The History of Progress in Dimensionally Stable Anodes

Total Page:16

File Type:pdf, Size:1020Kb

The History of Progress in Dimensionally Stable Anodes The-Historyof Progress in Dimensionally Stable Anodes I -- I- c Paul Duby i it I This article provides a brief history of In an address delivered in 1980 before and made possible the development of dimensionally stable anodes by reviezuing the ElectrochemicalSociety: Henri Beer membrane cells. Over the decade of the j innovations in the chlor-alkali industry, reviewed his research and the subse- 1970s, DSA-type electrodes revolution- electroplating and electrogalvanizing, and quent industrial development of vari- ized the chlorine industry with resulting electrowinning. These anodes are attractive ous types of titanium anodes. His aim savings of about 20% in the specific en- , for numerous reasons (e.g., long life and was to find an appropriate electrocatalyst ergy requirement. Holden and Kolb re- educed energy consumption), but they must for the production of chlorine to be ap- viewed the state of the art of manufac- I 1 still overcome the hurdleof cost togain wider plied to an electrode capable of carrying turing and applications of the metalan- ' acceptance for applications in the metal- high current densities for long periods odes to the chlor-alkali industry? 1 lurgical process industries. of time without being consumed or The success of the industrial appli- changing its geometricaldimensions. He cations of the ruthenium oxide-coated INTRODUCTION started by working with coatings ob- electrode was based only on a limited A nonconsumable anode is preferred tained by electrodeposition of PGMs on investigation of its overpotential for r many electrolytic processes. Techno- titanium, for use in mercury cells. Like chlorine evolution and its stability for other investigators, he discovered the continuous operation as an anode. These importance of the pretreatment of the were empirically related to the mor- titaniumsubstrate and the improvement phology and the preparation process.6 in adhesion and electrocatalytic activity Research of a more fundamental nature obtained by replacing the electrodepo- followed later. Trasatti and OGrady re- sition process by a thermochemical one viewed the work carried out on the consisting of an application of a solution properties of ruthenium oxide electrodes of salts of the desired metals followed by during the 1970s: Trasatti also edited thermal decomposition. He also ob- reviews of all electrodes of conductive served that the passivation and loss of metal oxides.*A better understanding of slower and limited to the platinum metal were greatly reduced by the physico-chemical properties of the alloying theplatinumwithabout30 wt.% single- and mixed-oxide films, in turn, iridium. generated ideas for further improvement Further attempts to reduce the over- of electrodes for practical applications. potential for chlorineevolution, the wear More recently, for instance, ion implan- of the coating, and its cost led to ex- tation has been used to modify and char- perimentation withPGMoxides. In1967, acterize the properties of mixed ruthe- Beer succeeded in preparing more nium-titaniu'm oxide films.9Tilak et a1.I0 electroactive and stable coatings by presented a more fundamental analysis thermochemicalcoprecipitation of PGM of the factors influencing the kinetics of oxides with oxides of titanium or the oxygen versus chlorine evolution on other valve metals. These anodes were-- . ruthenium oxide-based anodes1 They registered under. the trademark DSA? suppressed oxygen evolution by oper- Since that time, many patents have ap- ating with low surface areas and by peared describing various mixtures of adding dopants. metal oxides as the active coatings on Progress is continuing to improve the valve metal substrates. The dimen- design of the structure and coating of the sionally stable anode in use today for electrode^.