Assembly Defects of the Human Trna Splicing Endonuclease Contribute to Impaired
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
TSEN54 Rabbit Pab Antibody
TSEN54 rabbit pAb antibody Catalog No : Source: Concentration : Mol.Wt. (Da): A22945 Rabbit 1 mg/ml 58819 Applications WB,IHC,ELISA Reactivity Human Dilution WB: 1:500 - 1:2000. IHC: 1:100 - 1:300. ELISA: 1:20000. Not yet tested in other applications. Storage -20°C/1 year Specificity TSEN54 Polyclonal Antibody detects endogenous levels of TSEN54 protein. Source / Purification The antibody was affinity-purified from rabbit antiserum by affinity- chromatography using epitope-specific immunogen. Immunogen The antiserum was produced against synthesized peptide derived from human TSEN54. AA range:261-310 Uniprot No Q7Z6J9 Alternative names TSEN54; SEN54; tRNA-splicing endonuclease subunit Sen54; SEN54 homolog; HsSEN54; tRNA-intron endonuclease Sen54 Form Liquid in PBS containing 50% glycerol, 0.5% BSA and 0.02% sodium azide. Clonality Polyclonal Isotype IgG Conjugation Background tRNA splicing endonuclease subunit 54(TSEN54) Homo sapiens This gene encodes a subunit of the tRNA splicing endonuclease complex, which catalyzes the removal of introns from precursor tRNAs. The complex is also implicated in pre-mRNA 3-prime end processing. Mutations in this gene result in pontocerebellar hypoplasia type 2.[provided by RefSeq, Oct 2009], Other TSEN54, tRNA-splicing endonuclease subunit Sen54 Produtc Images: Application Key: WB-Western IP-Immunoprecipitation IHC-Immunohistochemistry ChIP-Chromatin Immunoprecipitation A AAB Biosciences Products www.aabsci.cn FOR RESEARCH USE ONLY. NOT FOR HUMAN OR DIAGNOSTIC USE. IF-Immunofluorescence F-Flow Cytometry E-P-ELISA-Peptide Species Cross-Reactivity Key: H-Human M-Mouse R-Rat Hm-Hamster Mk-Monkey Vir-Virus Mi-Mink C-Chicken Dm-D. melanogaster X-Xenopus Z-Zebrafish B-Bovine Dg-Dog Pg-Pig Sc-S. -
A Computational Approach for Defining a Signature of Β-Cell Golgi Stress in Diabetes Mellitus
Page 1 of 781 Diabetes A Computational Approach for Defining a Signature of β-Cell Golgi Stress in Diabetes Mellitus Robert N. Bone1,6,7, Olufunmilola Oyebamiji2, Sayali Talware2, Sharmila Selvaraj2, Preethi Krishnan3,6, Farooq Syed1,6,7, Huanmei Wu2, Carmella Evans-Molina 1,3,4,5,6,7,8* Departments of 1Pediatrics, 3Medicine, 4Anatomy, Cell Biology & Physiology, 5Biochemistry & Molecular Biology, the 6Center for Diabetes & Metabolic Diseases, and the 7Herman B. Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN 46202; 2Department of BioHealth Informatics, Indiana University-Purdue University Indianapolis, Indianapolis, IN, 46202; 8Roudebush VA Medical Center, Indianapolis, IN 46202. *Corresponding Author(s): Carmella Evans-Molina, MD, PhD ([email protected]) Indiana University School of Medicine, 635 Barnhill Drive, MS 2031A, Indianapolis, IN 46202, Telephone: (317) 274-4145, Fax (317) 274-4107 Running Title: Golgi Stress Response in Diabetes Word Count: 4358 Number of Figures: 6 Keywords: Golgi apparatus stress, Islets, β cell, Type 1 diabetes, Type 2 diabetes 1 Diabetes Publish Ahead of Print, published online August 20, 2020 Diabetes Page 2 of 781 ABSTRACT The Golgi apparatus (GA) is an important site of insulin processing and granule maturation, but whether GA organelle dysfunction and GA stress are present in the diabetic β-cell has not been tested. We utilized an informatics-based approach to develop a transcriptional signature of β-cell GA stress using existing RNA sequencing and microarray datasets generated using human islets from donors with diabetes and islets where type 1(T1D) and type 2 diabetes (T2D) had been modeled ex vivo. To narrow our results to GA-specific genes, we applied a filter set of 1,030 genes accepted as GA associated. -
