Transitioning from Unstable to Stable Colony Growth in the Desert Leafcutter Ant Acromyrmex Versicolor

Total Page:16

File Type:pdf, Size:1020Kb

Transitioning from Unstable to Stable Colony Growth in the Desert Leafcutter Ant Acromyrmex Versicolor Behav Ecol Sociobiol DOI 10.1007/s00265-013-1632-4 ORIGINAL PAPER Transitioning from unstable to stable colony growth in the desert leafcutter ant Acromyrmex versicolor Rebecca M. Clark & Jennifer H. Fewell Received: 1 August 2013 /Revised: 5 September 2013 /Accepted: 9 September 2013 # Springer-Verlag Berlin Heidelberg 2013 Abstract Like organisms, cohesive social groups such as in- Introduction sect colonies grow from a few individuals to large and complex integrated systems. Growth is driven by the interplay between Growth is a defining process for individuals at all levels of intrinsic growth rates and environmental factors, particularly biological organization, whether in cells in an organism or nutritional input. Ecologically inspired population growth individuals in a population or social group. For organisms to models assume that this relationship remains constant until grow successfully, they must respond robustly to environmen- maturity, but more recent models suggest that it should be less tal challenges while following an intrinsically based growth stable at small colony sizes. To test this empirically, we mon- trajectory (Salazar-Ciudad and Jernvall 2004). The interac- itored worker population growth and fungal development in the tions between environmental constraints such as nutrient in- desert leafcutter ant, Acromyrmex versicolor, over the first take and the intrinsic developmental program collectively 6 months of colony development. As a multitrophic, symbiotic shape an organism’s ontogenetic phenotype (Glazier 2005; system, leafcutter colonies must balance efforts to manage both Doi et al. 2010). A similar interplay between environmental fungus production and the growth of the ants consuming it. influences and growth shapes the ontogeny of insect societies, Both ants and fungus populations grew exponentially, but the as they grow from a few individuals to a size of thousands or shape of this relationship transitioned at a size threshold of 89± millions (Oster and Wilson 1978; Nonacs 1991;Kay2004; 9 workers. Above this size, colony mortality plummeted and Kay et al. 2006; Hou et al. 2010). colonies shifted from hypometric to hypermetric growth, with a Despite recognition that development constrains social distinct stabilization of the relationship between the worker phenotype, surprisingly few studies have characterized how population and fungus. Our findings suggest that developing complex social groups such as insect colonies navigate devel- colonies undergo key changes in organizational structure and opmental challenges as they move from foundation through stability as they grow, with a resulting positive transition in maturity (Wilson 1983; Porter and Tschinkel 1985, 1986; efficiency and robustness. Tschinkel 1988, 1991, 2011). Such characterization is critical for understanding how natural selection shapes growth and Keywords Development . Acromyrmex . Division of labor . phenotypic expression. Social groups, like individual organ- Colony growth . Leafcutter ant . Social allometry isms, must balance between allocation to growth and alloca- tion to physiological maintenance; the mechanisms used to achieve this balance are based on organizational properties Communicated by W. T. Wcislo specific to the system and subject to selection. Here, we study the growth dynamics of newly initiated Electronic supplementary material The online version of this article (doi:10.1007/s00265-013-1632-4) contains supplementary material, colonies of the desert leafcutter ant Acromyrmex versicolor which is available to authorized users. to understand how the fungus garden/worker ant relationship unfolds as colonies develop over the first 6 months of life. R. M. Clark (*) Department of Entomology, Texas A&M University, College Station, Leafcutter and related fungus-growing ant colonies provide a TX 77843, USA unique opportunity to track nutrient balancing and colony e-mail: [email protected] growth within an enclosed trophic system because the ants directly regulate the growth of their immediate food source, J. H. Fewell School of Life Sciences, Arizona State University, Tempe, the fungus garden (Weber 1972; Hölldobler and Wilson 1990; AZ 85280, USA Wirth et al. 2003;SealandTschinkel2008;Mehdiabadiand Behav Ecol Sociobiol Schultz 2010). Colony growth is thus dependent on a feed- Methods back system between the nutritional state of the fungus and the colony’s work allocation across tasks (Bass and Cherrett Study species 1994;BurdandHoward2005; Camargo et al. 2008). This balance may be particularly important during early growth, A. versicolor colonies are found along washes (arroyos) in low