Taxono-Genomics Description of Olsenella Lakotia SW165 T Sp. Nov
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Table S4. Phylogenetic Distribution of Bacterial and Archaea Genomes in Groups A, B, C, D, and X
Table S4. Phylogenetic distribution of bacterial and archaea genomes in groups A, B, C, D, and X. Group A a: Total number of genomes in the taxon b: Number of group A genomes in the taxon c: Percentage of group A genomes in the taxon a b c cellular organisms 5007 2974 59.4 |__ Bacteria 4769 2935 61.5 | |__ Proteobacteria 1854 1570 84.7 | | |__ Gammaproteobacteria 711 631 88.7 | | | |__ Enterobacterales 112 97 86.6 | | | | |__ Enterobacteriaceae 41 32 78.0 | | | | | |__ unclassified Enterobacteriaceae 13 7 53.8 | | | | |__ Erwiniaceae 30 28 93.3 | | | | | |__ Erwinia 10 10 100.0 | | | | | |__ Buchnera 8 8 100.0 | | | | | | |__ Buchnera aphidicola 8 8 100.0 | | | | | |__ Pantoea 8 8 100.0 | | | | |__ Yersiniaceae 14 14 100.0 | | | | | |__ Serratia 8 8 100.0 | | | | |__ Morganellaceae 13 10 76.9 | | | | |__ Pectobacteriaceae 8 8 100.0 | | | |__ Alteromonadales 94 94 100.0 | | | | |__ Alteromonadaceae 34 34 100.0 | | | | | |__ Marinobacter 12 12 100.0 | | | | |__ Shewanellaceae 17 17 100.0 | | | | | |__ Shewanella 17 17 100.0 | | | | |__ Pseudoalteromonadaceae 16 16 100.0 | | | | | |__ Pseudoalteromonas 15 15 100.0 | | | | |__ Idiomarinaceae 9 9 100.0 | | | | | |__ Idiomarina 9 9 100.0 | | | | |__ Colwelliaceae 6 6 100.0 | | | |__ Pseudomonadales 81 81 100.0 | | | | |__ Moraxellaceae 41 41 100.0 | | | | | |__ Acinetobacter 25 25 100.0 | | | | | |__ Psychrobacter 8 8 100.0 | | | | | |__ Moraxella 6 6 100.0 | | | | |__ Pseudomonadaceae 40 40 100.0 | | | | | |__ Pseudomonas 38 38 100.0 | | | |__ Oceanospirillales 73 72 98.6 | | | | |__ Oceanospirillaceae -
Extensive Microbial Diversity Within the Chicken Gut Microbiome Revealed by Metagenomics and Culture
Extensive microbial diversity within the chicken gut microbiome revealed by metagenomics and culture Rachel Gilroy1, Anuradha Ravi1, Maria Getino2, Isabella Pursley2, Daniel L. Horton2, Nabil-Fareed Alikhan1, Dave Baker1, Karim Gharbi3, Neil Hall3,4, Mick Watson5, Evelien M. Adriaenssens1, Ebenezer Foster-Nyarko1, Sheikh Jarju6, Arss Secka7, Martin Antonio6, Aharon Oren8, Roy R. Chaudhuri9, Roberto La Ragione2, Falk Hildebrand1,3 and Mark J. Pallen1,2,4 1 Quadram Institute Bioscience, Norwich, UK 2 School of Veterinary Medicine, University of Surrey, Guildford, UK 3 Earlham Institute, Norwich Research Park, Norwich, UK 4 University of East Anglia, Norwich, UK 5 Roslin Institute, University of Edinburgh, Edinburgh, UK 6 Medical Research Council Unit The Gambia at the London School of Hygiene and Tropical Medicine, Atlantic Boulevard, Banjul, The Gambia 7 West Africa Livestock Innovation Centre, Banjul, The Gambia 8 Department of Plant and Environmental Sciences, The Alexander Silberman Institute of Life Sciences, Edmond J. Safra Campus, Hebrew University of Jerusalem, Jerusalem, Israel 9 Department of Molecular Biology and Biotechnology, University of Sheffield, Sheffield, UK ABSTRACT Background: The chicken is the most abundant food animal in the world. However, despite its importance, the chicken gut microbiome remains largely undefined. Here, we exploit culture-independent and culture-dependent approaches to reveal extensive taxonomic diversity within this complex microbial community. Results: We performed metagenomic sequencing of fifty chicken faecal samples from Submitted 4 December 2020 two breeds and analysed these, alongside all (n = 582) relevant publicly available Accepted 22 January 2021 chicken metagenomes, to cluster over 20 million non-redundant genes and to Published 6 April 2021 construct over 5,500 metagenome-assembled bacterial genomes. -
