Absolute Magnitude

Total Page:16

File Type:pdf, Size:1020Kb

Absolute Magnitude 1 2020 Div. C (High School) Astronomy Help Session Sunday, Feb. 23th, 2020 Star and Galaxy Formation and Evolution Scott Jackson Mt. Cuba Astronomical Observatory • SO competition on March 7th . • Resources – two computers or two 3 ring binders or one laptop plus one 3 ring binder – Programmable calculator – Connection to the internet is not allowed! – Help session before competition at Mt. Cuba Astronomical Observatory 2 3 4 Study aid -1 • Google each object, – Have a good qualitative feel for what the object is doing or has done within the astrophysical concepts that the student is being asked to know. – → No JS9 questions for the State competition 5 Study aid - 2 • Know the algebra behind the physics – Just because you think you have the right “equation” to use does not mean you know how to use it!!! – Hint for math problems: Solve equations symbolically BEFORE you put in numbers. Things tend to cancel out including parameters you do not need to have values for. – Know how to use scientific notation. The test – 2 parts 6 • Part 1 – multiple choice and a couple fill in the blanks • Part 2 – word problems for astrophysics there will be some algebra →Solve the equations symbolically first then put in numbers!!!! →Hint: most problems will not need a calculator if done this way 7 Stellar and galatic evolution stellar classification, spectral features and chemical composition, luminosity, Topics blackbody radiation, color index Emphasis from rules H-R diagram transitions, Neutron stars Stellar Mass and supermassive black holes, , Galactic structure and interactions, Quasars, AGNs, Galaxy Clusters ad groups of galaxies gravitational waves. Gravitational lensing, Dark Matter and dark energy, \ Warm-hot intergalactic medium (WHIM) Cosmic Microwave Background (CMB) • Kepler’s laws to answer questions relating to the orbital motions of galaxies; Use the distance modulus, Type Ia supernovas, Hubble’s law and redshift and recessional velocities and distances to galaxies 8 Quasars (AGN) Blazars – quasars with jet pointed at us One of the most intrinsically bright objects in the universe. Believed to be super massive black holes devouring matter – accelerating it – as it gets sucked into the black hole, gets hot, gives off radiation and part of the material comes out as a jet traveling at a significant fraction of the speed of light. 9 Concepts / themes 1. Very distant colliding galaxies clusters can show • Baryonic or normal matter as light from stars • And dark matter which causes gravitational lensing of distant objects. • They are not in the same spot – because dark matter is not slowed down by interaction with normal matter 2. Quasars and active galactic nuclei (AGN) are supermassive black holes [SMBH] (millions of suns) with an accretion disk and possible jets. SMBH may have formed by collapse of matter at the earliest time of the universe. All galaxies have SMBH at their cores. 3. Distant quasars or blazars used to detect Warm Hot Intergalactic Medium (WHIM) diffuse normal matter that could be part of dark matter SN UDS10Wil – Early Universe – furthest type 1a discovered. 10 NGC 2623 – Merging galaxies, star formation, tidal tails, AGN ~ quasar GRB 150101B – Gamma Ray burst – likely two neutron stars merging like GW170817 JKCS 041 – most distant galaxy cluster – not forming stars Suggests new stars formed from galaxy collisions. MACS J0717.5+3745 -- colliding galaxy cluster lensing mass distribution MACS J1149.5+2223 – Galaxy cluster w lensing & furthest star found Bullet Cluster (1E 0657-56) -colliding galaxy cluster shows evidence of dark matter H1821+643 Quasar used to detect WHIM GOODS-S 29323 – Black hole collapsed directly from gas clouds Very red due to re-emmision of light from disk. H2356-309 Quasar with jet pointed directly at us – evidence of WHIM 3 Quasars 152156.48+520238.5 -- thick disk of gas and dust hides the quasar 153714.26+271611.6 222256.11-094636.2 black hole growing rapidly PSS 0133+0400 PSS 0955+5940 -- very distant quasars, can be used as standard candles to determine distances in the early universe GW151226 – 2nd confirmed gravity wave event M87 – Giant elliptical galaxy in Virgo, AGN with jet, first image of a black hole 3C 273 – First quasar discovered Furthest type 1a supernovae 11 SN UDS10Wil observed by Hubble telescope Redshift, Z, = 1.914 ~3200 Mpc for Ho = 72 km/sec/MPc www.nasa.gov/mission_pages/hubble/science/sn-wilson.html Hubble space telescope image12 NGC 2623 Redshift, Z, = 0.01847 255 mly = 78 MPc Colliding / merging galaxies AGN Represents later star formation due to galaxy collision www.spacetelescope.org/images/potw1742a/ 13 GRB 150101B Gamma Ray Burst or Kilonova Detected Jan 1, 2015 using the Swift Satellite and the Fermi Gamma Ray space telescope. Z= 0.125 (?) Distance = 520 MPc Likely caused by Neutron star merger like that with gravity waves detected https://www.space.com/42158- (GW170817) another-neutron-star-crash- chandra.harvard.edu/photo/2018/kilonova/ detected.html?jwsource=cl 14 JKCS 041 One of the most distant galaxy clusters seen. Z=1.9 ~10 billion L.Y away Star formation in these early galaxies appears to have stopped. Later star formation then caused by colliding galaxies? bib jvno 15 MACS J0717.5+3745 Massive Cluster Survey Large galaxy cluster 5.4 Billion LY away Z~0.545 In Auriga Merger of four galaxy clusters. Hot gas is color coded Mass distribution inferred by lensing of more distant object https://www.spacetelescope.org/images/op o0917a/ 16 MACS J0717.5+3745 Evidence of Dark matter in and around it Map of the likely dark matter around this galaxy cluster show in blue – inferred by gravitational lensing 17 MACS J1149.5+2223 Massive Cluster Survey Galaxy cluster ~5 Billion LY away Redshift, Z, = 0.543 In Leo https://chandra.harvard.edu/photo/2017/macsj1149 18 Gravitational lensing https://www.nasa.gov/content/d iscoveries-highlights-shining- a-light-on-dark-matter • Mass along the line of sight from a distant object will distort the image of the distant object – arcs or multiple images • Used to measure dark matter 19 20 Bullet Cluster (1E 0657-56) Galaxy collision Gravitational lensing in this galaxy is evidence for the existence of dark matter. 3.8 Billion LY Z ~ 0.296 https://chandra.harvard.edu /photo/2006/1e0657/1e065 7_hand.html 21 • Pink is normal matter • Light blue is dark matter measured by gravitational lensing • Offset because normal matter is slowed by interaction with itself • While dark matter was not impeded 22 H1821+643 Quasar in Draco 30 billion solar mass black hole that powers the Quasar Z=0.297 3.4 billion LY Absorption of light by intervening warm hot intergalactic medium (WHIM) 23 GOODS-S 29323 Likely example of where a supermassive black hole was created by the condensation/ collapse of gas Great Observatories Origins Deep Survey … Cluster of galaxies around supermassive black hole Z >~ 6 – very early ~ 500 million years after the big bang(!) https://chandra.harvard.edu/photo/2016/bhseeds/ 24 GOODS consists of data from the following space-based observatories: • The Hubble Space Telescope (optical imaging with the Advanced Camera for Surveys) • The Spitzer Space Telescope (infrared imaging) • The Chandra X-Ray Observatory (X-ray) • XMM-Newton (an X-ray telescope belonging to the European Space Agency) • The Herschel Space Observatory (an infrared telescope belonging to the ESA) 25 H2356-309 Active Galactic Nuclei or Blazar Growing supermassive black hole X-ray light from a Quasar passing through a wall of galaxies (“Sculptor Wall”) Absorption from warm-hot intergalactic media (WHIM) ➔ missing matter Redshift, Z, = 0.165 613 MPc (2 Billion LY) https://chandra.harvard.edu/photo/2010/h2356 26 Sculptor wall (blue line) Direction of Quasar – red dotted line 27 Quasar 152156.48+520238.5 Observed in Xray (Chandra) Quasar 153714.26+271611.6 Rapidly consuming matter Quasar 222256.11-094636.2 through an “accretion disk” Outer cavities that obscures the light from the black hole. X-rays get out. Inner cavities https://chandra.harvard.edu/photo/2015/3quasars// 28 PSS 0955+5940 One of two most distance quasars observed Quasars as “standard candles” https://arxiv.org/pdf/1712.07515.pdf 29 30 GW151226 Gravitational wave signal resulting in a 20.8 sun mass black hole Gravity waves 31 https://www.ligo.caltech.edu/page/what-is-interferometer 32 