Mirna Research Guide Mirna Guide Cover Final.Qxd 9/28/05 10:24 AM Page 4
miRNA_guide_cover_final.qxd 9/28/05 10:24 AM Page 3 miRNA Research Guide miRNA_guide_cover_final.qxd 9/28/05 10:24 AM Page 4 Contents Introduction to microRNAs and Experimental Overview Introduction to microRNAs . .1 miRNA Experimental Overview . .2 microRNA Isolation and Enrichment miRNA Isolation . .3 mirVana™ miRNA Isolation Kits . .3 “miRNA Certified” FirstChoice® Total RNA . .3 RecoverAll™ Total Nucleic Acid Isolation Kit . .3 miRNA Enrichment . .4 flashPAGE™ Fractionator System . .4 Global microRNA Expression Profiling miRNA Expression Profiling . .5 Overview of the mirVana™ Array System . .6 mirVana™ miRNA Labeling Kit . .7 mirVana™ miRNA Probe Set . .7 mirVana™ miRNA Bioarrays . .8 Detection and Quantification of Specific microRNAs mirVana™ miRNA Detection Kit . .9 mirVana™ miRNA Probe and Market Kit . .9 mirVana™ miRNA Probe Construction Kit . .10 mirVana™ qRT-PCR miRNA Detection Kit . .11 microRNA Functional Analysis miRNA Functional Analysis . .12 Anti-miR™ miRNA Inhibitors . .12 Pre-miR™ miRNA Precursor Molecules . .13 siPORT™ NeoFX™ Transfection Agent . .13 pMIR-REPORT™ miRNA Expression Reporter Vector . .13 microRNA Information Resources miRNA Resource . .14 miRNA Database . .14 miRNA Array Resource . .14 Introduction to microRNAs . .14 miRNA Application Guide . .15 Technical miRNA Seminars . .15 Highly Trained miRNA Technical Support Scientists . .15 miRNA e-Updates . .15 TechNotes Newsletter . .15 Reference Relative miRNA Expression Among Common Cell Types . .16 miRNA_guide_guts_final.qxd 9/28/05 10:26 AM Page 1 Introduction to microRNAs and Experimental Overview Introduction to microRNAs Overview of microRNA processing Small regulators with global impact miRNAs are transcribed as regions of longer RNA molecules that can be as long as 1000 nt (Figure 3). Description of microRNAs MicroRNAs (miRNAs) are evolutionarily conserved, small, noncoding RNA mol- The longer RNA molecules are processed in the nucleus into hairpin RNAs of ecules that regulate gene expression at the level of translation (Figure 1). -
NC RNA Symposium 2019 Fin
Organizing Committee: Co-Chairs of the Organizing Committee: Stacy Horner, Ph.D. (Duke) Robin Stanley, Ph.D. (NIEHS) Members of Organizing Committee: Christopher Holley, M.D, Ph.D. (Duke) Kate Meyer, Ph.D. (Duke) Hashim Al-Hashimi, Ph.D. (Duke) Hala Abou Assi, Ph.D. (Duke) Margot Wuebbens, Ph.D. (Duke) Sponsors: Symposium on RNA Biology XIII: RNA Tool and Target 2019 Meeting Agenda Thursday, October 17th, 2019 Great Hall of the Trent Semans Center, Duke University 12:00 – 1:00 PM Registration (Great Hall) 1:00 – 2:35 PM SESSION I: TRANSLATION FIDELITY Chair: Amanda Hargrove, Duke University 1:00 PM Opening Remarks, Stacy Horner, Duke University 1:10 PM Keynote Lecture: Rachel Green, Johns Hopkins University “Colliding Ribosomes as an integrator of Cytoplasmic Stress Responses” 1:50 PM Yu-Hua Lo, NIEHS “Unraveling the mechanism of substrate processing by the AAA-ATPase Rix7” 2:05 PM Hani Zaher, Washington University “RNA damage, the ribosome and quality control” 2:35 PM Break 3:00 – 5:00 PM SESSION II: RNA PROCESSING Chair: Jimena Giudice, UNC Chapel Hill 3:00 PM Rui Zhao, University of Colorado “A unified mechanism for intron definition, exon definition, and back-splicing” 3:30 PM Adam Black, UNC Chapel Hill “Clathrin heavy chain splice forms differentially affect striated muscle physiology” 3:45 PM Nicholas Conrad, University of Texas Southwestern “Mechanisms regulating S-adenosylmethionine homeostasis through intron detention” 4:15 PM Marcos Morgan, NIEHS “Role of RNA uridylation in germ line differentiation” 4:45 PM Jianguo Huang, -
