The Biogeography, Phylogeny, and Dispersal of Freshwater and Terrestrial Free-Living Ciliates in Florida, USA

Total Page:16

File Type:pdf, Size:1020Kb

The Biogeography, Phylogeny, and Dispersal of Freshwater and Terrestrial Free-Living Ciliates in Florida, USA The biogeography, phylogeny, and dispersal of freshwater and terrestrial free-living ciliates in Florida, USA A thesis submitted for the degree of DOCTOR OF PHILOSOPHY Hunter Nicholas Hines Faculty of Science and Technology Bournemouth University March 2019 This copy of the thesis has been supplied on condition that anyone who consults it is understood to recognize that its copyright rests with its author and due acknowledgement must always be made of the use of any material contained in, or derived from, this thesis. i ABSTRACT Microbial ecology: the biogeography, phylogeny, and dispersal of ciliates in Florida, USA Hunter Nicholas Hines As organisms at the foundations of food webs, ciliated protozoa are an integral part of the microbial loop and the ecosystems they support. This project was designed to explore the freshwater and terrestrial ciliate populations of sub-tropical Florida, USA, an uninvestigated geographic range with similar environmental characteristics to those found in previously- studied locations in sub-tropical and tropical Africa. Through extensive sample collection covering a wide variety of habitats, morphological and molecular techniques were used to describe the target ciliate taxa present in these environments and to determine their presence/absence and their geographical distribution. Of special interest were the ‘flagship’ ciliate species found, with some recorded outside of Africa for the first time, and the first records made for the Americas of both freshwater and terrestrial flagships. As a result of major sampling, some ciliate species were found to be new to science, and these are described in detail at both morphological and molecular levels. The 18S rRNA gene sequences were obtained for several species, some for the very first time, and are provided here to investigate phylogeny. Long-term monitoring of four sites produced a large dataset of water parameters and occurrence of target ciliate species, allowing a better understanding of the niche requirements for these ciliates. The development of dynamic models was undertaken to enhance discussions surrounding potential dispersal mechanisms of target ciliate species over large distances. Agent based models were constructed to visualize microcosm interactions of a target ciliate species to various environmental stimuli. ii LIST OF CONTENTS 1. A REVIEW OF THE LITERATURE AND AN OVERVIEW OF THE PROJECT……………………………………………………...... 1 1.1 Background………………………………………………………… 1 1.2 ‘Flagship species’ as a conservation biology concept ……………. 2 1.3 The term ‘Flagship’ as it applies to ciliates……………………….. 3 1.4 Is ‘everything everywhere’? ………………………………………. 4 1.5 Why was this study needed? …………………………...………….. 6 1.6 Aim and Objectives ……………………………………………...… 8 2. METHODS …………………………………………………………….…… 11 2.1. Study sites and sample collection…………………….…………… 11 2.2 Ciliate and algal cultures……………………………...…………… 18 2.3 Observations and microscopy……………………………………… 19 2.4 Molecular biology …………………………………………….…… 23 2.5 Soil samples …………………………………………………….….. 27 2.6 Data analysis ………………………………………………………. 29 2.7 Applications …………………………………………...…………… 29 3. FLAGSHIP FRESHWATER CILIATES OF FLORIDA ………………. 30 3.1 Hypothesis …………………………………………….…………… 30 3.2 Introduction ……………………………………………………….. 30 3.3 Methods ……………………………………………………………. 31 3.4 Loxodes rex …………………………………………………….….. 31 3.5 Other flagship ciliates found in Florida ………………………….. 51 3.6 Conclusions ………………………………………………..……… 65 4. FRESHWATER CILIATE SPECIES NEW TO SCIENCE DISCOVERED IN FLORIDA …………………………………………………………...….. 67 4.1 Hypothesis……………………………………………..