Pathogen Challenge and Dietary Shift Alter Microbiota Composition And
fmicb-12-703421 July 19, 2021 Time: 11:40 # 1 ORIGINAL RESEARCH published: 19 July 2021 doi: 10.3389/fmicb.2021.703421 Pathogen Challenge and Dietary Shift Alter Microbiota Composition and Activity in a Mucin-Associated in vitro Model of the Piglet Colon (MPigut-IVM) Simulating Weaning Transition Raphaële Gresse1,2, Frédérique Chaucheyras-Durand1,2, Juan J. Garrido3, Sylvain Denis1, Angeles Jiménez-Marín3, Martin Beaumont4, Tom Van de Wiele5, Evelyne Forano1 and Stéphanie Blanquet-Diot1* 1 INRAE, UMR 454 MEDIS, Université Clermont Auvergne, Clermont-Ferrand, France, 2 Lallemand SAS, Blagnac, France, 3 Grupo de Genómica y Mejora Animal, Departamento de Genética, Facultad de Veterinaria, Universidad de Córdoba, Córdoba, Spain, 4 GenPhySE, INRAE, ENVT, Université de Toulouse, Castanet-Tolosan, France, 5 Center for Microbial Ecology and Technology, Ghent University, Ghent, Belgium Edited by: Wakako Ikeda-Ohtsubo, Tohoku University, Japan Enterotoxigenic Escherichia coli (ETEC) is the principal pathogen responsible for post- Reviewed by: weaning diarrhea in newly weaned piglets. Expansion of ETEC at weaning is thought to Katie Lynn Summers, be the consequence of various stress factors such as transient anorexia, dietary change United States Department or increase in intestinal inflammation and permeability, but the exact mechanisms remain of Agriculture (USDA), United States Åsa Sjöling, to be elucidated. As the use of animal experiments raise more and more ethical Karolinska Institutet (KI), Sweden concerns, we used a recently developed in vitro model of piglet colonic microbiome *Correspondence: and mucobiome, the MPigut-IVM, to evaluate the effects of a simulated weaning Stéphanie Blanquet-Diot [email protected] transition and pathogen challenge at weaning. -
Dose-Responses Relationship in Glucose Lowering and Gut
microorganisms Article Dose-Responses Relationship in Glucose Lowering and Gut Dysbiosis to Saskatoon Berry Powder Supplementation in High Fat-High Sucrose Diet-Induced Insulin Resistant Mice Ruozhi Zhao 1, Fei Huang 1 and Garry X. Shen 1,2,* 1 Department of Internal Medicine, University of Manitoba, Winnipeg, MB R3E 3P4, Canada; [email protected] (R.Z.); [email protected] (F.H.) 2 Department of Food and Human Nutritional Sciences, University of Manitoba, Winnipeg, MB R3E 3P4, Canada * Correspondence: [email protected]; Tel.: +1-204-789-3816; Fax: +1-204-789-3987 Abstract: Administration of freeze-dried powder of Saskatoon berry (SB), a popular fruit enriched with antioxidants, reduced glucose level, inflammatory markers and gut microbiota disorder in high fat-high sucrose (HFHS) diet-induced insulin resistant mice. The present study examined the dose-response relationship in metabolic, inflammatory and gut microbiotic variables to SB power (SBp) supplementation in HFHS diet-fed mice. Male C57 BL/6J mice were fed with HFHS diet supplemented with 0, 1%, 2.5% or 5% SBp for 11 weeks. HFHS diet significantly increased the levels of fast plasma glucose (FPG), cholesterol, triglycerides, insulin, homeostatic model assessment of insulin resistance (HOMA-IR), tumor necrosis factor-α, monocyte chemotactic protein-1 and plasminogen activator inhibitor-1, but decreased fecal Bacteroidetes phylum bacteria and Muribaculaceae family bacteria compared to low fat diet. SBp dose-dependently reduced metabolic and inflammatory Citation: Zhao, R.; Huang, F.; Shen, variables and gut dysbiosis in mice compared with mice receiving HFHS diet alone. Significant G.X. Dose-Responses Relationship in ≥ Glucose Lowering and Gut Dysbiosis attenuation of HFHS diet-induced biochemical disorders were detected in mice receiving 1% SBp. -