https://www.ligo.caltech.edu/page/press-release-gw170817 https://www.youtube.com/watch?time_continue=1&v=4X1j2b2atGM Net mass loss in black hole 33 mergers • When lack holes merge they give off a tremendous amount of energy as a result of producing gravity waves. • The energy from producing these energy waves comes from conversion of the mass of the black hole to energy • E=mc2 • The amount of mass lost observed by Ligo is ~3 solar masses(!) https://physicstoday.scitation.org/d oi/full/10.1063/PT.3.1294 34 M87 35 M87 36 M87 Close up of Jet • Z (redshift) = 0.00428 • ~ 16.4 Mpc • Relatively close by • ~53 million light years away 37 M87 Event Horizon telescope view of the core of M87 First supermassive black hole to be imaged (at least its event horizon) 38 M87 39 3C 273 https://chandra.harvard.edu/xray_sources/3c273/i ndex.html One of the first quasars ever detected. 40 41 Remnant radiation let over from the early in the universe – VERY uniform across the sky. Very slight variations (below) is an indication of slight initial variations in the universe that lead to large scale structures The Sculpture wall is an example (H2356-309) of a large scale structure Microwave background Brightness of Stars • Brightness measured as luminosity or magnitude – Luminosity is the total energy output of a star • Depends on size and surface temperature • Usually measure relative to our sun, e.g., 4 times our sun.
Recommended publications
  • Science Olympiad Astronomy C Division Event University of Chicago Invitational
    Science Olympiad Astronomy C Division Event University of Chicago Invitational University of Chicago Chicago, IL January 11, 2020 Team Number: Team Name: Instructions: 1) Please turn in all materials at the end of the event. 2) Do not forget to put your team name and team number at the top of all answer pages. 3) Write all answers on the lines on the answer pages. Any marks elsewhere will not be scored. 4) Do not worry about significant figures. Use 3 or more in your answers, regardless of how many are in the question. 5) Please do not access the internet during the event. If you do so, your team will be disqualified. 6) Feel free to take apart the test and staple it back together at the end! 7) Good luck! And may the stars be with you! 1 Section A: Use the Image/Illustration Set to answer the following questions. Each sub-question in this section is worth one point. 1. Image 1 shows the Bullet Cluster. (a) What part of the electromagnetic spectrum was this image taken in? (b) What do the blue regions correspond to? (c) How was the matter in the blue regions detected? (d) Which other image shows this cluster? 2. Image 2 shows part of M87. (a) What part of M87 does this image show? (b) What part of the electromagnetic spectrum was this image taken in? (c) Which image shows a zoomed-in radio observation of this region? (d) What type of astronomical object is shown in the image from part (c)? 3.
    [Show full text]
  • Gravitational Waves and Gamma-Rays from a Binary Neutron Star Merger: Gw170817 and Grb 170817A
    Draft version October 15, 2017 Typeset using LATEX twocolumn style in AASTeX61 GRAVITATIONAL WAVES AND GAMMA-RAYS FROM A BINARY NEUTRON STAR MERGER: GW170817 AND GRB 170817A B. P. Abbott,1 R. Abbott,1 T. D. Abbott,2 F. Acernese,3, 4 K. Ackley,5, 6 C. Adams,7 T. Adams,8 P. Addesso,9 R. X. Adhikari,1 V. B. Adya,10 C. Affeldt,10 M. Afrough,11 B. Agarwal,12 M. Agathos,13 K. Agatsuma,14 N. Aggarwal,15 O. D. Aguiar,16 L. Aiello,17, 18 A. Ain,19 P. Ajith,20 B. Allen,10, 21, 22 G. Allen,12 A. Allocca,23, 24 M. A. Aloy,25 P. A. Altin,26 A. Amato,27 A. Ananyeva,1 S. B. Anderson,1 W. G. Anderson,21 S. V. Angelova,28 S. Antier,29 S. Appert,1 K. Arai,1 M. C. Araya,1 J. S. Areeda,30 N. Arnaud,29, 31 K. G. Arun,32 S. Ascenzi,33, 34 G. Ashton,10 M. Ast,35 S. M. Aston,7 P. Astone,36 D. V. Atallah,37 P. Aufmuth,22 C. Aulbert,10 K. AultONeal,38 C. Austin,2 A. Avila-Alvarez,30 S. Babak,39 P. Bacon,40 M. K. M. Bader,14 S. Bae,41 P. T. Baker,42 F. Baldaccini,43, 44 G. Ballardin,31 S. W. Ballmer,45 S. Banagiri,46 J. C. Barayoga,1 S. E. Barclay,47 B. C. Barish,1 D. Barker,48 K. Barkett,49 F. Barone,3, 4 B. Barr,47 L. Barsotti,15 M. Barsuglia,40 D. Barta,50 J.