…………… 67 iii 4.2 Introduction ……………………………………………..………… 67 4.3 Methods ……………………………………………………..…….. 68 4.4 Sonderia n. sp. a ciliate species new to science …………..……… 68 4.5 A brackish-water Sonderia ………………………………………… 80 4.6 Novel Colpodea species ……………………………………...…….. 81 4.7 Two new species of Prorodon …………………………..………… 83 4.8 Pseudoblepharisma tenue var. viride sp. ……………………..….. 89 4.9 Discussion …………………………………………………..…….. 95 4.10 Conclusions …………………………………………………..….. 103 5. FLAGSHIP SOIL CILIATES OF FLORIDA …………………………… 104 5.1 Hypothesis ………………………………………………………….. 104 5.2 Introduction ……………………………………………………..…. 104 5.3 Methods …………………………………………………………….. 106 5.4 Condylostomides etoschensis ……………………………………… 108 5.5 Condylostomides coeruleus ……………………………….………. 112 5.6 Laboratory cultures ……………………………………….………. 115 5.7 Discussion …………………………………………………….…… 117 5.8 Conclusions …………………………………………….………….. 119 6. COMBINING DYNAMIC MODELING WITH INVESTIGATIONS INTO CILIATE BIOGEOGRAPHY AND ECOLOGY ........................................... 121 6.1 Hypothesis ……………………………………………...………….. 121 6.2 Overview ……………………………………………………....…… 121 6.3 Introduction ……………………………………………………….. 122 6.4 Background ………………………………………………..………. 126 6.5 Methodology ……………………………………………..………… 132 6.6 Dispersal Models ………………………………………………..…. 141 6.7 Bottle Model ………………………………………………...……… 142 6.8 Results …………………………………………………………….... 145 6.9 Discussion …………………………………………………………. 159 6.10 Conclusions ………………………………………………...…….. 164 iv 7. CONCLUSIONS, DISSEMINATION AND FUTURE DIRECTIONS … 166 7.1 Flagship freshwater ciliates of Florida …………………………… 166 7.2 Freshwater ciliate species new to science discovered in Florida …..167 7.3 Soil ciliates of Florida ………………………………………………168 7.4 Combining dynamic modeling with investigations into ciliate Biogeography and ecology……………………………….…………….. 168 7.5 Outreach and dissemination of results through Social Media: Instagram ……………………………………………………… 169 7.6 Overall conclusions …………………………………….………….. 171 7.7 Limitations of study …………………………………...…………… 172 7.8 Future directions for research …………………………………….. 173 REFERENCES ………………………………………………………...……… 176 APPENDIX ………………………………………………………...………….. 201 v ACKNOWLEDGEMENTS Thanks to all members of my supervisory team, in particular: Dr. Genoveva F. Esteban (BU) for her enthusiastic and constant support throughout the project. Although often physically separated, Dr. Esteban was never more than a ‘ding’ away on the cellphone, providing an incredible wealth of knowledge and assistance as well as discussions in real time. I thank Dr. Esteban for inspiring me to pursue a PhD, and providing me all the necessary training and passion along the way to make it a reality. Dr. Peter J. McCarthy (HBOI) for his patience, constant involvement, and unwavering interest throughout the project at all stages. Dr. McCarthy went well beyond his duties by accompanying me on nearly all sampling trips, including the frequent sampling for long-term monitoring, and large transects into unexplored territory to collect water metadata. Sampling ciliates in wild subtropical Florida is extreme, with temperatures often >32°C, and high (60-90%) humidity in full sun very common. Constant mosquitoes and other insect pests, as well large reptiles (venomous snakes and alligators) were an omnipresent factor of Florida sampling. I am grateful for his perseverance in safeguarding the success of this project. Bournemouth University: Thanks to Louise Pearson of the Graduate College for her assistance. FAU Harbor Branch Oceanographic Institute: Thanks to all members of the McCarthy Microbiology lab (MBBR) at HBOI. The following members are acknowledged for their helpful contributions throughout the project. Research Technician Dedra Harmody for her extreme patience and availability to assist with even the most annoying of questions throughout the entire project. Dee was able to (literally) put out