Chapter 3 Direct Sums, Affine Maps, the Dual Space, Duality
Chapter 3 Direct Sums, Affine Maps, The Dual Space, Duality 3.1 Direct Products, Sums, and Direct Sums There are some useful ways of forming new vector spaces from older ones. Definition 3.1. Given p 2vectorspacesE ,...,E , ≥ 1 p the product F = E1 Ep can be made into a vector space by defining addition⇥···⇥ and scalar multiplication as follows: (u1,...,up)+(v1,...,vp)=(u1 + v1,...,up + vp) λ(u1,...,up)=(λu1,...,λup), for all ui,vi Ei and all λ R. 2 2 With the above addition and multiplication, the vector space F = E E is called the direct product of 1 ⇥···⇥ p the vector spaces E1,...,Ep. 151 152 CHAPTER 3. DIRECT SUMS, AFFINE MAPS, THE DUAL SPACE, DUALITY The projection maps pr : E E E given by i 1 ⇥···⇥ p ! i pri(u1,...,up)=ui are clearly linear. Similarly, the maps in : E E E given by i i ! 1 ⇥···⇥ p ini(ui)=(0,...,0,ui, 0,...,0) are injective and linear. It can be shown (using bases) that dim(E E )=dim(E )+ +dim(E ). 1 ⇥···⇥ p 1 ··· p Let us now consider a vector space E and p subspaces U1,...,Up of E. We have a map a: U U E 1 ⇥···⇥ p ! given by a(u ,...,u )=u + + u , 1 p 1 ··· p with u U for i =1,...,p. i 2 i 3.1. DIRECT PRODUCTS, SUMS, AND DIRECT SUMS 153 It is clear that this map is linear, and so its image is a subspace of E denoted by U + + U 1 ··· p and called the sum of the subspaces U1,...,Up.
[Show full text]