    [Show full text]
  • Bibliography of Refereed Papers: Roger L
    Bibliography of refereed papers: Roger L. Davies 203 refereed papers, >24,000 citations, h=75 62 papers >100 citations; 13 papers >500 citations and one has more than 1000 citations. [203] Francesco D'Eugenio, Matthew Colless, Nicholas Scott, Arjen van der Wel, Roger L. Davies, Jesse van de Sande, Sarah M. Sweet, Sree Oh, Brent Groves, Rob Sharp, Matt S. Owers, Joss Bland-Hawthorn, Scott M. Croom, Sarah Brough, Julia J. Bryant, Michael Goodwin, Jon S. Lawrence, Nuria P. F. Lorente, and Samuel N. Richards. The SAMI Galaxy Survey: stellar population and structural trends across the Fundamental Plane. MNRAS, April 2021. [202] Scott M. Croom, Matt S. Owers, Nicholas Scott, Henry Poetrodjojo, Brent Groves, Jesse van de Sande, Tania M. Barone, Luca Cortese, Francesco D'Eugenio, Joss Bland-Hawthorn, Julia Bryant, Sree Oh, Sarah Brough, James Agostino, Sarah Casura, Barbara Catinella, Matthew Colless, Gerald Cecil, Roger L. Davies, Michael J. Drinkwater, Simon P. Driver, Ignacio Ferreras, Caroline Foster, Amelia Fraser-McKelvie, Jon Lawrence, Sarah K. Leslie, Jochen Liske, Angel´ R. L´opez-S´anchez, Nuria P. F. Lorente, Rebecca McElroy, Anne M. Medling, Danail Obreschkow, Samuel N. Richards, Rob Sharp, Sarah M. Sweet, Dan S. Taranu, Edward N. Taylor, Edoardo Tescari, Adam D. Thomas, James Tocknell, and Sam P. Vaughan. The SAMI Galaxy Survey: the third and final data release. MNRAS, February 2021. [201] Romina Ahumada and others. The 16th Data Release of the Sloan Digital Sky Surveys: First Release from the APOGEE-2 Southern Survey and Full Release of eBOSS Spectra. ApJS, 249(1):3, July 2020. [200] S.
    [Show full text]
  • Measuring the Hubble Constant with a Sample of Kilonovae
    Measuring the Hubble Constant with a sample of kilonovae Michael W. Coughlin1;2,∗ Sarah Antier3, Tim Dietrich4;5, Ryan J. Foley6, Jack Heinzel7;8, Mattia Bulla9, Nelson Christensen7;8, David A. Coulter6, Lina Issa9;10, and Nandita Khetan11 1School of Physics and Astronomy, University of Minnesota, Minneapolis, Minnesota 55455, USA 2Division of Physics, Math, and Astronomy, California Institute of Technology, Pasadena, CA 91125, USA 3APC, UMR 7164, 10 rue Alice Domon et Leonie´ Duquet, 75205 Paris, France 4Institut fur¨ Physik und Astronomie, Universitat¨ Potsdam, Haus 28, Karl-Liebknecht-Str. 24/25, 14476, Potsdam, Germany 5Nikhef, Science Park 105, 1098 XG Amsterdam, The Netherlands 6Department of Astronomy and Astrophysics, University of California, Santa Cruz, CA 95064, USA 7Artemis, Universite´ Coteˆ d’Azur, Observatoire Coteˆ d’Azur, CNRS, CS 34229, F-06304 Nice Cedex 4, France 8Physics and Astronomy, Carleton College, Northfield, MN 55057, USA 9Nordita, KTH Royal Institute of Technology and Stockholm University, Roslagstullsbacken 23, arXiv:2008.07420v1 [astro-ph.HE] 17 Aug 2020 SE-106 91 Stockholm, Sweden 10Universite´ Paris-Saclay, ENS Paris-Saclay, Departement´ de Phyisque, 91190, Gif-sur-Yvette, France. ∗ Corresponding Author: [email protected]. 1 11Gran Sasso Science Institute (GSSI), I-67100 L’Aquila, Italy 1 Abstract Kilonovae produced by the coalescence of compact binaries with at least one neutron star are promising standard sirens for an independent measurement of the Hubble constant (H0). Through their detection via follow-up of gravitational-wave (GW), short gamma-ray bursts (sGRBs) or optical surveys, a large sample of kilonovae (even without GW data) can be used for H0 contraints.