Riboprobe(R) in Vitro Transcription Systems Technical Manual TM016
TECHNICAL MANUAL Riboprobe® in vitro Transcription Systems InstrucƟ ons for use of Products P1420, P1430, P1440, P1450 and P1460 Revised 10/13 TM016 tm016.1013:EIVD_TM.qxd 9/26/2013 11:10 AM Page 1 Riboprobe® in vitro Transcription Systems All technical literature is available on the Internet at www.promega.com/protocols Please visit the web site to verify that you are using the most current version of this Technical Manual. Please contact Promega Technical Services if you have questions on use of this system. E-mail [email protected] 1. Description..........................................................................................................1 2. Product Components.........................................................................................3 3. General Considerations....................................................................................4 A. Properties of Promega Vectors Suitable for in vitro Transcription ..............4 B. Applications of Promega Vectors ......................................................................6 C. General Cloning Techniques ..............................................................................6 4. RNA Transcription in vitro .............................................................................7 A. DNA Template Preparation................................................................................7 B. Synthesis of High-Specific-Activity Radiolabeled RNA Probes ...................8 C. Determining Percent Incorporation and Probe Specific Activity ...............10 -
Mutation of a DNA Polymerase Into an Efficient RNA Polymerase
Directed evolution of novel polymerase activities: Mutation of a DNA polymerase into an efficient RNA polymerase Gang Xia, Liangjing Chen, Takashi Sera, Ming Fa, Peter G. Schultz*, and Floyd E. Romesberg* Department of Chemistry, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA 92037 Edited by Jack W. Szostak, Massachusetts General Hospital, Boston, MA, and approved March 22, 2002 (received for review October 30, 2001) The creation of novel enzymatic function is of great interest, but of an attached substrate. However, the substrate was attached to remains a challenge because of the large sequence space of the major phage coat protein, pVIII, raising the concern of proteins. We have developed an activity-based selection method to cross-reactivity between a polymerase on one phage and a evolve DNA polymerases with RNA polymerase activity. The Stoffel substrate attached to another phage. Cross-reactivity will com- fragment (SF) of Thermus aquaticus DNA polymerase I is displayed promise the association of genotype with phenotype and inhibit on a filamentous phage by fusing it to a pIII coat protein, and the the successful evolution of desired function (see below). substrate DNA template͞primer duplexes are attached to other We have developed an activity-based selection method, in which adjacent pIII coat proteins. Phage particles displaying SF poly- a DNA polymerase and its substrate are both attached to the minor merases, which are able to extend the attached oligonucleotide phage coat protein, pIII. The pIII proteins are localized to only one primer by incorporating ribonucleoside triphosphates and biotin- end of the phage particle (Fig. -