*^-^^ For diaphragm electro- ~ chlorine production is made of a tita- lyzers, the coatings consist mainly of niumstructureof rods or expanded metal ruthenium and titanium oxides, and with a coating of doped, mixed oxides of service life is reported to be more than 14 ruthenium and titanium having a high years at 2 kA/m2. For the membrane 1960swhenHenri Beer invented the tita- electrocatalytic activity and electrical process, the conditions are more severe nium electrode csated with precious- conductivity. due to a larger current density, higher metal oxides3 Itis worthwhile tonote that thechange alkalinity, and a need to control the oxy- from graphite anodes to coated metal gen and chlorate. An improved coating ' CHLOR-ALKALI INDUSTRY anodes was not a simple substitution, as consisting of ruthenium, titanium, and The development of dimensionally it required modifications to the cell de- iridium oxides is expected to perform stable anodesfor the chlor-alkali industry sign and large capital expenditures. At for more than ten years at 3 kA/m2.12 is an example of a very successful inno- first, the current and cell output were A large number of variations in com- vation. A brief discussion of its history significantly increased with a modest position of oxide coatings have been as well as the technological experience (about 5%)decrease in power consump- investigated. For instance, pall a d'ium gained in the process is relevant to as- tion per tonne of chlorine gas. Later, the oxide can be used to reduce the iridium sess the prospects for metallurgical-in- new anodes led to the design of a new ~0ntent.l~The influence of coating com- 4 E; dustry applications. generation of improved diaphragm cells position has been investigated in order - '1 ~ 3 1993March JOM 41 - to optimize electrodes for the produc- by dissolution or erosion, passivation of nars.387 tion of chlorate or hypochlorite.I5 Non- the valve metal substrate, and various on cop’ precious metal oxides were also consid- types of damage caused by impurities in ith the ered. Alpha-lead dioxide coated on tita- the electrolyte. Id We] nium was suggested for the elec- ELECTROWINNING fferent trosynthesis of sodium perchlorate.16 gated Burke and McCarthy found that ther- Electrowinningis only one of the steps esh or mally produced cobalt oxide (Co30,), of complex metallurgical flow sheets, ,wer et doped with RuO, to improve conduc- and a significant modification of one particular, when investigating the 70- 1cs ani tivity, is a promising anode material.I7 unit operation often affects all theothers. wt.% Pt-30 wt.% Ir appli tivatec These oxides of the spinel type have The successful application of dimen- decomposition process, Tests c been tested for chlorine evolution. Be- sionally stable electrodes for chlorine ;ried 1 cause of their longer service life in alka- evolution is critical for the development per, : line solutions, they were recommended of chloride hydro-electrometallurgy. A e usir on a nickel substrate for water elec- dimensionally stable anode with good newl- trolysis. service life facilitates the design of per- -nce, ELECTROPLATING AND manent anodic compartments and :ed R ELECTROGALVANIZING chlorine removal systems for safe op- tigatt eration of the tankhouse. Given the Inert anodes made by electrodepo- successful commercial application of gster sition of platinum on titanium have been solvent extraction to the treatment of ‘%de used successfully for some time in vari- chloride solutions of nickel and cobalt, >pose< ous baths for electroplating gold and there is an incentive to develop an effi- 1yte.l other precious metals. Information on cient chloride electrowinning process for anode. ium the electrocatalytic properties and be- these metals. Since iridium oxide h yed P havior under different conditions has In 1975, SumitomoMetals andMining to be the electroactive alkal been reviewed.’ Skomoroski et al.I8 in- Company reported the use of DSA an- oxygen evolution, consid h cur vestigated the performance of platinum- odes on a commercial scale for the-elec- been devoted to form 3 sma clad tantalum anodes and compared trowinning of nickel and cobalt from sity 2 them favorably with electroplated pla- chlorideelectrolytes.” The electrodes had ztrol! tinized titanium electrodes in various been selected after being found much e an( electroplating baths. For these applica- superior to graphite anodes in earlier builc tions, the life of the electrodes and the stages of process development. At the costs are quite acceptable. same time, Falconbridge, in Norway, Until recently, soluble anodes of lead- was phasing out the Hybinette electro- :he e silver alloy electrodes were used satis- refining process for nickel and cobalt, ctroc, factorily in sulfate solutions. They are no replacing it by chlorine leach, solvent An wc longer suitable for modern high-speed extraction, and electrowinning.25 The md tc galvanizing lines that produce a pure tankhouse section was equipped with le ag( metal or a zinc alloy exempt of lead DSA-type anodes made of a titanium ning cell. The initial operating potent ,ditivt contamination. Platinum-clad titanium structure coated with an electroactive was about 300 mV lower than that of a! ‘ttrol! anodes suffer from high wear and, thus, layer of a noble metal oxide. The struc- lead anode under the same conditions;it! v!ty ar high costs. The chemical stability of ru- ture is fitted with a hood to which the increased linearly at a rate of 220 mV per:4 :eds f~ thenium oxide is limited in a sulfuric diaphragm bag is attached. The conver- year, which was correlated to the rate of’ &\dam acid solution and the RuOz-Ti02coating sion to the chlorineleachprocess resulted electrochemical corrosion of the coat4 1 direc used successfully
