64Ni. The 25 relative abundances of these isotopes vary with diverse stellar formation environments and provide a valuable record of the nucleosynthetic heritage of Ni in the solar system (section 2). Ni occurs widely as both elemental and divalent cationic species, substituting for Fe and Mg in common silicate structures and forming Fe/Ni metal alloys. The Ni isotope chemistry of all the major planetary reservoirs and fractionations between them can thus be characterised (section 4). 30 Ni is also a bio-essential element and its fractionation during low-temperature biogeochemical cycling is a topic that has attracted recent attention (section 4). -
Carbonaceous Meteorites Contain a Wide Range of Extraterrestrial Nucleobases
Carbonaceous meteorites contain a wide range of extraterrestrial nucleobases Michael P. Callahana,1, Karen E. Smithb, H. James Cleaves IIc, Josef Ruzickad, Jennifer C. Sterna, Daniel P. Glavina, Christopher H. Houseb, and Jason P. Dworkina aNational Aeronautics and Space Administration Goddard Space Flight Center and The Goddard Center for Astrobiology, Greenbelt, MD 20771; bDepartment of Geosciences and Penn State Astrobiology Research Center, Pennsylvania State University, 220 Deike Building, University Park, PA 16802; cGeophysical Laboratory, Carnegie Institution of Washington, Washington, DC 20015; and dScientific Instruments Division, Thermo Fisher Scientific, Somerset, NJ 08873 Edited by Mark H. Thiemens, University of California San Diego, La Jolla, CA, and approved July 12, 2011 (received for review April 25, 2011) All terrestrial organisms depend on nucleic acids (RNA and DNA), meteorite heterogeneity, experimental artifacts, and terrestrial which use pyrimidine and purine nucleobases to encode genetic contamination. To date, all of the purines (adenine, guanine, information. Carbon-rich meteorites may have been important hypoxanthine, and xanthine) and the one pyrimidine (uracil) re- sources of organic compounds required for the emergence of life ported in meteorites (15–18) are biologically common and could on the early Earth; however, the origin and formation of nucleo- be explained as the result of terrestrial contamination. Martins bases in meteorites has been debated for over 50 y. So far, the et al. performed compound-specific stable carbon isotope mea- few nucleobases reported in meteorites are biologically common surements for uracil and xanthine in the Murchison meteorite and lacked the structural diversity typical of other indigenous me- (19) and interpreted the isotopic signatures for these nucleobases teoritic organics. -
Chelyabinsk Airburst, Damage Assessment, Meteorite Recovery and Characterization
O. P. Popova, et al., Chelyabinsk Airburst, Damage Assessment, Meteorite Recovery and Characterization. Science 342 (2013). Chelyabinsk Airburst, Damage Assessment, Meteorite Recovery, and Characterization Olga P. Popova1, Peter Jenniskens2,3,*, Vacheslav Emel'yanenko4, Anna Kartashova4, Eugeny Biryukov5, Sergey Khaibrakhmanov6, Valery Shuvalov1, Yurij Rybnov1, Alexandr Dudorov6, Victor I. Grokhovsky7, Dmitry D. Badyukov8, Qing-Zhu Yin9, Peter S. Gural2, Jim Albers2, Mikael Granvik10, Läslo G. Evers11,12, Jacob Kuiper11, Vladimir Kharlamov1, Andrey Solovyov13, Yuri S. Rusakov14, Stanislav Korotkiy15, Ilya Serdyuk16, Alexander V. Korochantsev8, Michail Yu. Larionov7, Dmitry Glazachev1, Alexander E. Mayer6, Galen Gisler17, Sergei V. Gladkovsky18, Josh Wimpenny9, Matthew E. Sanborn9, Akane Yamakawa9, Kenneth L. Verosub9, Douglas J. Rowland19, Sarah Roeske9, Nicholas W. Botto9, Jon M. Friedrich20,21, Michael E. Zolensky22, Loan Le23,22, Daniel Ross23,22, Karen Ziegler24, Tomoki Nakamura25, Insu Ahn25, Jong Ik Lee26, Qin Zhou27, 28, Xian-Hua Li28, Qiu-Li Li28, Yu Liu28, Guo-Qiang Tang28, Takahiro Hiroi29, Derek Sears3, Ilya A. Weinstein7, Alexander S. Vokhmintsev7, Alexei V. Ishchenko7, Phillipe Schmitt-Kopplin30,31, Norbert Hertkorn30, Keisuke Nagao32, Makiko K. Haba32, Mutsumi Komatsu33, and Takashi Mikouchi34 (The Chelyabinsk Airburst Consortium). 1Institute for Dynamics of Geospheres of the Russian Academy of Sciences, Leninsky Prospect 38, Building 1, Moscow, 119334, Russia. 2SETI Institute, 189 Bernardo Avenue, Mountain View, CA 94043, USA. 3NASA Ames Research Center, Moffett Field, Mail Stop 245-1, CA 94035, USA. 4Institute of Astronomy of the Russian Academy of Sciences, Pyatnitskaya 48, Moscow, 119017, Russia. 5Department of Theoretical Mechanics, South Ural State University, Lenin Avenue 76, Chelyabinsk, 454080, Russia. 6Chelyabinsk State University, Bratyev Kashirinyh Street 129, Chelyabinsk, 454001, Russia. -