all fires, and was instrumental in optimizing my performance with some equipment, and developing additional microbiology laboratory skills. Dr. Gabrielle Barbarite was a PhD student at the time I started this project and was instrumental in showing me the workings of the lab and campus. Dr. Barbarite was also extremely helpful by assisting in the creation of poster presentations, and helped me develop skills used in figure production. vi PhD student David J. Bradshaw II is acknowledged for assisting with obtaining some of the soil metadata presented here. David was a willing understudy on several local sampling occasions and was luckily quite skilled with a machete. Thanks to librarian Pamela Alderman for tracking down even the most obscure of old texts. Other: Paula L. Hunter is acknowledged for her assistance with proofreading and overall support throughout. Dr. Joseph J. Abram, a PhD student at the time, was hosted at HBOI for several weeks and worked directly alongside me as the computer coding expert, assisting in creating the model codes and perfecting user interfaces for the modeling aspects of this project. Travel: Thanks goes to the late Dr. John C. Clamp, who I never had the privilege of meeting, but was instrumental in obtaining grants used for travel during this project. Through the IRCN-BC [grant number NSF-DEB 1136580, USA] during 2016-2017 travel was awarded for conference attendance. I am especially grateful to the late Dr. Dennis Lynn, whom I had the privilege of meeting twice at international conferences. He was instrumental in obtaining and issuing travel funds to me via the Holtz-Connor Award with ISOP for 2015, 2017, and 2018. The project benefited further from his careful analysis and discussions with me during my poster presentations at the conferences. Further travel support was provided by the Microbiology Society (UK) in 2017 and the Society for Applied Microbiology (UK) in 2018. vii Declaration I declare that the work in this thesis was made in accordance with the requirements of the University’s Code of
Recommended publications
  • Novel Contributions to the Peritrich Family Vaginicolidae
    applyparastyle “fig//caption/p[1]” parastyle “FigCapt” Zoological Journal of the Linnean Society, 2019, 187, 1–30. With 13 figures. Novel contributions to the peritrich family Vaginicolidae (Protista: Ciliophora), with morphological and Downloaded from https://academic.oup.com/zoolinnean/article-abstract/187/1/1/5434147/ by Ocean University of China user on 08 October 2019 phylogenetic analyses of poorly known species of Pyxicola, Cothurnia and Vaginicola BORONG LU1, LIFANG LI2, XIAOZHONG HU1,5,*, DAODE JI3,*, KHALED A. S. AL-RASHEID4 and WEIBO SONG1,5 1Institute of Evolution and Marine Biodiversity, & Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao 266003, China 2Marine College, Shandong University, Weihai 264209, China 3School of Ocean, Yantai University, Yantai 264005, China 4Zoology Department, College of Science, King Saud University, Riyadh 11451, Saudi Arabia 5Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, China Received 29 September 2018; revised 26 December 2018; accepted for publication 13 February 2019 The classification of loricate peritrich ciliates is difficult because of an accumulation of several taxonomic problems. In the present work, three poorly described vaginicolids, Pyxicola pusilla, Cothurnia ceramicola and Vaginicola tincta, were isolated from the surface of two freshwater/marine algae in China. In our study, the ciliature of Pyxicola and Vaginicola is revealed for the first time, demonstrating the taxonomic value of infundibular polykineties. The small subunit rDNA, ITS1-5.8S rDNA-ITS2 region and large subunit rDNA of the above species were sequenced for the first time. Phylogenetic analyses based on these genes indicated that Pyxicola and Cothurnia are closely related.