Prokaryotic Gene Start Prediction: Algorithms for Genomes and Metagenomes
PROKARYOTIC GENE START PREDICTION: ALGORITHMS FOR GENOMES AND METAGENOMES A Dissertation Presented to The Academic Faculty By Karl Gemayel In Partial Fulfillment of the Requirements for the Degree Doctor of Philosophy in the School of Computational Science and Engineering Georgia Institute of Technology December 2020 © Karl Gemayel 2020 PROKARYOTIC GENE START PREDICTION: ALGORITHMS FOR GENOMES AND METAGENOMES Thesis committee: Dr. Mark Borodovsky Dr. Polo Chau School of Computational Science and En- School of Computational Science and En- gineering and Department of Biomedical gineering Engineering Georgia Institute of Technology Georgia Institute of Technology Dr. Umit¨ C¸atalyurek¨ Dr. King Jordan School of Computational Science and En- School of Biological Sciences gineering Georgia Institute of Technology Georgia Institute of Technology Dr. Pen Qui Department of Biomedical Engineering Georgia Institute of Technology Date approved: October 31, 2020 Wooster: “There are moments, Jeeves, when one asks oneself, ‘Do trousers matter?’” Jeeves: “The mood will pass, sir.” P.G. Wodehouse, The Code Of The Woosters To Mom and Dad, all my ancestors, and the first self-replicating molecule. Without you, this work would literally not have been possible. ACKNOWLEDGMENTS I am bound to forget someone or something and so, in fairness to all, I will forget most things and keep this vague and terse, though not necessarily short. I was very much at the right place at the right time to do this work, a time where these problems had not yet been solved. To the driven students who graduated early enough before such ideas came to them, thank you for being considerate. To my advisor Mark Borodovsky, who insisted that a lack of community funding for prokaryotic gene finding does not mean that the problem has actually been solved, thank you for continuously pushing for rigorous science that questions accepted beliefs. -
Isolation of Lactic-Acid Related Bacteria from the Pig Mucosal P
Aus dem Institut für Tierernährung des Fachbereichs Veterinärmedizin der Freien Universität Berlin Isolation of lactic acid-related bacteria from the pig mucosal proximal gastrointestinal tract, including Olsenella umbonata sp. nov. and Veillonella magna sp. nov. Inaugural-Dissertation zur Erlangung des Grades eines Doktors der Veterinärmedizin an der Freien Universität Berlin vorgelegt von Mareike Kraatz Tierärztin aus Berlin Berlin 2011 Journal-Nr.: 3431 Gedruckt mit Genehmigung des Fachbereichs Veterinärmedizin der Freien Universität Berlin Dekan: Univ.-Prof. Dr. Leo Brunnberg Erster Gutachter: Univ.-Prof. a. D. Dr. Ortwin Simon Zweiter Gutachter: Univ.-Prof. Dr. Lothar H. Wieler Dritter Gutachter: Univ.-Prof. em. Dr. Dr. h. c. Gerhard Reuter Deskriptoren (nach CAB-Thesaurus): anaerobes; Bacteria; catalase; culture media; digestive tract; digestive tract mucosa; food chains; hydrogen peroxide; intestinal microorganisms; isolation; isolation techniques; jejunum; lactic acid; lactic acid bacteria; Lactobacillus; Lactobacillus plantarum subsp. plantarum; microbial ecology; microbial flora; mucins; mucosa; mucus; new species; Olsenella; Olsenella profusa; Olsenella uli; oxygen; pigs; propionic acid; propionic acid bacteria; species composition; stomach; symbiosis; taxonomy; Veillonella; Veillonella ratti Tag der Promotion: 21. Januar 2011 Diese Dissertation ist als Buch (ISBN 978-3-8325-2789-1) über den Buchhandel oder online beim Logos Verlag Berlin (http://www.logos-verlag.de) erhältlich. This thesis is available as a book (ISBN 978-3-8325-2789-1) -
Changes in the Oral Microflora of Occlusal Surfaces of Teeth with the Onset of Dental Caries