    [Show full text]
  • The Afterglow and Early-Type Host Galaxy of the Short GRB 150101B at Z = 0.1343
    The Afterglow and Early-type Host Galaxy of the Short GRB 150101B at Z = 0.1343 The Harvard community has made this article openly available. Please share how this access benefits you. Your story matters Citation Fong, W., R. Margutti, R. Chornock, E. Berger, B. J. Shappee, A. J. Levan, N. R. Tanvir, et al. 2016. “The Afterglow and Early-type Host Galaxy of the Short GRB 150101B at Z = 0.1343.” The Astrophysical Journal 833, no. 2: 151. doi:10.3847/1538-4357/833/2/151. Published Version doi:10.3847/1538-4357/833/2/151 Citable link http://nrs.harvard.edu/urn-3:HUL.InstRepos:30510303 Terms of Use This article was downloaded from Harvard University’s DASH repository, and is made available under the terms and conditions applicable to Open Access Policy Articles, as set forth at http:// nrs.harvard.edu/urn-3:HUL.InstRepos:dash.current.terms-of- use#OAP DRAFT VERSION SEPTEMBER 1, 2016 Preprint typeset using LATEX style emulateapj v. 01/23/15 THE AFTERGLOW AND EARLY-TYPE HOST GALAXY OF THE SHORT GRB 150101B AT Z = 0:1343 ; ; ; W. FONG1 2 , R. MARGUTTI3 4 , R. CHORNOCK5 , E. BERGER6 , B. J. SHAPPEE7 8 , A. J. LEVAN9 , N. R. TANVIR10 , N. SMITH2 , ; P. A. MILNE2 , T. LASKAR11 12 , D. B. FOX13 , R. LUNNAN14 , P. K. BLANCHARD6 , J. HJORTH15 , K. WIERSEMA10 , A. J. VAN DER HORST16 , D. ZARITSKY2 Draft version September 1, 2016 ABSTRACT We present the discovery of the X-ray and optical afterglows of the short-duration GRB 150101B, pinpointing the event to an early-type host galaxy at z = 0:1343±0:0030.
    [Show full text]
  • Fermi GBM Observations of GRB 150101B: a Second Nearby Event with a Short Hard Spike and a Soft Tail
    The Astrophysical Journal Letters, 863:L34 (9pp), 2018 August 20 https://doi.org/10.3847/2041-8213/aad813 © 2018. The American Astronomical Society. Fermi GBM Observations of GRB 150101B: A Second Nearby Event with a Short Hard Spike and a Soft Tail E. Burns1, P. Veres2 , V. Connaughton3, J. Racusin4 , M. S. Briggs2,4, N. Christensen5,6, A. Goldstein3 , R. Hamburg2,4, D. Kocevski7, J. McEnery4, E. Bissaldi8,9 , T. Dal Canton1, W. H. Cleveland3, M. H. Gibby10, C. M. Hui7, A. von Kienlin11, B. Mailyan2, W. S. Paciesas3 , O. J. Roberts3, K. Siellez12, M. Stanbro4, and C. A. Wilson-Hodge7 1 NASA Goddard Space Flight Center, Greenbelt, MD 20771, USA; [email protected] 2 Center for Space Plasma and Aeronomic Research, University of Alabama in Huntsville, Huntsville, AL 35899, USA 3 Science and Technology Institute, Universities Space Research Association, Huntsville, AL 35805, USA 4 Space Science Department, University of Alabama in Huntsville, Huntsville, AL 35899, USA 5 Physics and Astronomy, Carleton College, MN 55057, USA 6 Artemis, Université Côte d’Azur, Observatoire Côte d’Azur, CNRS, CS 34229, F-06304 Nice Cedex 4, France 7 Astrophysics Branch, ST12, NASA/Marshall Space Flight Center, Huntsville, AL 35812, USA 8 Istituto Nazionale di Fisica Nucleare, Sezione di Bari, I-70126 Bari, Italy 9 Dipartimento Interateneo di Fisica, Politecnico di Bari, Via E. Orabona 4, I-70125, Bari, Italy 10 Jacobs Technology, Inc., Huntsville, AL 35805, USA 11 Max-Planck-Institut für extraterrestrische Physik, Giessenbachstrasse 1, D-85748 Garching, Germany 12 Center for Relativistic Astrophysics and School of Physics, Georgia Institute of Technology, Atlanta, GA 30332, USA Received 2018 July 13; revised 2018 August 3; accepted 2018 August 4; published 2018 August 17 Abstract In light of the joint multimessenger detection of a binary neutron star merger as the gamma-ray burst GRB 170817A and in gravitational waves as GW170817, we reanalyze the Fermi Gamma-ray Burst Monitor data of one of the closest short gamma-ray bursts (SGRBs): GRB 150101B.