    [Show full text]
  • Handout Lec. 25
    Introduction to Biosystematics - Zool 575 Introduction to Biosystematics Confidence - Assessment of the Strength of Lecture 25 - Confidence - Assessment 2 the Phylogenetic Signal - part 2 1. Consistency Index 2. g1 statistic, PTP - test “Quantifying the uncertainty of a phylogenetic 3. Consensus trees estimate is at least as important a goal as obtaining the phylogenetic estimate itself.” 4. Decay index (Bremer Support) - Huelsenbeck & Rannala (2004) 5. Bootstrapping / Jackknifing 6. Statistical hypothesis testing (frequentist) 7. Posterior probability (see lecture on Bayesian) Derek S. Sikes University of Calgary Zool 575 Multiple optimal trees Multiple optimal trees • Many methods can yield multiple equally • If multiple optimal trees are found we know optimal trees that all of them are wrong except, possibly, (hopefully) one • We can further select among these trees with additional criteria, but • Some have argued against consensus tree methods for this reason • Typically, relationships common to all the optimal trees are summarized with • Debate over quest for true tree (point consensus trees estimate) versus quantification of uncertainty Consensus methods Strict consensus methods • A consensus tree is a summary of the agreement • Strict consensus methods require agreement among a set of fundamental trees across all the fundamental trees • There are many consensus methods that differ in: • They show only those relationships that are 1. the kind of agreement unambiguously supported by the data 2. the level of agreement • The commonest
    [Show full text]
  • Molecular Data and the Evolutionary History of Dinoflagellates by Juan Fernando Saldarriaga Echavarria Diplom, Ruprecht-Karls-Un
    Molecular data and the evolutionary history of dinoflagellates by Juan Fernando Saldarriaga Echavarria Diplom, Ruprecht-Karls-Universitat Heidelberg, 1993 A THESIS SUBMITTED IN PARTIAL FULFILMENT OF THE REQUIREMENTS FOR THE DEGREE OF DOCTOR OF PHILOSOPHY in THE FACULTY OF GRADUATE STUDIES Department of Botany We accept this thesis as conforming to the required standard THE UNIVERSITY OF BRITISH COLUMBIA November 2003 © Juan Fernando Saldarriaga Echavarria, 2003 ABSTRACT New sequences of ribosomal and protein genes were combined with available morphological and paleontological data to produce a phylogenetic framework for dinoflagellates. The evolutionary history of some of the major morphological features of the group was then investigated in the light of that framework. Phylogenetic trees of dinoflagellates based on the small subunit ribosomal RNA gene (SSU) are generally poorly resolved but include many well- supported clades, and while combined analyses of SSU and LSU (large subunit ribosomal RNA) improve the support for several nodes, they are still generally unsatisfactory. Protein-gene based trees lack the degree of species representation necessary for meaningful in-group phylogenetic analyses, but do provide important insights to the phylogenetic position of dinoflagellates as a whole and on the identity of their close relatives. Molecular data agree with paleontology in suggesting an early evolutionary radiation of the group, but whereas paleontological data include only taxa with fossilizable cysts, the new data examined here establish that this radiation event included all dinokaryotic lineages, including athecate forms. Plastids were lost and replaced many times in dinoflagellates, a situation entirely unique for this group. Histones could well have been lost earlier in the lineage than previously assumed.
    [Show full text]
  • Geotaxis in the Ciliated Protozoon Loxodes
    J. exp. Biol. 110, 17-33 (1984) 17 d in Great Britain © The Company of Biologists Limited 1984 GEOTAXIS IN THE CILIATED PROTOZOON LOXODES BY T. FENCHEL Department of Ecology and Genetics, University ofAarhus, DK-8000 Aarhus, Denmark AND B. J. FINLAY Freshwater Biological Association, The Ferry House, Ambleside, Cumbria LA22 OLP, U.K. Accepted 14 November 1983 SUMMARY Geotaxis is demonstrated in the ciliated protozoon Loxodes. This behaviour is mediated by a mechanoreceptor which is probably the Muller body, an organelle characteristic of loxodid ciliates. The geotactic response is sensitive to dissolved oxygen tension: in anoxia or at very low O2 tensions the ciliates tend to swim up and at higher O2 tensions they tend to swim down. This behaviour, in conjunction with a kinetic response allows the ciliates to orientate themselves in vertical O2 gradients and to congregate in their optimum environment. In two appendices, models of the behaviour predicting vertical distribution patterns and considerations of the minimum size of a functional statocyst are offered. INTRODUCTION Many protozoa display a pronounced positive or negative geotaxis. The mechan- isms responsible for this have been the subject of a prolonged dispute (for references see Roberts, 1970). In the species studied so far, however, there is no evidence of mechanoreceptors. Rather, the geotactic behaviour can be explained as the result of the interactions between sinking velocity, swimming velocity, rate of random reorientation and the net result of gravitational and hydrodynamical forces. These tend passively to orientate the anterior end of the cells upwards. Through modulations of the swimming velocity and the rate of random reorientation, the cells can change their probability of moving upwards and hence their vertical distribution in the water column.