Sequential Structures Provide Insights Into the Fidelity of RNA Replication
Sequential structures provide insights into the fidelity of RNA replication Cristina Ferrer-Orta*, Armando Arias†, Rosa Pe´ rez-Luque*, Cristina Escarmi´s†, Esteban Domingo†, and Nuria Verdaguer*‡ *Institut de Biologia Molecular de Barcelona, Parc Cientı´ficde Barcelona, Josep Samitier 1-5, E-08028 Barcelona, Spain; and †Centro de Biologı´aMolecular ‘‘Severo Ochoa,’’ Cantoblanco, E-28049 Madrid, Spain Edited by Michael G. Rossmann, Purdue University, West Lafayette, IN, and approved April 16, 2007 (received for review February 6, 2007) RNA virus replication is an error-prone event caused by the low evidence of how the physiological substrates bind the large fidelity of viral RNA-dependent RNA polymerases. Replication exposed active site of the picornavirus RDRPs (12, 13). In fidelity can be decreased further by the use of mutagenic ribonu- addition, the structure of the complex between the polymerase cleoside analogs to a point where viral genetic information can no 3D and its protein–primer VPg revealed the critical interactions longer be maintained. For foot-and-mouth disease virus, the an- involved in the positioning and addition of the first nucleotide tiviral analogs ribavirin and 5-fluorouracil have been shown to be (UMP) to the primer molecule, providing insights into the mutagenic, contributing to virus extinction through lethal mu- mechanism of initiation of RNA genome replication in picor- tagenesis. Here, we report the x-ray structure of four elongation naviruses (14). complexes of foot-and-mouth disease virus polymerase 3D ob- Here, we report the crystallographic analysis of four catalytic tained in presence of natural substrates, ATP and UTP, or muta- complexes of FMDV 3D involving different nucleotides or genic nucleotides, ribavirin triphosphate and 5-fluorouridine mutagenic nucleotide analogs: 3D⅐GCAUGGGCCC⅐ATP, triphosphate with different RNAs as template–primer molecules. -
Supporting Information
Supporting Information Pratilas et al. 10.1073/pnas.0900780106 SI Text HER2) xenografts. In each of these analyses, all noncontrol Determination of Sensitivity to MEK Inhibition. Drug sensitivity probes (n ϭ 22,215) were rank-ordered according to the mag- assays were performed by using a 96-well plate and the Alamar nitude of their difference in expression after MEK inhibition Blue reagent (Invitrogen) as reported (1). The cells were treated compared with DMSO-treated controls, as measured by SAM- with PD0325901 (Pfizer) in a range of concentrations from 0.1 derived d-scores. The positions of the output genes in this signed to 500 nM (Fig. S1). ranking were then scored in a manner similar to that described by the Connectivity Map (2). This empirical and nonparametric Enrichment Analysis Over a Time Course of MEK Inhibition. Af- Kolmogorov-Smirnov-based statistic reflects an enrichment fymetrix U133A 2.0 array analysis of V600EBRAF, SkMel-28 cells, score that ranges from ϩ1toϪ1, where a score of 0 is a lack of at 0, 2, 8, and 24 h after MEK inhibition was completed as enrichment in either direction of expression, or graphically, a described (see Experimental Procedures). Robust multiarray av- random distribution of the output profile genes. Those with erage (RMA) was used to estimate the expression of probe sets. enrichment scores nearer to 1 indicated increasing correlation Each time point from2hto24wascompared with 0 h, and in between the output profile and the rank-ordered gene set from each comparison, we considered only probe sets with an expres- the experimental comparison. -
