On the Structure of Abstract H∗–Algebras Kevin Dunne University of Strathclyde, Glasgow, Scotland.
[email protected] Previously we have shown that the topos approach to quantum theory of Doering and Isham can be generalised to a class of categories typically studied within the monoidal approach to quantum theory of Abramsky and Coecke. In the monoidal approach to quantum theory H∗–algebras provide an axiomatisation of states and observables. Here we show that H∗–algebras naturally correspond with the notions of states and observables in the generalised topos approach to quantum theory. We then combine these results with the †–kernel approach to quantum logic of Heunen and Jacobs, which we use to prove a structure theorem for H∗–algebras. This structure theorem is a generalisation of the structure theorem of Ambrose for H∗–algebras the category of Hilbert spaces. 1 Introduction The present work is part of an ongoing project [10, 11] to bridge the monoidal approach to quantum theory of Abramsky and Coecke [1], and the topos approach to quantum theory of Butterfield, Doering and Isham [17, 9]. Both the monoidal and topos approaches to quantum theory are algebraic, in that they seek to represent some aspect of physical reality with algebraic structures. By taking the concept of a “physical observable” as a fixed point of reference we cast the difference between these approaches as internal vs. external points of view. In particular, in the monoidal approach one encodes the notion of “ob- servable” as an internal commutative algebra (for example a Frobenius algebra [7] or an H∗–algebra [2]) in some suitable monoidal category A – traditionally the category Hilb of Hilbert spaces and bounded linear maps.