    [Show full text]
  • The Macronuclear Genome of Stentor Coeruleus Reveals Tiny Introns in a Giant Cell
    University of Pennsylvania ScholarlyCommons Departmental Papers (Biology) Department of Biology 2-20-2017 The Macronuclear Genome of Stentor coeruleus Reveals Tiny Introns in a Giant Cell Mark M. Slabodnick University of California, San Francisco J. G. Ruby University of California, San Francisco Sarah B. Reiff University of California, San Francisco Estienne C. Swart University of Bern Sager J. Gosai University of Pennsylvania See next page for additional authors Follow this and additional works at: https://repository.upenn.edu/biology_papers Recommended Citation Slabodnick, M. M., Ruby, J. G., Reiff, S. B., Swart, E. C., Gosai, S. J., Prabakaran, S., Witkowska, E., Larue, G. E., Gregory, B. D., Nowacki, M., Derisi, J., Roy, S. W., Marshall, W. F., & Sood, P. (2017). The Macronuclear Genome of Stentor coeruleus Reveals Tiny Introns in a Giant Cell. Current Biology, 27 (4), 569-575. http://dx.doi.org/10.1016/j.cub.2016.12.057 This paper is posted at ScholarlyCommons. https://repository.upenn.edu/biology_papers/49 For more information, please contact [email protected]. The Macronuclear Genome of Stentor coeruleus Reveals Tiny Introns in a Giant Cell Abstract The giant, single-celled organism Stentor coeruleus has a long history as a model system for studying pattern formation and regeneration in single cells. Stentor [1, 2] is a heterotrichous ciliate distantly related to familiar ciliate models, such as Tetrahymena or Paramecium. The primary distinguishing feature of Stentor is its incredible size: a single cell is 1 mm long. Early developmental biologists, including T.H. Morgan [3], were attracted to the system because of its regenerative abilities—if large portions of a cell are surgically removed, the remnant reorganizes into a normal-looking but smaller cell with correct proportionality [2, 3].
    [Show full text]
  • The Planktonic Protist Interactome: Where Do We Stand After a Century of Research?
    bioRxiv preprint doi: https://doi.org/10.1101/587352; this version posted May 2, 2019. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. Bjorbækmo et al., 23.03.2019 – preprint copy - BioRxiv The planktonic protist interactome: where do we stand after a century of research? Marit F. Markussen Bjorbækmo1*, Andreas Evenstad1* and Line Lieblein Røsæg1*, Anders K. Krabberød1**, and Ramiro Logares2,1** 1 University of Oslo, Department of Biosciences, Section for Genetics and Evolutionary Biology (Evogene), Blindernv. 31, N- 0316 Oslo, Norway 2 Institut de Ciències del Mar (CSIC), Passeig Marítim de la Barceloneta, 37-49, ES-08003, Barcelona, Catalonia, Spain * The three authors contributed equally ** Corresponding authors: Ramiro Logares: Institute of Marine Sciences (ICM-CSIC), Passeig Marítim de la Barceloneta 37-49, 08003, Barcelona, Catalonia, Spain. Phone: 34-93-2309500; Fax: 34-93-2309555. [email protected] Anders K. Krabberød: University of Oslo, Department of Biosciences, Section for Genetics and Evolutionary Biology (Evogene), Blindernv. 31, N-0316 Oslo, Norway. Phone +47 22845986, Fax: +47 22854726. [email protected] Abstract Microbial interactions are crucial for Earth ecosystem function, yet our knowledge about them is limited and has so far mainly existed as scattered records. Here, we have surveyed the literature involving planktonic protist interactions and gathered the information in a manually curated Protist Interaction DAtabase (PIDA). In total, we have registered ~2,500 ecological interactions from ~500 publications, spanning the last 150 years.