Abstracts from the 51St European Society of Human Genetics Conference: Electronic Posters
European Journal of Human Genetics (2019) 27:870–1041 https://doi.org/10.1038/s41431-019-0408-3 MEETING ABSTRACTS Abstracts from the 51st European Society of Human Genetics Conference: Electronic Posters © European Society of Human Genetics 2019 June 16–19, 2018, Fiera Milano Congressi, Milan Italy Sponsorship: Publication of this supplement was sponsored by the European Society of Human Genetics. All content was reviewed and approved by the ESHG Scientific Programme Committee, which held full responsibility for the abstract selections. Disclosure Information: In order to help readers form their own judgments of potential bias in published abstracts, authors are asked to declare any competing financial interests. Contributions of up to EUR 10 000.- (Ten thousand Euros, or equivalent value in kind) per year per company are considered "Modest". Contributions above EUR 10 000.- per year are considered "Significant". 1234567890();,: 1234567890();,: E-P01 Reproductive Genetics/Prenatal Genetics then compared this data to de novo cases where research based PO studies were completed (N=57) in NY. E-P01.01 Results: MFSIQ (66.4) for familial deletions was Parent of origin in familial 22q11.2 deletions impacts full statistically lower (p = .01) than for de novo deletions scale intelligence quotient scores (N=399, MFSIQ=76.2). MFSIQ for children with mater- nally inherited deletions (63.7) was statistically lower D. E. McGinn1,2, M. Unolt3,4, T. B. Crowley1, B. S. Emanuel1,5, (p = .03) than for paternally inherited deletions (72.0). As E. H. Zackai1,5, E. Moss1, B. Morrow6, B. Nowakowska7,J. compared with the NY cohort where the MFSIQ for Vermeesch8, A. -
The Roles of RNA Polymerase I and III Subunits Polr1a, Polr1c, and Polr1d in Craniofacial Development BY
The roles of RNA Polymerase I and III subunits Polr1a, Polr1c, and Polr1d in craniofacial development BY © 2016 Kristin Emily Noack Watt Submitted to the graduate degree program in Anatomy and Cell Biology and to the Graduate Faculty of The University of Kansas Medical Center in partial fulfillment of the requirements for the degree of Doctor of Philosophy. Paul Trainor, Co-Chairperson Brenda Rongish, Co-Chairperson Brian Andrews Jennifer Gerton Tatjana Piotrowski Russell Swerdlow Date Defended: January 26, 2016 The Dissertation Committee for Kristin Watt certifies that this is the approved version of the following dissertation: The roles of RNA Polymerase I and III subunits Polr1a, Polr1c, and Polr1d in craniofacial development Paul Trainor, Co-Chairperson Brenda Rongish, Co-Chairperson Date approved: February 2, 2016 ii Abstract Craniofacial anomalies account for approximately one-third of all birth defects. Two examples of syndromes associated with craniofacial malformations are Treacher Collins syndrome and Acrofacial Dysostosis, Cincinnati type which have phenotypic overlap including deformities of the eyes, ears, and facial bones. Mutations in TCOF1, POLR1C or POLR1D may cause Treacher Collins syndrome while mutations in POLR1A may cause Acrofacial Dysostosis, Cincinnati type. TCOF1 encodes the nucleolar phosphoprotein Treacle, which functions in rRNA transcription and modification. Previous studies demonstrated that Tcof1 mutations in mice result in reduced ribosome biogenesis and increased neuroepithelial apoptosis. This diminishes the neural crest cell (NCC) progenitor population which contribute to the development of the cranial skeleton. In contrast, apart from being subunits of RNA Polymerases (RNAP) I and/or III, nothing is known about the function of POLR1A, POLR1C, and POLR1D during embryonic and craniofacial development. -