    [Show full text]
  • The Electromagnetic Counterpart of the Binary Neutron Star Merger Ligo/Virgo Gw170817: Viii
    DRAFT VERSION OCTOBER 12, 2017 Typeset using LATEX twocolumn style in AASTeX61 THE ELECTROMAGNETIC COUNTERPART OF THE BINARY NEUTRON STAR MERGER LIGO/VIRGO GW170817: VIII. A COMPARISON TO COSMOLOGICAL SHORT-DURATION GAMMA-RAY BURSTS ∗ W. FONG,1 , E. BERGER,2 P. K. BLANCHARD,2 R. MARGUTTI,1 P. S. COWPERTHWAITE,2 R. CHORNOCK,3 K. D. ALEXANDER,2 B. D. METZGER,4 V. A. VILLAR,2 M. NICHOLL,2 T. EFTEKHARI,2 P. K. G. WILLIAMS,2 J. ANNIS,5 D. BROUT,6 D. A. BROWN,7 H.-Y. CHEN,8 Z. DOCTOR,8 H. T. DIEHL,5 D. E. HOLZ,9, 8 A. REST,10, 11 M. SAKO,6 AND M. SOARES-SANTOS5, 12 1Center for Interdisciplinary Exploration and Research in Astrophysics (CIERA) and Department of Physics and Astronomy, Northwestern University, Evanston, IL 60208 2Harvard-Smithsonian Center for Astrophysics, 60 Garden Street, Cambridge, Massachusetts 02138, USA 3Astrophysical Institute, Department of Physics and Astronomy, 251B Clippinger Lab, Ohio University, Athens, OH 45701, USA 4Department of Physics and Columbia Astrophysics Laboratory, Columbia University, New York, NY 10027, USA 5Fermi National Accelerator Laboratory, P.O. Box 500, Batavia, IL 60510, USA 6Department of Physics and Astronomy, University of Pennsylvania, Philadelphia, PA 19104, USA 7Department of Physics, Syracuse University, Syracuse NY 13224, USA 8Kavli Institute for Cosmological Physics, University of Chicago, Chicago, IL 60637, USA 9Enrico Fermi Institute, Department of Physics, Department of Astronomy and Astrophysics 10Space Telescope Science Institute, 3700 San Martin Drive, Baltimore, MD 21218, USA 11Department of Physics and Astronomy, The Johns Hopkins University, 3400 North Charles Street, Baltimore, MD 21218, USA 12Department of Physics, Brandeis University, Waltham, MA 02452, USA ABSTRACT We present a comprehensive comparison of the properties of the radio through X-ray counterpart of GW170817 and the properties of short-duration gamma-ray bursts (GRBs).