when colonies are more vulnerable to perturbation and/or desert areas throughout the southwestern USA and northern stochastic effects (i.e., they possess lower robustness; Kitano Mexico (Weber 1972; Wetterer et al. 2001; Johnson and Ward 2004). Indeed, mortality rates generally are highest in small, 2002;Ward2005). The ants function as generalist herbivores, young colonies, suggesting that this is a critical period in collecting both fresh and dry leaves and flowers from trees and colony life history (Autuori 1950; Fowler 1992;Cole2009; shrubs, including mesquite (Prosopis juliflora), ironwood Adams et al. 2012). Previous studies with this species and the (Olneya tesota), acacia (Acacia spp.), palo verde (Cercidium fungus gardener Trachymyrmex septentrionalis suggest un- spp.), creosote (Larrea tridentata), and ocotillo (Fouquieria stable or variable ant–fungus relationships during early colony splendens; R. Clark, personal observation; Gamboa 1975; development, but it is unclear how this occurs or at what point Wetterer et al. 2001). Mating swarms are triggered by summer it is resolved by successful colonies (Julian and Cahan 1999; monsoon rains with >2.5 cm of precipitation (Johnson and Seal and Tschinkel 2007;Kangetal.2011). Rissing 1993), which causes queens to fly from their natal nests Most models of societal growth have been based on ecolog- to aggregates, where they mate multiply and then shed their ical models of population growth with the assumption that wings and excavate new nests, typically at the canopy edge of societies retain similar organizational structure from small initial palo verde or mesquite trees (R. Clark, personal observation; sizes to maturity (Oster and Wilson 1978). While such models Reichardt and Wheeler 1996). In some areas, multiple queens may effectively predict growth patterns for larger colonies, they form pleometrotic foundress groups, and mature colonies are are less useful for predicting events in small colonies, where thought to remain polygynous (Rissing et al. 1986, 1989, 2000; internal organizational and demographic factors play an impor- Cahan and Julian 1999). This is supported by the observation tant role in determining growth rates (Porter and Tschinkel 1986; that all queens remain reproductively active in polygynous Jeanne and Nordheim 1996; Jeanne 1999; Gautrais et al. 2002; nests maintained in the laboratory (R. Clark, unpublished data). Tenhumberg et al. 2009). As an example, small colonies have to Many attine ants, including A. versicolor, possess semi- complete much of the same task repertoire as larger colonies, but claustral queens, which leave their newly excavated nests with a limited workforce (Wilson 1983; Karsai and Wenzel occasionally to forage for leaves as substrate for the fungus 1998; Augustin and Santos 2008). This has consequences for garden, which in turn provides food for the developing brood colony-level division of labor and colony growth efficiency, (Rissing et al. 1989; Fowler 1992; Fernández-Marín et al. both of which may increase with colony size (Gautrais et al. 2004). When workers emerge, queens gradually reduce their 2002; Jeanson et al. 2007;Watersetal.2010;Kangetal.2011). behavioral repertoire and remain inside the nest to lay eggs, In this study, we used noninvasive methods to correlate the while workers assume the tasks of collecting and preparing growth trajectories of the worker population and fungus gar- leaves for the fungus garden, raising brood, tending the fungus den biomass in leafcutter ant colonies from foundation garden, and removing waste materials from the nest (Cahan through the first 6 months of development. A. versicolor and Julian 1999). In laboratory nests, queens start the fungus colonies are relatively long-lived and can grow over the garden on the bottom of the nest chamber, allowing full course of several years to a size of around 10,000 workers visibility of workers and developing brood, but mature gar- prior to reproducing, making it possible to study growth dens are typically hung in patches on the chamber ceiling that processes without confounding effects from the onset of re- grow downward, forming “curtains” that increase in density production (Julian and Cahan 1999). We focus on the critical with the age of the garden, and gardens in field colonies also early phase of colony growth, from colony initiation through hang from the ceiling (U. Mueller, personal communication). sizes of 100+ workers. We show that, in colonies at this scale, the worker–fungus relationship undergoes a qualitative shift Growth study from negative, variable allometry (a hypometric relationship with fewer workers produced per unit of fungus present) to To establish colonies, we collected newly mated queens from hypermetry, where more workers are produced per unit of the field before they began excavating new nests. Queens fungus as colony size increases.