Supplementary Table 1
Supplementary Table 1. 492 genes are unique to 0 h post-heat timepoint. The name, p-value, fold change, location and family of each gene are indicated. Genes were filtered for an absolute value log2 ration 1.5 and a significance value of p ≤ 0.05. Symbol p-value Log Gene Name Location Family Ratio ABCA13 1.87E-02 3.292 ATP-binding cassette, sub-family unknown transporter A (ABC1), member 13 ABCB1 1.93E-02 −1.819 ATP-binding cassette, sub-family Plasma transporter B (MDR/TAP), member 1 Membrane ABCC3 2.83E-02 2.016 ATP-binding cassette, sub-family Plasma transporter C (CFTR/MRP), member 3 Membrane ABHD6 7.79E-03 −2.717 abhydrolase domain containing 6 Cytoplasm enzyme ACAT1 4.10E-02 3.009 acetyl-CoA acetyltransferase 1 Cytoplasm enzyme ACBD4 2.66E-03 1.722 acyl-CoA binding domain unknown other containing 4 ACSL5 1.86E-02 −2.876 acyl-CoA synthetase long-chain Cytoplasm enzyme family member 5 ADAM23 3.33E-02 −3.008 ADAM metallopeptidase domain Plasma peptidase 23 Membrane ADAM29 5.58E-03 3.463 ADAM metallopeptidase domain Plasma peptidase 29 Membrane ADAMTS17 2.67E-04 3.051 ADAM metallopeptidase with Extracellular other thrombospondin type 1 motif, 17 Space ADCYAP1R1 1.20E-02 1.848 adenylate cyclase activating Plasma G-protein polypeptide 1 (pituitary) receptor Membrane coupled type I receptor ADH6 (includes 4.02E-02 −1.845 alcohol dehydrogenase 6 (class Cytoplasm enzyme EG:130) V) AHSA2 1.54E-04 −1.6 AHA1, activator of heat shock unknown other 90kDa protein ATPase homolog 2 (yeast) AK5 3.32E-02 1.658 adenylate kinase 5 Cytoplasm kinase AK7 -
Combined Genome, Transcriptome and Metabolome Analysis in the Diagnosis of Childhood Cerebellar Ataxia
International Journal of Molecular Sciences Article Combined Genome, Transcriptome and Metabolome Analysis in the Diagnosis of Childhood Cerebellar Ataxia Ana Ching-López 1,2 , Luis Javier Martinez-Gonzalez 3 , Luisa Arrabal 4, Jorge Sáiz 5, Ángela Gavilán 6, Coral Barbas 5 , Jose Antonio Lorente 3,7, Susana Roldán 4, Maria José Sánchez 1,2,8,*,† and Purificacion Gutierrez-Ríos 8,† 1 CIBER Epidemiology and Public Health (CIBERESP), 28029 Madrid, Spain; [email protected] 2 Andalusian School of Public Health (EASP), 18080 Granada, Spain 3 GENYO, Centre for Genomics and Oncological Research, Pfizer, University of Granada, Andalusian Regional Government, PTS Granada, 18016 Granada, Spain; [email protected] (L.J.M.-G.); [email protected] (J.A.L.) 4 Pediatric Neurology Department, Hospital Virgen de las Nieves, 18014 Granada, Spain; [email protected] (L.A.); [email protected] (S.R.) 5 Centre for Metabolomics and Bioanalysis (CEMBIO), Chemistry and Biochemistry Department, Pharmacy Faculty, Universidad San Pablo-CEU, 28925 Madrid, Spain; [email protected] (J.S.); [email protected] (C.B.) 6 Institute of Biomedicine of Seville (IBIS), 41013 Seville, Spain; [email protected] 7 Laboratory of Genetic Identification, Legal Medicine and Toxicology Department, Faculty of Medicine-PTS, University of Granada, 18016 Granada, Spain 8 Citation: Ching-López, A.; Instituto de Investigación Biosanitaria ibs.GRANADA, 18012 Granada, Spain; Martinez-Gonzalez, L.J.; Arrabal, L.; purifi[email protected] Sáiz, J.; Gavilán, Á.; Barbas, C.; * Correspondence: [email protected] † These authors have contributed equally. Lorente, J.A.; Roldán, S.; Sánchez, M.J.; Gutierrez-Ríos, P. Combined Genome, Transcriptome and Abstract: Ataxia in children is a common clinical sign of numerous neurological disorders consisting Metabolome Analysis in the of impaired coordination of voluntary muscle movement.