    [Show full text]
  • MY SO October Showdown Rules
    S P A C E - O C T O B E R 2 0 2 0 MY SO STEM SHOWDOWN C O N T E N T , R E C O M M E N D E D M A T E R I A L S & S C O R I N G STEM SHOWDOWN CONTENT The STEM Showdown will consist of a series of online multiple-choice questions. Middle school (Grade 6-9) participant questions will center around the properties and evolution of stars and galaxies as well as their observation using different portions of the electromagnetic spectrum (e.g., Radio, Infrared, Visible, Ultraviolet, X-Ray, Gamma Ray). While high school (Grades 9-12) participants will focus on Star and Galaxy Formation and Evolution. A Showdown participant will have 55- minutes to answer as many questions as possible. The middle school (Grades 6-9) content and skills covered by the Showdown this month is as follows: 1.Stellar and galactic evolution 2.Spectral classification of stars 3.Hubble classification of galaxies 4.Observation using multiple portions of the electromagnetic spectrum 5.The relationship between stellar temperature, radius, and luminosity 6.Magnitude and luminosity scales, distance modulus, inverse square law 7.Identification of the stars, constellations, and deep sky objects included in the list below as they appear on star charts, H-R diagrams, portable star labs, photos, or planetariums. Note: Constellations are underlined; Stars are boldface; Deep Sky Objects are italicized. a.Andromeda: M31 (Andromeda Galaxy) b.Aquila: Altair c.Auriga: Capella d.Bootes: Arcturus e.Cancer: DLA0817g f.Canis Major: Sirius g.Canis Minor: Procyon h.Centaurus: NGC5128 i.Coma Berenices: NGC4676, NGC4555 j.Corvus: NGC4038/NGC4039 k.Crux: Dragonfish Nebula l.Cygnus: Deneb m.Dorado: 30 Doradus, LMC n.Gemini: Castor, Pollux o.Lyra: Vega p.Ophiuchus: Zeta Ophiuchi, Rho Ophiuchi cloud complex q.Orion: Betelgeuse, Rigel & M42 (Orion Nebula) r.Perseus: Algol, NGC1333 Science Olympiad, Inc.
    [Show full text]
  • Probing the Distant Galaxy Cluster JKCS 041 on the L − T − M Scaling Relations
    Advances in Astronomy and Space Physics, 8, 28-33 (2018) doi: 10.17721/2227-1481.8.28-33 Probing the distant galaxy cluster JKCS 041 on the L − T − M scaling relations Iu. V. Babyk∗ Department of Physics and Astronomy, University of Waterloo, 200 University Avenue West, Waterloo, ON N2L 3G1, Canada Main Astronomical Observatory of the NAS of Ukraine, 27 Akademika Zabolotnoho Str., 03143 Kyiv, Ukraine The detailed X-ray analysis of the distant galaxy cluster JKCS 041 is presented. We use deep (∼ 75 ks) archived data of X-ray Chandra Observatory to extract the main physical characteristic for one of the most distant galaxy cluster known to date. We investigate the imaging and spectral properties of JKCS 041. We explore its surface brightness, density, entropy, cooling time, and mass profiles. The temperature of JKCS 041 is equal to 7.4 ± 2.9 keV 14 while the total virial mass is M200 = (4.6 ± 2.9) × 10 M⊙. The gas fraction is ∼ 10% while the dark matter is ∼ 90% at R200. We use the obtained physical parameters of JKCS 041 to build numerous X-ray scaling relations. By adding JKCS 041 parameters we increase the redshift of our previous cluster’s sample from 1.4 to 1.8. We study the three classical relations between temperature, luminosity and total mass, and two additional. We find the concentration parameter of JKCS 041, build c − M relation and compare them with current hydrodynamic simulations. In addi- tion, we explore, for the first time in the case of distant objects, the M − Y = T · Mg relation which is one of the most robust mass estimators.
    [Show full text]
  • Overview: Kilonova 1
    Overview: Kilonova 1. Basics 2. Prospects for EM observa-ons 3. Signatures of r-process nucleosynthesis Masaomi Tanaka (Na-onal Astronomical Observatory of Japan) References (Reviews) • RosswoG, S. 2015 “The mul*-messenger picture of compact binary mergers” Interna*onal Journal of Modern Physics D, 24, 1530012-52 • Fernandez, R. & MetzGer, B. D. 2016 “Electromagne*c Signatures of Neutron Star Mergers in the Advanced LIGO Era” Annual Review of Nuclear and Par*cle Science, 66, 23 • Tanaka, M. 2016 “Kilonova/Macronova Emission from Compact Binary Mergers” Advances in Astronomy, 634197 • MetzGer, B. D. 2017 “Kilonovae” Living Reviews in Rela*vity, 20, 3 Timeline r-process Radioac-ve decay MerGer nucleosynthesis => kilonova Dynamical Wind < 10 ms ~< 100 ms < 1 sec ~ days energy deposi-on Diffusing out Masaru’s talk Francois’s talk My talk (Thursday) (Monday) (today) ν-driven winds from NS merger remnants 3145 5 Downloaded from http://mnras.oxfordjournals.org/ MerGer => see Masaru’s talkFigure 12. Vertical slices of the 3D domain (corresponding to the y 0 plane), recorded 20 ms after the beginning of the simulation. In the left-hand panel, 3 = we represent the logarithm of the matter density (in g cm− , left-hand side) and the projected fluid velocity (in units of c,ontheright-handside);thearrows indicate the direction of the projected velocity in the plane. On the right-hand panel, we represent the electron fraction (left-hand side) and the matter entropy 1 Dynamical ejecta (~< 10 ms)(in unit of kB baryon− ,right-handside). Post-dynamical ejecta (~< 100 ms) Side view at National Astronomical Observatory of Japan on January 1, 2016 Side view Top view Sekiguchi+16 Perego+14 Figure 13.