CHANGES IN THE ORAL MICROFLORA OF OCCLUSAL SURFACES OF TEETH WITH THE ONSET OF DENTAL CARIES Árni Rafn Rúnarsson Supervisors and Research Committee Dr. W. Peter Holbrook Dr. Viggó Þór Marteinsson Dr. Jakob K. Kristjánsson Faculty of Odontology University of Iceland November 2009 Ágrip Tannáta er mjög algengur sjúkdómur sem tengist samspili baktería í örveruþekkju “tannsýklu”. Þrjár kenningar hafa verið notað til að lýsa þessum tengslunum á milli baktería og tannátu: (I) Sérhæfða kenningin ,,specific plaque hypothesis“, þar sem segir að fáar ákveðnar tegundir eru taldar valda tannátu; (II) Ósérhæfða kenningin ,,non-specific plaque hypothesis”, þar sem segir að heildarvirkni allra baktería í örveruþekkjunni valdi tannátu; (III) Vistfræðilega kenningin ,,ecological plaque hypothesis”, þar sem segir að breytingar á ríkjandi flóru séu vegna breytinga í vistkerfi, t.d. aukinni sýkursneyslu, sem svo leiði til aukins vaxtar á sýrumyndandi bakteríutegundum. Ræktun með sértæku (e. selective) æti er ágæt leið til að rannsaka sérhæfðu kenninguna. Aftur á móti er mjög erfitt að rannsaka breytingar í tannsýklu og heildar örveruflóru með hefðbundnum ræktunaraðferðum, þegar reynt er að kanna betur vitsfræðilegu kenninguna. Með tilkomu nákvæmra mælitækja sem geta metið heilbrigðar tennur og tannátu á byrjunarstigi á einfaldari hátt (DIAGNOdent®) ásamt því að nýta sameindlíffræðilegar aðferðir, gera okkur kleift að tengja betur staðbundnar breytingar á tannskemmdum við ákveðna bakteríuflóru. Helstu markmið verkefnisins var að skoða bakteríuflóru í tannsýklu á nokkrum mismunandi stigum tannátu; (i) í tannsýklu ofan á glerung heilbrigðra tanna, (ii) tannsýklu úr glerungs-úrkölkun og (iii) úr byrjandi tannskemmdum. Áætlað var að bera að hluta niðurstöður klassískra aðferða með ræktunum saman við greiningu á örveruflóru með sameindalífræðilegum aðferðum, 16S rRNA gena greiningu og T-RFLP greiningu (e. -
Clinical and Microbiological Aspects of Periodontal Disease in Horses in South-East Queensland, Australia
Clinical and microbiological aspects of periodontal disease in horses in South-East Queensland, Australia Teerapol Tum Chinkangsadarn Doctor of Veterinary Medicine A thesis submitted for the degree of Doctor of Philosophy at The University of Queensland in 2015 School of Veterinary Science II Abstract The study of periodontal disease as part of equine dentistry is one of the overlooked fields of study, which truly needs more study and research to clearly understand the nature of the disease, the most appropriate diagnostic technique and prevention or treatment to provide for a good quality of life for horses. The abattoir survey of the oral cavity and dentition of 400 horses from South- East Queensland, Australia, showed that the most common dental abnormality was sharp enamel points (55.3% prevalence). Several types of dental abnormalities were strongly associated with age. The highest frequency of dental abnormalities (97.5%) were observed in senior horses (11-15 years old) and this included periodontal disease that increased to almost fifty percent in senior horses. The findings also confirmed that all horses, not just young horses, should have regular complete dental examinations as early as possible which should limit the development of more severe dental pathologies later in life. The equine oral microbiome found in dental plaque can cause oral disease which involves the some of the endogenous oral microbiota becoming opportunistic pathogens. The conventional method of oral microbiology based on culture dependent techniques usually overestimates the significance of species that are easily grown and overlooks microbial community diversity. Recently, the culture independent techniques using the next generation sequencing (NGS) method can determine the whole bacterial microbiota. -