    [Show full text]
  • University of Oklahoma
    UNIVERSITY OF OKLAHOMA GRADUATE COLLEGE MACRONUTRIENTS SHAPE MICROBIAL COMMUNITIES, GENE EXPRESSION AND PROTEIN EVOLUTION A DISSERTATION SUBMITTED TO THE GRADUATE FACULTY in partial fulfillment of the requirements for the Degree of DOCTOR OF PHILOSOPHY By JOSHUA THOMAS COOPER Norman, Oklahoma 2017 MACRONUTRIENTS SHAPE MICROBIAL COMMUNITIES, GENE EXPRESSION AND PROTEIN EVOLUTION A DISSERTATION APPROVED FOR THE DEPARTMENT OF MICROBIOLOGY AND PLANT BIOLOGY BY ______________________________ Dr. Boris Wawrik, Chair ______________________________ Dr. J. Phil Gibson ______________________________ Dr. Anne K. Dunn ______________________________ Dr. John Paul Masly ______________________________ Dr. K. David Hambright ii © Copyright by JOSHUA THOMAS COOPER 2017 All Rights Reserved. iii Acknowledgments I would like to thank my two advisors Dr. Boris Wawrik and Dr. J. Phil Gibson for helping me become a better scientist and better educator. I would also like to thank my committee members Dr. Anne K. Dunn, Dr. K. David Hambright, and Dr. J.P. Masly for providing valuable inputs that lead me to carefully consider my research questions. I would also like to thank Dr. J.P. Masly for the opportunity to coauthor a book chapter on the speciation of diatoms. It is still such a privilege that you believed in me and my crazy diatom ideas to form a concise chapter in addition to learn your style of writing has been a benefit to my professional development. I’m also thankful for my first undergraduate research mentor, Dr. Miriam Steinitz-Kannan, now retired from Northern Kentucky University, who was the first to show the amazing wonders of pond scum. Who knew that studying diatoms and algae as an undergraduate would lead me all the way to a Ph.D.
    [Show full text]
  • An Integrative Approach Sheds New Light Onto the Systematics
    www.nature.com/scientificreports OPEN An integrative approach sheds new light onto the systematics and ecology of the widespread ciliate genus Coleps (Ciliophora, Prostomatea) Thomas Pröschold1*, Daniel Rieser1, Tatyana Darienko2, Laura Nachbaur1, Barbara Kammerlander1, Kuimei Qian1,3, Gianna Pitsch4, Estelle Patricia Bruni4,5, Zhishuai Qu6, Dominik Forster6, Cecilia Rad‑Menendez7, Thomas Posch4, Thorsten Stoeck6 & Bettina Sonntag1 Species of the genus Coleps are one of the most common planktonic ciliates in lake ecosystems. The study aimed to identify the phenotypic plasticity and genetic variability of diferent Coleps isolates from various water bodies and from culture collections. We used an integrative approach to study the strains by (i) cultivation in a suitable culture medium, (ii) screening of the morphological variability including the presence/absence of algal endosymbionts of living cells by light microscopy, (iii) sequencing of the SSU and ITS rDNA including secondary structures, (iv) assessment of their seasonal and spatial occurrence in two lakes over a one‑year cycle both from morphospecies counts and high‑ throughput sequencing (HTS), and, (v) proof of the co‑occurrence of Coleps and their endosymbiotic algae from HTS‑based network analyses in the two lakes. The Coleps strains showed a high phenotypic plasticity and low genetic variability. The algal endosymbiont in all studied strains was Micractinium conductrix and the mutualistic relationship turned out as facultative. Coleps is common in both lakes over the whole year in diferent depths and HTS has revealed that only one genotype respectively one species, C. viridis, was present in both lakes despite the diferent lifestyles (mixotrophic with green algal endosymbionts or heterotrophic without algae).