    [Show full text]
  • A Kilonova Associated with GRB 070809
    A kilonova associated with GRB 070809 Zhi-Ping Jin1;2, Stefano Covino3, Neng-Hui Liao4;1, Xiang Li1, Paolo D’Avanzo3, Yi- Zhong Fan1;2, and Da-Ming Wei1;2. 1Key Laboratory of Dark Matter and Space Astronomy, Purple Mountain Observatory, Chinese Academy of Sciences, Nanjing 210008, China 2School of Astronomy and Space Science, University of Science and Technology of China, Hefei 230026, China 3INAF/Brera Astronomical Observatory, via Bianchi 46, I-23807 Merate (LC), Italy 4Department of Physics and Astronomy, College of Physics, Guizhou University, Guiyang 550025, China For on-axis typical short gamma-ray bursts (sGRBs), the forward shock emission is usually so bright1, 2 that renders the identification of kilonovae (also known as macronovae)3–6 in the early afterglow (t < 0:5 d) phase rather challenging. This is why previously no thermal- like kilonova component has been identified at such early time7–13 except in the off-axis dim GRB 170817A14–19 associated with GW17081720. Here we report the identification of an un- usual optical radiation component in GRB 070809 at t ∼ 0:47 d, thanks plausibly to the very-weak/subdominant forward shock emission. The optical emission with a very red spec- trum is well in excess of the extrapolation of the X-ray emission that is distinguished by an unusually hard spectrum, which is at odds with the forward shock afterglow prediction but can be naturally interpreted as a kilonova. Our finding supports the speculation that kilono- vae are ubiquitous11, and demonstrates the possibility of revealing the neutron star merger origin with the early afterglow data of some typical sGRBs that take place well beyond the sensitive radius of the advanced gravitational wave detectors21, 22 and hence the opportunity of organizing dedicated follow-up observations for events of interest.
    [Show full text]
  • On-Axis View of GRB 170817A O
    A&A 628, A18 (2019) Astronomy https://doi.org/10.1051/0004-6361/201935831 & c ESO 2019 Astrophysics On-axis view of GRB 170817A O. S. Salafia1,2, G. Ghirlanda1,2, S. Ascenzi1,3, and G. Ghisellini1 1 INAF – Osservatorio Astronomico di Brera, Via E. Bianchi 46, 23807 Merate, Italy e-mail: [email protected] 2 INFN – Sezione di Milano-Bicocca, Piazza della Scienza 3, 20126 Milano, Italy 3 Gran Sasso Science Institute, Viale F. Crispi 7, 67100 L’Aquila, Italy Received 3 May 2019 / Accepted 1 July 2019 ABSTRACT The peculiar short gamma-ray burst (SGRB) GRB 170817A has been firmly associated to the gravitational wave event GW170817, which has been unanimously interpreted as due to the coalescence of a double neutron star binary. The unprecedented behaviour of the non-thermal afterglow led to a debate over its nature, which was eventually settled by high-resolution VLBI observations that strongly support the off-axis structured jet scenario. Using information on the jet structure derived from multi-wavelength fitting of the afterglow emission and of the apparent VLBI image centroid motion, we compute the appearance of a GRB 170817A-like jet as seen by an on-axis observer and compare it to the previously observed population of SGRB afterglows and prompt emission events. We find that the intrinsic properties of the GRB 170817A jet are representative of a typical event in the SGRB population, hinting at a quasi-universal jet structure. The diversity in the SGRB afterglow population could therefore be ascribed in large part to extrinsic (redshift, density of the surrounding medium, viewing angle) rather than intrinsic properties.
    [Show full text]