Mixin Based Adaptation of Design Patterns
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Automatic Verification of Java Design Patterns
Automatic Verification of Java Design Patterns Alex Blewitt, Alan Bundy, Ian Stark Division of Informatics, University of Edinburgh 80 South Bridge, Edinburgh EH1 1HN, UK [email protected] [email protected] [email protected] Abstract 2. Design patterns There are a number of books which catalogue and de- Design patterns are widely used by object oriented de- scribe design patterns [4, 1, 6] including an informal de- signers and developers for building complex systems in ob- scription of the key features and examples of their use. ject oriented programming languages such as Java. How- However, at the moment there are no books which attempt ever, systems evolve over time, increasing the chance that to formalise these descriptions, possibly for the following the pattern in its original form will be broken. reasons: We attempt to show that many patterns (implemented in Java) can be verified automatically. Patterns are defined 1. The implementation (and description) of the pattern is in terms of variants, mini-patterns, and constraints in a language-specific. pattern description language called SPINE. These specifi- 2. There are often several ways to implement a pattern cations are then processed by HEDGEHOG, an automated within the same language. proof tool that attempts to prove that Java source code 3. Formal language descriptions are not common within meets these specifications. the object oriented development community. Instead, each pattern is presented as a brief description, and an example of its implementation and use. Designers and developers are then expected to learn the ‘feel’ of a pat- 1. -
Mixins and Traits
◦ ◦◦◦ TECHNISCHE UNIVERSITAT¨ MUNCHEN¨ ◦◦◦◦ ◦ ◦ ◦◦◦ ◦◦◦◦ ¨ ¨ ◦ ◦◦ FAKULTAT FUR INFORMATIK Programming Languages Mixins and Traits Dr. Michael Petter Winter 2016/17 What advanced techiques are there besides multiple implementation inheritance? Outline Design Problems Cons of Implementation Inheritance 1 Inheritance vs Aggregation 1 2 (De-)Composition Problems Lack of finegrained Control 2 Inappropriate Hierarchies Inheritance in Detail A Focus on Traits 1 A Model for single inheritance 1 2 Inheritance Calculus with Separation of Composition and Inheritance Expressions Modeling 2 3 Modeling Mixins Trait Calculus Mixins in Languages Traits in Languages 1 (Virtual) Extension Methods 1 Simulating Mixins 2 Squeak 2 Native Mixins Reusability ≡ Inheritance? Codesharing in Object Oriented Systems is often inheritance-centric. Inheritance itself comes in different flavours: I single inheritance I multiple inheritance All flavours of inheritance tackle problems of decomposition and composition The Adventure Game Door ShortDoor LockedDoor canPass(Person p) canOpen(Person p) ? ShortLockedDoor canOpen(Person p) canPass(Person p) The Adventure Game Door <interface>Doorlike canPass(Person p) canOpen(Person p) Short canPass(Person p) Locked canOpen(Person p) ShortLockedDoor ! Aggregation & S.-Inheritance Door must explicitely provide canOpen(Person p) chaining canPass(Person p) Doorlike must anticipate wrappers ) Multiple Inheritance X The Wrapper FileStream SocketStream read() read() write() write() ? SynchRW acquireLock() releaseLock() ! Inappropriate Hierarchies -
Design Patterns Promote Reuse
Design Patterns Promote Reuse “A pattern describes a problem that occurs often, along with a tried solution to the problem” - Christopher Alexander, 1977 • Christopher Alexander’s 253 (civil) architectural patterns range from the creation of cities (2. distribution of towns) to particular building problems (232. roof cap) • A pattern language is an organized way of tackling an architectural problem using patterns Kinds of Patterns in Software • Architectural (“macroscale”) patterns • Model-view-controller • Pipe & Filter (e.g. compiler, Unix pipeline) • Event-based (e.g. interactive game) • Layering (e.g. SaaS technology stack) • Computation patterns • Fast Fourier transform • Structured & unstructured grids • Dense linear algebra • Sparse linear algebra • GoF (Gang of Four) Patterns: structural, creational, behavior The Gang of Four (GoF) • 23 structural design patterns • description of communicating objects & classes • captures common (and successful) solution to a category of related problem instances • can be customized to solve a specific (new) problem in that category • Pattern ≠ • individual classes or libraries (list, hash, ...) • full design—more like a blueprint for a design The GoF Pattern Zoo 1. Factory 13. Observer 14. Mediator 2. Abstract factory 15. Chain of responsibility 3. Builder Creation 16. Command 4. Prototype 17. Interpreter 18. Iterator 5. Singleton/Null obj 19. Memento (memoization) 6. Adapter Behavioral 20. State 21. Strategy 7. Composite 22. Template 8. Proxy 23. Visitor Structural 9. Bridge 10. Flyweight 11. -
Declaring Vars in Class Php