    [Show full text]
  • Fine Structure of Division in Ciliate Protozoa I
    FINE STRUCTURE OF DIVISION IN CILIATE PROTOZOA I. Micronuclear Mitosis in Blepharisma R. A. JENKINS From the Department of Biochemistry and Biophysics, Iowa State University, Ames, Iowa 50010. The author's present address is the Department of Zoology and Physiology, University of Wy- oming, Laramie, Wyoming 82070 ABSTRACT The mitotic, micronuclear division of the heterotrichous genus Blepharisma has been studied by electron microscopy. Dividing ciliates were selected from clone-derived mass cultures and fixed for electron microscopy by exposure to the vapor of 2 % osmium tetroxide; individual Blepharisma were encapsulated and sectioned. Distinctive features of the mitosis are the pres- ence of an intact nuclear envelope during the entire process and the absence of centrioles at the polar ends of the micronuclear figures. Spindle microtubules (SMT) first appear in ad- vance of chromosome alignment, become more numerous and precisely aligned by meta- phase, lengthen greatly in anaphase, and persist through telophase. Distinct chromosomal and continuous SMT are present. At telophase, daughter nuclei are separated by a spindle elongation of more than 40 u, and a new nuclear envelope is formed in close apposition to the chromatin mass of each daughter nucleus and excludes the great amount of spindle material formed during division. The original nuclear envelope which has remained struc- turally intact then becomes discontinuous and releases the newly formed nucleus into the cytoplasm. The micronuclear envelope seems to lack the conspicuous pores that are typical of nuclear envelopes. The morphology, size, formation, and function of SMT and the nature of micronuclear division are discussed. INTRODUCTION To date electron microscopy of protozoan nuclei includes almost no description of micronuclei has resulted in the description of numerous and and by the recent suggestion that a true mitosis diverse structures which are not always reconcil- does not occur in ciliate micronuclei (9).
    [Show full text]
  • Phylogenomic Analysis of Balantidium Ctenopharyngodoni (Ciliophora, Litostomatea) Based on Single-Cell Transcriptome Sequencing
    Parasite 24, 43 (2017) © Z. Sun et al., published by EDP Sciences, 2017 https://doi.org/10.1051/parasite/2017043 Available online at: www.parasite-journal.org RESEARCH ARTICLE Phylogenomic analysis of Balantidium ctenopharyngodoni (Ciliophora, Litostomatea) based on single-cell transcriptome sequencing Zongyi Sun1, Chuanqi Jiang2, Jinmei Feng3, Wentao Yang2, Ming Li1,2,*, and Wei Miao2,* 1 Hubei Key Laboratory of Animal Nutrition and Feed Science, Wuhan Polytechnic University, Wuhan 430023, PR China 2 Institute of Hydrobiology, Chinese Academy of Sciences, No. 7 Donghu South Road, Wuchang District, Wuhan 430072, Hubei Province, PR China 3 Department of Pathogenic Biology, School of Medicine, Jianghan University, Wuhan 430056, PR China Received 22 April 2017, Accepted 12 October 2017, Published online 14 November 2017 Abstract- - In this paper, we present transcriptome data for Balantidium ctenopharyngodoni Chen, 1955 collected from the hindgut of grass carp (Ctenopharyngodon idella). We evaluated sequence quality and de novo assembled a preliminary transcriptome, including 43.3 megabits and 119,141 transcripts. Then we obtained a final transcriptome, including 17.7 megabits and 35,560 transcripts, by removing contaminative and redundant sequences. Phylogenomic analysis based on a supermatrix with 132 genes comprising 53,873 amino acid residues and phylogenetic analysis based on SSU rDNA of 27 species were carried out herein to reveal the evolutionary relationships among six ciliate groups: Colpodea, Oligohymenophorea, Litostomatea, Spirotrichea, Hetero- trichea and Protocruziida. The topologies of both phylogenomic and phylogenetic trees are discussed in this paper. In addition, our results suggest that single-cell sequencing is a sound method of obtaining sufficient omics data for phylogenomic analysis, which is a good choice for uncultivable ciliates.
