Computational Molecular Bioscience, 2014, 4, 1-24 Published Online March 2014 in SciRes. http://www.scirp.org/journal/cmb http://dx.doi.org/10.4236/cmb.2014.41001 Application of Hartree-Fock Method for Modeling of Bioactive Molecules Using SAR and QSPR Cleydson B. R. Santos1,2,3*, Cleison C. Lobato1, Francinaldo S. Braga1, Sílvia S. S. Morais4, Cesar F. Santos1, Caio P. Fernandes1,3, Davi S. B. Brasil1,5, Lorane I. S. Hage-Melim1, Williams J. C. Macêdo1,2, José C. T. Carvalho1,2,3 1Laboratory of Modeling and Computational Chemistry, Federal University of Amapá, Macapá, Brazil 2Postgraduate Program in Biotechnology and Biodiversity-Network BIONORTE, Campus Universitário Marco Zero, Macapá, Brazil 3Laboratory of Drug Research, School of Pharmaceutical Sciences, Federal University of Amapá, Macapá, Brazil 4Laboratory of Statistical and Computational Modeling, University of the State of Amapá, Macapá, Brazil 5Institute of Technology, Federal University of Pará, Belém, Brazil Email: *
[email protected] Received 12 January 2014; revised 12 February 2014; accepted 20 February 2014 Copyright © 2014 by authors and Scientific Research Publishing Inc. This work is licensed under the Creative Commons Attribution International License (CC BY). http://creativecommons.org/licenses/by/4.0/ Abstract The central importance of quantum chemistry is to obtain solutions of the Schrödinger equation for the accurate determination of the properties of atomic and molecular systems that occurred from the calculation of wave functions accurate for many diatomic and polyatomic molecules, us- ing Self Consistent Field method (SCF). The application of quantum chemical methods in the study and planning of bioactive compounds has become a common practice nowadays.