Recommended publications
  • Redalyc.LEAF-CUTTING ANTS Acromyrmex Niger SMITH, 1858
    Acta Biológica Colombiana ISSN: 0120-548X [email protected] Universidad Nacional de Colombia Sede Bogotá Colombia BELIZÁRIO CANTAGALLI, LIRIANA; ALVES LOPES, DENISE; BARATEIRO STUCHI, ANA LÚCIA PAZ; COLLA RUVOLO-TAKASUSUKI, MARIA CLAUDIA LEAF-CUTTING ANTS Acromyrmex niger SMITH, 1858 (HYMENOPTERA; FORMICIDAE) USED AS BIOINDICATORS OF AGROTOXICS RESIDUES Acta Biológica Colombiana, vol. 19, núm. 2, mayo-agosto, 2014, pp. 233-239 Universidad Nacional de Colombia Sede Bogotá Bogotá, Colombia Available in: http://www.redalyc.org/articulo.oa?id=319030502011 How to cite Complete issue Scientific Information System More information about this article Network of Scientific Journals from Latin America, the Caribbean, Spain and Portugal Journal's homepage in redalyc.org Non-profit academic project, developed under the open access initiative ACTA BIOLÓGICA COLOMBIANA Artículo de investigación LEAF-CUTTING ANTS Acromyrmex niger SMITH, 1858 (HYMENOPTERA; FORMICIDAE) USED AS BIOINDICATORS OF AGROTOXICS RESIDUES Utilización de hormigas cortadoras Acromyrmex niger Smith, 1858 (Hymenoptera; Formicidae) como bioindicadores de residuos de agrotóxicos LIRIANA BELIZÁRIO CANTAGALLI 1, P h. D.; DENISE ALVES LOPES 2, P h. D.; ANA LÚCIA PAZ BARATEIRO STUCHI 2, P h. D.; MARIA CLAUDIA COLLA RUVOLO-TAKASUSUKI 2, P h. D . 1 Departamento de Biotecnologia, Genética e Biologica Celular, Universidade Estadual de Maringá, Maringá, Paraná, Brasil. 2 Docente Departamento de Biotecnologia, Genética e Biologia Celular, Universidade Estatal de Maringá, Av. Colombo, 5790. Maringá, Paraná, Brasil. Corresponding author: Maria Claudia Ruvolo, [email protected] Received 6 June 2013, first decision 9 September 2013, accepted 22 November 2014. Citation / Citar este artículo como: CANTAGALLI LB, LOPES DA, STUCHI ALPB, RUVOLO-TAKASUSUKI MCC . Leaf-cutting ants Acromyrmex niger Smith, 1858 (Hymenoptera; Formicidae) used as bioindicators of agrotoxics residues.
    [Show full text]
  • James K. Wetterer
    James K. Wetterer Wilkes Honors College, Florida Atlantic University 5353 Parkside Drive, Jupiter, FL 33458 Phone: (561) 799-8648; FAX: (561) 799-8602; e-mail: [email protected] EDUCATION UNIVERSITY OF WASHINGTON, Seattle, WA, 9/83 - 8/88 Ph.D., Zoology: Ecology and Evolution; Advisor: Gordon H. Orians. MICHIGAN STATE UNIVERSITY, East Lansing, MI, 9/81 - 9/83 M.S., Zoology: Ecology; Advisors: Earl E. Werner and Donald J. Hall. CORNELL UNIVERSITY, Ithaca, NY, 9/76 - 5/79 A.B., Biology: Ecology and Systematics. UNIVERSITÉ DE PARIS III, France, 1/78 - 5/78 Semester abroad: courses in theater, literature, and history of art. WORK EXPERIENCE FLORIDA ATLANTIC UNIVERSITY, Wilkes Honors College 8/04 - present: Professor 7/98 - 7/04: Associate Professor Teaching: Biodiversity, Principles of Ecology, Behavioral Ecology, Human Ecology, Environmental Studies, Tropical Ecology, Field Biology, Life Science, and Scientific Writing 9/03 - 1/04 & 5/04 - 8/04: Fulbright Scholar; Ants of Trinidad and Tobago COLUMBIA UNIVERSITY, Department of Earth and Environmental Science 7/96 - 6/98: Assistant Professor Teaching: Community Ecology, Behavioral Ecology, and Tropical Ecology WHEATON COLLEGE, Department of Biology 8/94 - 6/96: Visiting Assistant Professor Teaching: General Ecology and Introductory Biology HARVARD UNIVERSITY, Museum of Comparative Zoology 8/91- 6/94: Post-doctoral Fellow; Behavior, ecology, and evolution of fungus-growing ants Advisors: Edward O. Wilson, Naomi Pierce, and Richard Lewontin 9/95 - 1/96: Teaching: Ethology PRINCETON UNIVERSITY, Department of Ecology and Evolutionary Biology 7/89 - 7/91: Research Associate; Ecology and evolution of leaf-cutting ants Advisor: Stephen Hubbell 1/91 - 5/91: Teaching: Tropical Ecology, Introduction to the Scientific Method VANDERBILT UNIVERSITY, Department of Psychology 9/88 - 7/89: Post-doctoral Fellow; Visual psychophysics of fish and horseshoe crabs Advisor: Maureen K.