The Socio-Economic Control of a Scientific Paradigm: Life As a Cosmic Phenomenon
THE SOCIO-ECONOMIC CONTROL OF A SCIENTIFIC PARADIGM: LIFE AS A COSMIC PHENOMENON N.Chandra Wickramasinghe1 and Gensuke Tokoro2 1Buckingham Centre for Astrobiology; 1University of Buckingham, Buckingham, UK 2Hitotsubashi University, Institute of Innovation Research, Tokyo, Japan Abstract A major paradigm shift with potentially profound implications has been taking place over the past 3 decades at a rapidly accelerating pace. The Copernican revolution of half a millennium ago is now being extended to place humanity on the Earth in its correct cosmic perspective - an assembly of cosmically derived genes, no more, no less, pieced together over 4 billion years of geological history against the processes of Darwinian natural selection. The evidence for our cosmic ancestry has now grown to the point that to deny it is a process fraught with imminent danger. We discuss the weight of modern scientific evidence from diverse sources, the history of development of the relevant ideas, and the socio-economic and historical forces that are responsible for dictating the pace of change. Keywords: panspermia, cosmic origins of life, economics, history of science 1. Introduction “Falsehood and delusion are allowed in no case whatever: but, as in the exercise of all the virtues, there is an economy of truth. It is a sort of temperance, by which a man speaks truth with measure that he may speak it the longer….” - Edmund Burke, 1849: The works of Edmund Burke, with a memoir 2. Harper & Brothers. p. 248. Economy of Truth is a principle of limitation often used by politicians whenever the Whole Truth is deemed strategically unwise. We show in this article that the same principle is used in science as a mode of controlling the flow of information, and the mechanism of control involves the collective, and often covert decisions of large and diffuse groups. -
Richardton and New Leipzig Meteorites Returning to North Dakota by Ed Murphy on the Evening of June 30, 1918 (About 10:00 P.M
Richardton and New Leipzig Meteorites Returning to North Dakota By Ed Murphy On the evening of June 30, 1918 (about 10:00 p.m. he received from Muggli, to George Merrill, Head Curator of mountain time), the Richardton meteorite fell to earth on either Geology at the Smithsonian. Merrill verified it was a stony side of ND Highway 8 about equidistance between the towns meteorite, but interestingly enough noted that it was quite of Richardton and Mott (fig. 1). The fireball of the meteoroid, weathered and that it probably belonged to an earlier fall, as it raced across the sky, was witnessed over an area of at that is, it was not the Richardton meteorite. least 18,000 square miles (fig. 2). A witness who was 130 miles to the southwest said, “As it came down, it illuminated Leonard was attempting to purchase specimens of the the landscape to almost the brilliancy of sunlight.” Witnesses Richardton meteorite when he received a letter dated closer to the fall area likened the sound of the meteoroid to an November 10, 1918 from T.T. Quirke. Quirke, a professor of “airship” or motorcycle. The 200-pound meteoroid broke geology at the University of Minnesota, had been sent out by into at least 200 pieces perhaps at a height of 60 miles above that department to investigate the fall. There is evidence that the earth. The sound of the breakup was said to have been a John Muggli contacted Quirke when he was unable to reach “fearful and terrifying noise,” “a deep tone thundering,” “a violent Leonard.