Anxiolytic Effects of a Galacto-Oligosaccharides Prebiotic in Healthy Female Volunteers 2 Are Associated with Reduced Negative Bias and the Gut Bacterial Composition
medRxiv preprint doi: https://doi.org/10.1101/19011403; this version posted December 4, 2019. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. It is made available under a CC-BY-NC-ND 4.0 International license . 1 Anxiolytic effects of a galacto-oligosaccharides prebiotic in healthy female volunteers 2 are associated with reduced negative bias and the gut bacterial composition. 3 4 Nicola Johnstone1, Chiara Milesi1 , Olivia Burn1 , Bartholomeus van den Bogert2,3, Arjen 5 Nauta4 Kathryn Hart5, Paul Sowden1,6, Philip WJ Burnet7 ,Kathrin Cohen Kadosh1 6 1School of Psychology, Faculty of Health and Medical Sciences, University of Surrey, 7 Guildford, UK 8 2BaseClear, Leiden, The Netherlands 9 3MyMicroZoo, Leiden, The Netherlands 10 4FrieslandCampina, Amersfoort, The Netherlands 11 5Department of Nutritional Sciences, School of Biosciences and Medicine, Faculty of Health 12 and Medical Sciences, University of Surrey, Guildford, UK 13 6Department of Psychology, University of Winchester, Winchester, UK 14 7Department of Psychiatry, University of Oxford, Warneford Hospital, Oxford, UK 15 16 17 Corresponding authors 18 Phone: ++44(0) 1483 68 3968 19 Email: [email protected] 20 URL: kcohenkadosh.com 21 Email: [email protected] 22 23 Acknowledgements: 24 This research was supported by faculty research fund from the Faculty of Health and 25 Medical Sciences, University of Surrey, UK to KCK. FrieslandCampina provided the galacto- 26 oligosaccharides (GOS, prebiotics) used in this study. 27 Competing interests 28 AN is an employee of FrieslandCampina. -
Variations in the Two Last Steps of the Purine Biosynthetic Pathway in Prokaryotes
GBE Different Ways of Doing the Same: Variations in the Two Last Steps of the Purine Biosynthetic Pathway in Prokaryotes Dennifier Costa Brandao~ Cruz1, Lenon Lima Santana1, Alexandre Siqueira Guedes2, Jorge Teodoro de Souza3,*, and Phellippe Arthur Santos Marbach1,* 1CCAAB, Biological Sciences, Recoˆ ncavo da Bahia Federal University, Cruz das Almas, Bahia, Brazil 2Agronomy School, Federal University of Goias, Goiania,^ Goias, Brazil 3 Department of Phytopathology, Federal University of Lavras, Minas Gerais, Brazil Downloaded from https://academic.oup.com/gbe/article/11/4/1235/5345563 by guest on 27 September 2021 *Corresponding authors: E-mails: [email protected]fla.br; [email protected]. Accepted: February 16, 2019 Abstract The last two steps of the purine biosynthetic pathway may be catalyzed by different enzymes in prokaryotes. The genes that encode these enzymes include homologs of purH, purP, purO and those encoding the AICARFT and IMPCH domains of PurH, here named purV and purJ, respectively. In Bacteria, these reactions are mainly catalyzed by the domains AICARFT and IMPCH of PurH. In Archaea, these reactions may be carried out by PurH and also by PurP and PurO, both considered signatures of this domain and analogous to the AICARFT and IMPCH domains of PurH, respectively. These genes were searched for in 1,403 completely sequenced prokaryotic genomes publicly available. Our analyses revealed taxonomic patterns for the distribution of these genes and anticorrelations in their occurrence. The analyses of bacterial genomes revealed the existence of genes coding for PurV, PurJ, and PurO, which may no longer be considered signatures of the domain Archaea. Although highly divergent, the PurOs of Archaea and Bacteria show a high level of conservation in the amino acids of the active sites of the protein, allowing us to infer that these enzymes are analogs. -