    [Show full text]
  • James K. Wetterer
    James K. Wetterer Wilkes Honors College, Florida Atlantic University 5353 Parkside Drive, Jupiter, FL 33458 Phone: (561) 799-8648; FAX: (561) 799-8602; e-mail: [email protected] EDUCATION UNIVERSITY OF WASHINGTON, Seattle, WA, 9/83 - 8/88 Ph.D., Zoology: Ecology and Evolution; Advisor: Gordon H. Orians. MICHIGAN STATE UNIVERSITY, East Lansing, MI, 9/81 - 9/83 M.S., Zoology: Ecology; Advisors: Earl E. Werner and Donald J. Hall. CORNELL UNIVERSITY, Ithaca, NY, 9/76 - 5/79 A.B., Biology: Ecology and Systematics. UNIVERSITÉ DE PARIS III, France, 1/78 - 5/78 Semester abroad: courses in theater, literature, and history of art. WORK EXPERIENCE FLORIDA ATLANTIC UNIVERSITY, Wilkes Honors College 8/04 - present: Professor 7/98 - 7/04: Associate Professor Teaching: Principles of Ecology, Behavioral Ecology, Human Ecology, Environmental Studies, Tropical Ecology, Biodiversity, Life Science, and Scientific Writing 9/03 - 1/04 & 5/04 - 8/04: Fulbright Scholar; Ants of Trinidad and Tobago COLUMBIA UNIVERSITY, Department of Earth and Environmental Science 7/96 - 6/98: Assistant Professor Teaching: Community Ecology, Behavioral Ecology, and Tropical Ecology WHEATON COLLEGE, Department of Biology 8/94 - 6/96: Visiting Assistant Professor Teaching: General Ecology and Introductory Biology HARVARD UNIVERSITY, Museum of Comparative Zoology 8/91- 6/94: Post-doctoral Fellow; Behavior, ecology, and evolution of fungus-growing ants Advisors: Edward O. Wilson, Naomi Pierce, and Richard Lewontin 9/95 - 1/96: Teaching: Ethology PRINCETON UNIVERSITY, Department of Ecology and Evolutionary Biology 7/89 - 7/91: Research Associate; Ecology and evolution of leaf-cutting ants Advisor: Stephen Hubbell 1/91 - 5/91: Teaching: Tropical Ecology, Introduction to the Scientific Method VANDERBILT UNIVERSITY, Department of Psychology 9/88 - 7/89: Post-doctoral Fellow; Visual psychophysics of fish and horseshoe crabs Advisor: Maureen K.