    [Show full text]
  • PROTISTAS MARINOS Viviana A
    PROTISTAS MARINOS Viviana A. Alder INTRODUCCIÓN plantas y animales. Según este esquema básico, a las plantas les correspondían las características de En 1673, el editor de Philosophical Transac- ser organismos sésiles con pigmentos fotosinté- tions of the Royal Society of London recibió una ticos para la síntesis de las sustancias esenciales carta del anatomista Regnier de Graaf informan- para su metabolismo a partir de sustancias inor- do que un comerciante holandés, Antonie van gánicas (nutrición autótrofa), y de poseer células Leeuwenhoek, había “diseñado microscopios rodeadas por paredes de celulosa. En oposición muy superiores a aquéllos que hemos visto has- a las plantas, les correspondía a los animales los ta ahora”. Van Leeuwenhoek vendía lana, algo- atributos de tener motilidad activa y de carecer dón y otros materiales textiles, y se había visto tanto de pigmentos fotosintéticos (debiendo por en la necesidad de mejorar las lentes de aumento lo tanto procurarse su alimento a partir de sustan- que comúnmente usaba para contar el número cias orgánicas sintetizadas por otros organismos) de hebras y evaluar la calidad de fibras y tejidos. como de paredes celulósicas en sus células. Así fue que construyó su primer microscopio de Es a partir de los estudios de Georg Gol- lente única: simple, pequeño, pero con un poder dfuss (1782-1848) que estos diminutos organis- de magnificación de hasta 300 aumentos (¡diez mos, invisibles a ojo desnudo, comienzan a ser veces más que sus precursores!). Este magnífico clasificados como plantas primarias
    [Show full text]
  • Protozoologica
    Acta Protozool. (2014) 53: 207–213 http://www.eko.uj.edu.pl/ap ACTA doi:10.4467/16890027AP.14.017.1598 PROTOZOOLOGICA Broad Taxon Sampling of Ciliates Using Mitochondrial Small Subunit Ribosomal DNA Micah DUNTHORN1, Meaghan HALL2, Wilhelm FOISSNER3, Thorsten STOECK1 and Laura A. KATZ2,4 1Department of Ecology, University of Kaiserslautern, 67663 Kaiserslautern, Germany; 2Department of Biological Sciences, Smith College, Northampton, MA 01063, USA; 3FB Organismische Biologie, Universität Salzburg, A-5020 Salzburg, Austria; 4Program in Organismic and Evolutionary Biology, University of Massachusetts, Amherst, MA 01003, USA Abstract. Mitochondrial SSU-rDNA has been used recently to infer phylogenetic relationships among a few ciliates. Here, this locus is compared with nuclear SSU-rDNA for uncovering the deepest nodes in the ciliate tree of life using broad taxon sampling. Nuclear and mitochondrial SSU-rDNA reveal the same relationships for nodes well-supported in previously-published nuclear SSU-rDNA studies, al- though support for many nodes in the mitochondrial SSU-rDNA tree are low. Mitochondrial SSU-rDNA infers a monophyletic Colpodea with high node support only from Bayesian inference, and in the concatenated tree (nuclear plus mitochondrial SSU-rDNA) monophyly of the Colpodea is supported with moderate to high node support from maximum likelihood and Bayesian inference. In the monophyletic Phyllopharyngea, the Suctoria is inferred to be sister to the Cyrtophora in the mitochondrial, nuclear, and concatenated SSU-rDNA trees with moderate to high node support from maximum likelihood and Bayesian inference. Together these data point to the power of adding mitochondrial SSU-rDNA as a standard locus for ciliate molecular phylogenetic inferences.
    [Show full text]