Declaring Vars In Class Php Is Tobe Esculapian or misformed after aluminous Neall plopping so magnanimously? Forrest corresponds prolixly? Forbidden Osmund sometimes pargets any lilliputian yell guardedly. How variable as int, php in using interpolation rather than configured one of people prefer to override whatever information useful whenever you call it leads to expose parts that We daily work with advertisers relevant to our readers. Acceptable in php programmers and retry saving again, declaration must be. Declaring a property but a class is an exact task use one table the keyword public protected or private followed by a normal variable declaration If. If you wrong there holding an IE bug with var a foo only declaring a global for file scope. Your class declaration format is declared protected field? You help also define methods in the class that allow tool to manipulate the values of object properties and perform operations on objects. PHP Class Properties Tutorials by Supun Kavinda. An amazon associate we declare the class in declarations as containers for our clients in the usages of a name given client exits and in? How clean and in declaring a class declaration scope in the vars of that are their parent selector. Using long array syntax array 1 2 3 for declaring arrays is generally. By declaring a class declaration, classes and see for? It turns out some interview situations, every time to magento source and other class names but you have a common occurrence, therefore considered a value. The var keyword in PHP is used to declare the property or variable of class which is primitive by default The var keyword is alike as out when declaring variables or root of a class Note The var keyword was deprecated from version 50. -
Design Pattern Interview Questions
DDEESSIIGGNN PPAATTTTEERRNN -- IINNTTEERRVVIIEEWW QQUUEESSTTIIOONNSS http://www.tutorialspoint.com/design_pattern/design_pattern_interview_questions.htm Copyright © tutorialspoint.com Dear readers, these Design Pattern Interview Questions have been designed specially to get you acquainted with the nature of questions you may encounter during your interview for the subject of Design Pattern. As per my experience good interviewers hardly plan to ask any particular question during your interview, normally questions start with some basic concept of the subject and later they continue based on further discussion and what you answer: What are Design Patterns? Design patterns represent the best practices used by experienced object-oriented software developers. Design patterns are solutions to general problems that software developers faced during software development. These solutions were obtained by trial and error by numerous software developers over quite a substantial period of time. What is Gang of Four GOF? In 1994, four authors Erich Gamma, Richard Helm, Ralph Johnson and John Vlissides published a book titled Design Patterns - Elements of Reusable Object-Oriented Software which initiated the concept of Design Pattern in Software development. These authors are collectively known as Gang of Four GOF. Name types of Design Patterns? Design patterns can be classified in three categories: Creational, Structural and Behavioral patterns. Creational Patterns - These design patterns provide a way to create objects while hiding the creation logic, rather than instantiating objects directly using new opreator. This gives program more flexibility in deciding which objects need to be created for a given use case. Structural Patterns - These design patterns concern class and object composition. Concept of inheritance is used to compose interfaces and define ways to compose objects to obtain new functionalities. -
Addison Wesley, 2000, Pp
------==Proudly Presented by MODELER==------ preface.fm Page xv Wednesday, June 6, 2001 4:18 PM Preface Design patterns and object-oriented programming. They hold such promise to make your life as a software designer and developer eas- ier. Their terminology is bandied about every day in the technical and even the popular press. But it can be hard to learn them, to become proficient with them, to understand what is really going on. Perhaps you have been using an object-oriented or object-based language for years. Have you learned that the true power of objects is not inheritance but is in “encapsulating behaviors”? Perhaps you are curious about design patterns and have found the literature a bit too esoteric and high-falutin. If so, this book is for you. It is based on years of teaching this material to software developers, both experienced and new to object orientation. It is based upon the belief—and our experience—that once you understand the basic principles and motivations that underlie these concepts, why they are doing what they do, your learning curve will be incredibly shorter. And in our discussion of design patterns, you will under- stand the true mindset of object orientation, which is a necessity before you can become proficient. As you read this book, you will gain a solid understanding of the ten most essential design patterns. You will learn that design pat- terns do not exist on their own, but are supposed to work in con- cert with other design patterns to help you create more robust applications. -
Object-Oriented Analysis, Design and Implementation