    [Show full text]
  • Ant–Fungus Species Combinations Engineer Physiological Activity Of
    © 2014. Published by The Company of Biologists Ltd | The Journal of Experimental Biology (2014) 217, 2540-2547 doi:10.1242/jeb.098483 RESEARCH ARTICLE Ant–fungus species combinations engineer physiological activity of fungus gardens J. N. Seal1,2,*, M. Schiøtt3 and U. G. Mueller2 ABSTRACT such complexity, the fungus-gardening insects have evolved obligate Fungus-gardening insects are among the most complex organisms macro-symbioses with specific clades of fungi, and use fungal because of their extensive co-evolutionary histories with obligate symbionts essentially as an external digestive organ that allows the fungal symbionts and other microbes. Some fungus-gardening insect insect to thrive on otherwise non-digestible substrates, such as lineages share fungal symbionts with other members of their lineage structural carbohydrates of plants (e.g. cellulose) (Aanen et al., and thus exhibit diffuse co-evolutionary relationships, while others 2002; Aylward et al., 2012a; Aylward et al., 2012b; Bacci et al., exhibit little or no symbiont sharing, resulting in host–fungus fidelity. 1995; Farrell et al., 2001; De Fine Licht and Biedermann, 2012; The mechanisms that maintain this symbiont fidelity are currently Martin, 1987a; Mueller et al., 2005). One of the most striking unknown. Prior work suggested that derived leaf-cutting ants in the attributes of these symbioses is the degree of physiological genus Atta interact synergistically with leaf-cutter fungi (Attamyces) integration: the insect host functions as a distributor of fungal by exhibiting higher fungal growth rates and enzymatic activities than enzymes, which digest plant fibers external to the insect’s body when growing a fungus from the sister-clade to Attamyces (so-called (Aanen and Eggleton, 2005; Aylward et al., 2012b; De Fine Licht ‘Trachymyces’), grown primarily by the non-leaf cutting and Biedermann, 2012; De Fine Licht et al., 2013; Martin, 1987b; Trachymyrmex ants that form, correspondingly, the sister-clade to Schiøtt et al., 2010).
    [Show full text]
  • Escovopsioides As a Fungal Antagonist of the Fungus Cultivated by Leafcutter Ants Julio Flavio Osti1 and Andre Rodrigues1,2*
    Osti and Rodrigues BMC Microbiology (2018) 18:130 https://doi.org/10.1186/s12866-018-1265-x RESEARCHARTICLE Open Access Escovopsioides as a fungal antagonist of the fungus cultivated by leafcutter ants Julio Flavio Osti1 and Andre Rodrigues1,2* Abstract Background: Fungus gardens of fungus-growing (attine) ants harbor complex microbiomes in addition to the mutualistic fungus they cultivate for food. Fungi in the genus Escovopsioides were recently described as members of this microbiome but their role in the ant-fungus symbiosis is poorly known. In this study, we assessed the phylogenetic diversity of 21 Escovopsioides isolates obtained from fungus gardens of leafcutter ants (genera Atta and Acromyrmex) and non-leafcutter ants (genera Trachymyrmex and Apterostigma) sampled from several regions in Brazil. Results: Regardless of the sample locality or ant genera, phylogenetic analysis showed low genetic diversity among the 20 Escovopsisoides isolates examined, which prompted the identification as Escovopsioides nivea (the only described species in the genus). In contrast, one Escovopsioides isolate obtained from a fungus garden of Apterostigma megacephala was considered a new phylogenetic species. Dual-culture plate assays showed that Escovopsioides isolates inhibited the mycelium growth of Leucoagaricus gongylophorus, the mutualistic fungus cultivated by somes species of leafcutter ants. In addition, Escovopsioides growth experiments in fungus gardens with and without ant workers showed this fungus is detrimental to the ant-fungus symbiosis. Conclusions: Here, we provide clues for the antagonism of Escovopsioides towards the mutualistic fungus of leafcutter ants. Keywords: Hypocreales, Attine ants, Escovopsis,Symbiosis Background garden. In fact, a diverse and rich microbial community Fungus-growing ants in the tribe Attini are found only on consisting of bacteria, yeasts, and filamentous fungi are also the American continent [1].
    [Show full text]
  • Itapeti E O Seu Entorno
    Em razão de sua importância eco- nômica e social para o município de Mogi das Cruzes e do alto grau de degradação que a Serra apre- senta, vários profi ssionais ao longo dos últimos dez anos, trabalharam de forma sistemática para a produ- ção de conhecimentos sobre a sua ocupação, seus aspectos sociais e biológicos. Assim, os capítulos contidos nesse livro representam a compilação de todas as informa- ções com embasamento científi co, de forma a levar o leitor a enten- der um pouco sobre o passado e o presente da Serra do Itapeti e o seu entorno. Itapeti do Serra Serra do VITOR FERNANDES OLIVEIRA DE MIRANDA MARIA SANTINA DE CASTRO MORINI Itapeti Aspectos Históricos, Sociais e Naturalísticos MARIA SANTINA DE CASTRO MORINI VITOR FERNANDES OLIVEIRA DE MIRANDA Serra do Itapeti Aspectos Históricos, Sociais e Naturalísticos Organizadores MARIA SANTINA DE CASTRO MORINI VITOR FERNANDES OLIVEIRA DE MIRANDA 1ª Edição 2012 Rua Machado de Assis, 10-35 Vila América • CEP 17014-038 • Bauru, SP Fone (14) 3313-7968 • www.canal6editora.com.br S4871 Serra do Itapeti: Aspectos Históricos, Sociais e Naturalísticos / Maria Santina de Castro Morini e Vitor Fernandes Oliveira de Miranda (organizadores). - - Bauru, SP: Canal 6, 2012. 400 p. ; 29 cm. ISBN 978-85-7917-174-1 1. Serra do Itapeti. 2. Mata Atlântica. I. Morini, Maria Santina de Castro. II. Miranda, Vitor Fernandes Oliveira de. III. Título. CDD: 577.34 Copyright© Canal6, 2012 Impressão e Acabamento: Av. Dr. Pedro Camarinha, 31 - Santa Cruz do Rio Pardo-SP - T: (14) 3332.1155 - www.graficaviena.com.br PRESERVE A IMPRESSO EM NATUREZA PAPEL RECICLÁVEL Este livro é dedicado ..