Genomic Analysis of Uncultured Microbes in Marine Sediments
University of Tennessee, Knoxville TRACE: Tennessee Research and Creative Exchange Doctoral Dissertations Graduate School 12-2017 Singled Out: Genomic analysis of uncultured microbes in marine sediments Jordan Toby Bird University of Tennessee, [email protected] Follow this and additional works at: https://trace.tennessee.edu/utk_graddiss Recommended Citation Bird, Jordan Toby, "Singled Out: Genomic analysis of uncultured microbes in marine sediments. " PhD diss., University of Tennessee, 2017. https://trace.tennessee.edu/utk_graddiss/4829 This Dissertation is brought to you for free and open access by the Graduate School at TRACE: Tennessee Research and Creative Exchange. It has been accepted for inclusion in Doctoral Dissertations by an authorized administrator of TRACE: Tennessee Research and Creative Exchange. For more information, please contact [email protected]. To the Graduate Council: I am submitting herewith a dissertation written by Jordan Toby Bird entitled "Singled Out: Genomic analysis of uncultured microbes in marine sediments." I have examined the final electronic copy of this dissertation for form and content and recommend that it be accepted in partial fulfillment of the equirr ements for the degree of Doctor of Philosophy, with a major in Microbiology. Karen G. Lloyd, Major Professor We have read this dissertation and recommend its acceptance: Mircea Podar, Andrew D. Steen, Erik R. Zinser Accepted for the Council: Dixie L. Thompson Vice Provost and Dean of the Graduate School (Original signatures are on file with official studentecor r ds.) Singled Out: Genomic analysis of uncultured microbes in marine sediments A Dissertation Presented for the Doctor of Philosophy Degree The University of Tennessee, Knoxville Jordan Toby Bird December 2017 Copyright © 2017 by Jordan Bird All rights reserved. -
Olegusella Massiliensis Gen. Nov., Sp. Nov., Strain KHD7T, a New Bacterial Genus Isolated from the Female Genital Tract of a Patient with Bacterial Vaginosis
Anaerobe 44 (2017) 87e95 Contents lists available at ScienceDirect Anaerobe journal homepage: www.elsevier.com/locate/anaerobe Research Paper Anaerobes in the microbiome Olegusella massiliensis gen. nov., sp. nov., strain KHD7T, a new bacterial genus isolated from the female genital tract of a patient with bacterial vaginosis Khoudia Diop a, Awa Diop a, Florence Bretelle a, b,Fred eric Cadoret a, Caroline Michelle a, Magali Richez a, Jean-François Cocallemen b, Didier Raoult a, c, Pierre-Edouard Fournier a, * Florence Fenollar a, a Aix Marseille Univ, Institut Hospitalo-Universitaire Mediterranee-Infection, URMITE, UM63, CNRS 7278, IRD 198, Inserm U1095, Facultedemedecine, 27 Boulevard Jean Moulin, 13385 Marseille Cedex 05, France b Department of Gynecology and Obstetrics, Gynepole, Marseille, Pr Boubli et D'Ercole, Hopital^ Nord, Assistance Publique-Hopitaux^ de Marseille, AMU, Aix- Marseille Universite, France c Special Infectious Agents Unit, King Fahd Medical Research Center, King Abdulaziz University, Jeddah, Saudi Arabia article info abstract Article history: Strain KHD7T, a Gram-stain-positive rod-shaped, non-sporulating, strictly anaerobic bacterium, was Received 18 August 2016 isolated from the vaginal swab of a woman with bacterial vaginosis. We studied its phenotypic char- Received in revised form acteristics and sequenced its complete genome. The major fatty acids were C16:0 (44%), C18:2n6 (22%), 2 February 2017 and C18:1n9 (14%). The 1,806,744 bp long genome exhibited 49.24% GþC content; 1549 protein-coding Accepted 15 February 2017 and 51 RNA genes. Strain KHD7T exhibited a 93.5% 16S rRNA similarity with Olsenella uli, the phyloge- netically closest species in the family Coriobacteriaceae.