Undergraduate Topics in Computer Science Brahma Dathan Sarnath Ramnath Object-Oriented Analysis, Design and Implementation An Integrated Approach Second Edition Undergraduate Topics in Computer Science Undergraduate Topics in Computer Science (UTiCS) delivers high-quality instruc- tional content for undergraduates studying in all areas of computing and information science. From core foundational and theoretical material to final-year topics and applications, UTiCS books take a fresh, concise, and modern approach and are ideal for self-study or for a one- or two-semester course. The texts are all authored by established experts in their fields, reviewed by an international advisory board, and contain numerous examples and problems. Many include fully worked solutions. More information about this series at http://www.springer.com/series/7592 Brahma Dathan • Sarnath Ramnath Object-Oriented Analysis, Design and Implementation An Integrated Approach Second Edition 123 Brahma Dathan Sarnath Ramnath Department of Information and Computer Department of Computer Science Science and Information Technology Metropolitan State University St. Cloud State University St. Paul, MN St. Cloud, MN USA USA Series editor Ian Mackie Advisory Board Samson Abramsky, University of Oxford, Oxford, UK Karin Breitman, Pontifical Catholic University of Rio de Janeiro, Rio de Janeiro, Brazil Chris Hankin, Imperial College London, London, UK Dexter Kozen, Cornell University, Ithaca, USA Andrew Pitts, University of Cambridge, Cambridge, UK Hanne Riis Nielson, Technical University of Denmark, Kongens Lyngby, Denmark Steven Skiena, Stony Brook University, Stony Brook, USA Iain Stewart, University of Durham, Durham, UK A co-publication with the Universities Press (India) Private Ltd., licensed for sale in all countries outside of India, Pakistan, Bhutan, Bangladesh, Sri Lanka, Nepal, The Maldives, Middle East, Malaysia, Indonesia and Singapore. -
Design Patterns in PHP and Laravel — Kelt Dockins Design Patterns in PHP and Laravel
Design Patterns in PHP and Laravel — Kelt Dockins Design Patterns in PHP and Laravel Kelt Dockins [email protected] Design Patterns in PHP and Laravel Kelt Dockins Dolph, Arkansas USA ISBN-13 (pbk): 978-1-4842-2450-2 ISBN-13 (electronic): 978-1-4842-2451-9 DOI 10.1007/978-1-4842-2451-9 Library of Congress Control Number: 2016961807 Copyright © 2017 by Kelt Dockins This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation, broadcasting, reproduction on microfilms or in any other physical way, and transmission or information storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now known or hereafter developed. Trademarked names, logos, and images may appear in this book. Rather than use a trademark symbol with every occurrence of a trademarked name, logo, or image we use the names, logos, and images only in an editorial fashion and to the benefit of the trademark owner, with no intention of infringement of the trademark. The use in this publication of trade names, trademarks, service marks, and similar terms, even if they are not identified as such, is not to be taken as an expression of opinion as to whether or not they are subject to proprietary rights. While the advice and information in this book are believed to be true and accurate at the date of publication, neither the authors nor the editors nor the publisher can accept any legal responsibility for any errors or omissions that may be made. -
Learning Javascript Design Patterns
Learning JavaScript Design Patterns Addy Osmani Beijing • Cambridge • Farnham • Köln • Sebastopol • Tokyo Learning JavaScript Design Patterns by Addy Osmani Copyright © 2012 Addy Osmani. All rights reserved. Revision History for the : 2012-05-01 Early release revision 1 See http://oreilly.com/catalog/errata.csp?isbn=9781449331818 for release details. ISBN: 978-1-449-33181-8 1335906805 Table of Contents Preface ..................................................................... ix 1. Introduction ........................................................... 1 2. What is a Pattern? ...................................................... 3 We already use patterns everyday 4 3. 'Pattern'-ity Testing, Proto-Patterns & The Rule Of Three ...................... 7 4. The Structure Of A Design Pattern ......................................... 9 5. Writing Design Patterns ................................................. 11 6. Anti-Patterns ......................................................... 13 7. Categories Of Design Pattern ............................................ 15 Creational Design Patterns 15 Structural Design Patterns 16 Behavioral Design Patterns 16 8. Design Pattern Categorization ........................................... 17 A brief note on classes 17 9. JavaScript Design Patterns .............................................. 21 The Creational Pattern 22 The Constructor Pattern 23 Basic Constructors 23 Constructors With Prototypes 24 The Singleton Pattern 24 The Module Pattern 27 iii Modules 27 Object Literals 27 The Module Pattern -
Dependency Injection in Unity3d