    [Show full text]
  • Rachel Raudenbush
    Nathan E. Smith PhD Candidate - Arizona State University – School of Life Sciences EDUCATION Arizona State University Tempe, AZ August 2013-present Animal Behavior PhD student GPA: 4.0 Juniata College Huntingdon, Pennsylvania May 2013 Bachelor of Science Major: Biology Minor: Anthropology GPA: 3.93 Summa cum laude with Honors in biology RESEARCH EXPERIENCES PhD Candidate- Arizona State University Fall 2013-Present Dissertation: Macronutrient Regulation by the Desert Leafcutter Ant Acromyrmex versicolor Research Assistant- Dr. Peter Dedon, MIT Summer 2012 Genomic Mapping of DNA Damage Research Assistant- Dr. Jill Keeney, Juniata College Spring 2011-Spring 2013 Identifying the role of an orphan gene in the mechanism of retrotransposition in yeast Research Assistant- Dr. Norris Muth, Juniata College Spring 2010-Fall 2010 Plant community restoration after mortality of an invasive species AWARDS Social Insect Research Group Student Grant ($1000) Fall 2018 School of Life Sciences Travel Award ($400) Summer 2018, Summer 2017, Fall 2016 School of Life Sciences RTI Graduate Fieldwork Award ($2000) Spring 2017 School of Life Sciences RTI Graduate Fieldwork Award ($1500) Spring 2016 School of Life Sciences Graduate Research Scholarship ($3500) Summer 2015 School of Life Sciences Graduate Research Scholarship ($4000) Summer 2014 The Brumbaugh Science Prize for academic achievement, Juniata College ($500) Spring 2013 The William A. Schlicter Award for academic achievement and character, Juniata College ($500) Spring 2013 Dr. Homer & Ethel Will Endowed Scholarship Fund in Biology, Juniata College ($150) Spring 2012 VonLiebig Student Research Fellowship, Juniata College ($2000) Summer 2010 Robert C. Byrd Scholarship ($1500) Summer 2009 MEMBERSHIPS Animal Behavior Society International Union for the Study of Social Insects Entomological Society of America βββ, National Biological Honor Society Juniata College Honors Society PUBLICATIONS Patrick T.
    [Show full text]
  • The Coexistence
    Myrmecological News 13 37-55 2009, Online Earlier Natural history and phylogeny of the fungus-farming ants (Hymenoptera: Formicidae: Myrmicinae: Attini) Natasha J. MEHDIABADI & Ted R. SCHULTZ Abstract Ants of the tribe Attini comprise a monophyletic group of approximately 230 described and many more undescribed species that obligately depend on the cultivation of fungus for food. In return, the ants nourish, protect, and disperse their fungal cultivars. Although all members of this tribe cultivate fungi, attine ants are surprisingly heterogeneous with regard to symbiont associations and agricultural system, colony size and social structure, nesting behavior, and mating system. This variation is a key reason that the Attini have become a model system for understanding the evolution of complex symbioses. Here, we review the natural-history traits of fungus-growing ants in the context of a recently published phylo- geny, collating patterns of evolution and symbiotic coadaptation in a variety of colony and fungus-gardening traits in a number of major lineages. We discuss the implications of these patterns and suggest future research directions. Key words: Hymenoptera, Formicidae, fungus-growing ants, leafcutter ants, colony life, natural history, evolution, mating, agriculture, review. Myrmecol. News 13: 37-55 (online xxx 2008) ISSN 1994-4136 (print), ISSN 1997-3500 (online) Received 12 June 2009; revision received 24 September 2009; accepted 28 September 2009 Dr. Natasha J. Mehdiabadi* (contact author) & Dr. Ted R. Schultz* (contact author), Department of Entomology and Laboratories of Analytical Biology, National Museum of Natural History, Smithsonian Institution, P.O. Box 37012, NHB, CE518, MRC 188, Washington, DC 20013-7012, USA. E-mail: [email protected]; [email protected] * Both authors contributed equally to the work.
    [Show full text]
  • Hymenoptera: Formicidae
    NATAL NEST DISTRIBUTION AND PLEOMETROSIS IN THE DESERT LEAF-CUTTER ANT A CROMYRMEX I/ERSICOLOR (PERGANDE) (HYMENOPTERA: FORMICIDAE) BY STEVEN W. RISSING,* ROBERT A. JOHNSON,* AND GREGORY B. POLLOCK** While most ant colonies are started by single queens, colony foundation by groups of queens, pleometrosis, also occurs (Wilson 1971, H6lldobler and Wilson 1977). Several extensively studied, highly pleometrotic species are notably similar with respect to important aspects of colony ontogeny and population dynamics. Myrmecocystus mimicus, Solenopsis invicta and l/'eromessor per- gandei queens found colonies mutualistically without respect to relatedness (Bartz and H6lldobler 1982, Tschinkel and Howard 1983, Pollock and Rissing 1985, Rissing and Pollock 1986). Further, while adult colonies of these species are highly territorial (Htill- dobler 1976a, 1981; Wilson et al. 1971; Went et al. 1972, Wheeler and Rissing 1975), natal colonies are clumped with brood raiding and subsequent worker defection from brood-raided colonies occur- ring (references cited above for M. mimicus and S. invicta, for F. pergandei: Rissing and Pollock, in press). Given such frequently deleterious natal colony interactions, adaptive value of b.abitat selection by founding queens resulting in clumping of natal nests is unclear. Natal nests of M. mimicus are generally clumped in areas devoid of adult nests (Bartz and H6lldobler 1982), yet still occur near such nests (B. H611dobler, pers. comm.), and queens of S. invicta show some preference for microtopographic features (Tschinkel and Howard 1983). Here we present data relating habitat selection and clumping of natal nests of the highly pleometrotic leaf- cutter ant Acromyrmex versicolor (Pergande) directly to survival of founding queens.
    [Show full text]
  • Hybridization in Ants
    Rockefeller University Digital Commons @ RU Student Theses and Dissertations 2020 Hybridization in Ants Ian Butler Follow this and additional works at: https://digitalcommons.rockefeller.edu/ student_theses_and_dissertations Part of the Life Sciences Commons HYBRIDIZATION IN ANTS A Thesis Presented to the Faculty of The Rockefeller University in Partial Fulfillment of the Requirements for the Degree of Doctor of Philosophy by Ian Butler June 2020 © Copyright by Ian Butler 2020 HYBRIDIZATION IN ANTS Ian Butler, Ph.D. The Rockefeller University 2020 Interspecific hybridization is a relatively common occurrence within all animal groups. Two main factors make hybridization act differently in ants than in other species: eusociality and haplodiploidy. These factors serve to reduce the costs of interspecific hybridization in ants while simultaneously allowing them to take advantage of certain benefits. Eusociality may mitigate the effects of hybridization by allowing hybrids to be shunted into the worker caste, potentially reducing the effects of hybrid sterility. In haplodiploid species, males do not have a father. They instead develop from unfertilized eggs as haploid clones of their mother. This means that interspecifically mated queens do not completely sacrifice reproductive potential even if all hybrids are sterile because they can still produce fertile males. These factors in turn suggest that hybridization should be more common among the social Hymenoptera than other animal groups. Nevertheless, current data suggest that ants hybridize at rates similar to other animal groups, although these data are limited. Furthermore, there is a large amount of overlap between cases of interspecific hybridization and cases of genetic caste determination. A majority of the cases in ants where caste is determined primarily by genotype are associated with hybridization.