Dependency Injection in Unity3D Niko Parviainen Bachelor’s thesis March 2017 Technology, communication and transport Degree Programme in Software Engineering Description Author(s) Type of publication Date Parviainen, Niko Bachelor’s thesis March 2017 Language of publication: English Number of pages Permission for web publi- 57 cation: x Title of publication Dependency Injection in Unity3D Degree programme Degree Programme in Software Engineering Supervisor(s) Rantala, Ari Hämäläinen, Raija Assigned by Psyon Games Oy Abstract The objective was to find out how software design patterns and principles are applied to game development to achieve modular design. The tasks of the research were to identify the dependency management problem of a modular design, find out what the solutions offered by Unity3D are, find out what the dependency injection pattern is and how it is used in Unity3D environment. Dependency management in Unity3D and the dependency injection pattern were studied. Problems created by Unity3D’s solutions were introduced with examples. Dependency in- jection pattern was introduced with examples and demonstrated by implementing an ex- ample game using one of the available third-party frameworks. The aim of the example game was to clarify if the use of dependency injection brings modularity in Unity3D envi- ronment and what the cost of using it is. The principles of SOLID were introduced with generic examples and used to assist depend- ency injection to further increase the modularity by bringing the focus on class design. Dependency injection with the help of SOLID principles increased the modularity by loosely coupling classes even though slightly increasing the overall complexity of the architecture. -
Facet: a Pattern for Dynamic Interfaces
Facet: A pattern for dynamic interfaces Author: Eric Crahen SUNY at Buffalo CSE Department Amherst, NY 14260 201 Bell Hall 716-645-3180 <[email protected]> Context: Wherever it is desirable to create a context sensitive interface in order to modify or control the apparent behavior if an object. Problem: How can I modify the behavior of an existing object so that different behaviors are shown under different circumstances; and yet still maintain a clean separation between the policy (when each behavior is available) and implementation of each behavior allowing them to be developed independently of one another? Forces: Interfaces provide an essential level of abstraction to object oriented programming. Generally, objects are able define aspects of their function very well using interfaces. At times, this may not be enough. When dealing with two or more classes whose responsibilities are distinctly separate, but whose behavior is closely related, classes can begin to resist modularization. For example, adding security to an application means inserting code that performs security checks into numerous locations in existing classes. Clearly, these responsibilities are distinct; the original classes being responsible for the tasks they were designed to perform, and the security classes being responsible for providing access control. However, making those original classes secure means intermingling code that deals with security. When the classes dealing with security are changed many classes are going to be impacted. One method of adding new behavior to an existing class might be to simply create a subclass and embed that new behavior. In the security example, this would mean creating a subclass for each class that needs to be secure and adding calls to the security code. -
Designpatternsphp Documentation Release 1.0
DesignPatternsPHP Documentation Release 1.0 Dominik Liebler and contributors Jul 18, 2021 Contents 1 Patterns 3 1.1 Creational................................................3 1.1.1 Abstract Factory........................................3 1.1.2 Builder.............................................8 1.1.3 Factory Method......................................... 13 1.1.4 Pool............................................... 18 1.1.5 Prototype............................................ 21 1.1.6 Simple Factory......................................... 24 1.1.7 Singleton............................................ 26 1.1.8 Static Factory.......................................... 28 1.2 Structural................................................. 30 1.2.1 Adapter / Wrapper....................................... 31 1.2.2 Bridge.............................................. 35 1.2.3 Composite............................................ 39 1.2.4 Data Mapper.......................................... 42 1.2.5 Decorator............................................ 46 1.2.6 Dependency Injection...................................... 50 1.2.7 Facade.............................................. 53 1.2.8 Fluent Interface......................................... 56 1.2.9 Flyweight............................................ 59 1.2.10 Proxy.............................................. 62 1.2.11 Registry............................................. 66 1.3 Behavioral................................................ 69 1.3.1 Chain Of Responsibilities...................................