    [Show full text]
  • Evaluating the Impacts of Climate Change on Ant Biodiversity in the Temperate Forest Communities of the Northeastern United States
    University of Massachusetts Amherst ScholarWorks@UMass Amherst Doctoral Dissertations Dissertations and Theses Fall November 2014 TURNING UP THE HEAT ON THE LITTLE THINGS THAT RUN THE WORLD: EVALUATING THE IMPACTS OF CLIMATE CHANGE ON ANT BIODIVERSITY IN THE TEMPERATE FOREST COMMUNITIES OF THE NORTHEASTERN UNITED STATES Israel Del Toro University of Massachusetts - Amherst Follow this and additional works at: https://scholarworks.umass.edu/dissertations_2 Part of the Terrestrial and Aquatic Ecology Commons Recommended Citation Del Toro, Israel, "TURNING UP THE HEAT ON THE LITTLE THINGS THAT RUN THE WORLD: EVALUATING THE IMPACTS OF CLIMATE CHANGE ON ANT BIODIVERSITY IN THE TEMPERATE FOREST COMMUNITIES OF THE NORTHEASTERN UNITED STATES" (2014). Doctoral Dissertations. 176. https://doi.org/10.7275/vk8p-ae52 https://scholarworks.umass.edu/dissertations_2/176 This Open Access Dissertation is brought to you for free and open access by the Dissertations and Theses at ScholarWorks@UMass Amherst. It has been accepted for inclusion in Doctoral Dissertations by an authorized administrator of ScholarWorks@UMass Amherst. For more information, please contact [email protected]. TURNING UP THE HEAT ON THE LITTLE THINGS THAT RUN THE WORLD: EVALUATING THE IMPACTS OF CLIMATE CHANGE ON ANT BIODIVERSITY IN THE TEMPERATE FOREST COMMUNITIES OF THE NORTHEASTERN UNITED STATES A Dissertation Presented by ISRAEL DEL TORO Submitted to the Graduate School of the University of Massachusetts Amherst in partial fulfillment of the requirements for the degree of DOCTOR OF PHILOSOPHY SEPTEMBER 2014 Organismic and Evolutionary Biology © Copyright by Israel Del Toro 2014 All Rights Reserved TURNING UP THE HEAT ON THE LITTLE THINGS THAT RUN THE WORLD: EVALUATING THE IMPACTS OF CLIMATE CHANGE ON ANT BIODIVERSITY IN THE TEMPERATE FOREST COMMUNITIES OF THE NORTHEASTERN UNITED STATES A Dissertation Presented by ISRAEL DEL TORO Approved as to style and content by: _______________________________________ Aaron M.
    [Show full text]
  • Sociobiology 62(1): 28-33 (March, 2015) DOI: 10.13102/Sociobiology.V62i1.28-33
    Sociobiology 62(1): 28-33 (March, 2015) DOI: 10.13102/sociobiology.v62i1.28-33 Sociobiology An international journal on social insects RESEARCH ARTICLE - ANTS Recognition and Aggression of conspecific and heterospecific worker in Acromyrmex subterraneus subterraneus (Forel) (Hymenoptera: Formicidae) TG Pikart1,2, PG Lemes1, WC de C Morais1, JC Zanuncio1, TMC Della Lucia1 1 - Universidade Federal de Viçosa, Viçosa, MG, Brazil 2 - Universidade do Estado de Santa Catarina, Lages, SC, Brazil Article History Abstract Aggressive behavior is important for social insects because it makes possible for the Edited by colony to defend itself and the offspring from the action of invasive species. We studied Gilberto M. M. Santos, UEFS, Brazil the recognition and aggressiveness of the leaf-cutting ant Acromyrmex subterraneus Received 12 June 2014 subterraneus (Forel) to co-specific workers from other nest and heterospecific workers Initial acceptance 10 July 2014 of Acromyrmex subterraneus molestans Santschi, Acromyrmex subterraneus brunneus Final acceptance 29 November 2014 (Forel) and Acromyrmex niger (Smith); and queens of their social parasite Acromyrmex ameliae De Souza, Soares and Della Lucia. Workers of other species were placed in Keywords contact with those of A. subterraneus subterraneus for three minutes and during this behavior, competition, defense, etogram, period the behavioral interactions were quantified. The aggressiveness index (AI) heterospecifics, leaf-cutting ant. for each agonistic encounter was obtained. Acromyrmex subterraneus
    [Show full text]