Recommended publications
  • Understanding the Metallurgy in Today's Engines
    New Metals, New Challenges: Understanding The Metallurgy In Today’s Engines By Larry Carley Cast iron is like an old familiar friend to most of our readers because it's been around forever. Vehicle manufacturers like cast iron because it's cheap compared to most other metals, it is strong and durable, and it can be easily cast and machined to make engine blocks, cylinder heads, crankshafts, connecting rods and other engine parts. But as automotive technology continues to move forward, other metals have been replacing ordinary cast iron in many applications. Such "new" metals as high silicon alloy aluminum for engine blocks, aluminum metal matrix composite (MMC), discontinuously reinforced aluminum (DRA), and nickel plated aluminum blocks and cylinders, compacted graphite iron (CGI) engine blocks with or without nickel plated cylinder bores and even bimetal engine blocks made of cast magnesium around aluminum cylinders are finding their way into your shop more often. Powder metal parts that mix iron with other metals are being used in more and more production engines for everything from valve guides and connecting rods to timing gears. In high performance and racing engines, exotic metals such as titanium are now commonly used for valves, springs and retainers. Ceramics, carbon fiber materials or even high temperature plastics may be in tomorrow's engines. Concept engines have been constructed from all of these materials as engineers continue to push the envelope for lighter, stronger and better materials. CAST IRON To better understand some of these new metals, let's start with that metal our readers know well: cast iron.
    [Show full text]
  • Influence of Zinc on Surface Treatments of Aluminium-Zinc Alloys
    Influence of Zinc on Surface Treatments of Aluminium-Zinc Alloys A thesis submitted to the University of Manchester for the degree of Doctor of Philosophy in the Faculty of Engineering and Physical Sciences 2010 Marialuisa Gentile Corrosion and Protection Centre School of Materials 1 aaa 2 List of Contents List of Contents List of Figures................................................................................................................7 List of Tables................................................................................................................16 Abstract........................................................................................................................17 Declaration...................................................................................................................18 Copyright Statement.....................................................................................................19 Acknowledgements......................................................................................................20 Chapter 1 Introduction…………………………………………………………………............21 Overview......................................................................................................................21 Objectives………………….........................................................................................23 Chapter 2 Properties, Corrosion and Surface Treatments of Aluminium and Aluminium Alloys...........................................................................................................................25
    [Show full text]
  • Fabrication of Zno Nanoparticles for Photocatalytic Reduction of CO2
    MATEC Web of Conferences 67, 02009 (2016) DOI: 10.1051/matecconf/20166702009 SMAE 2016 Fabrication of ZnO Nanoparticles for Photocatalytic Reduction of CO2 Guang NI1,a, Yinfei CHEN1,b,Yulan LIU1,c, Huayan LIU1,d , and Zekai ZHANG1,e* 1College of Chemical Engineering, Zhejiang University of Technology, Chaowang road 18, 310014 Hangzhou, China a b c d e [email protected], [email protected], [email protected], [email protected], [email protected] Abstract. ZnO nanoparticles were fabricated by anodization method. Different fabrication conditions, including pH buffers (sodium hydroxide, citric acid, oxalic acid, hydrogen peroxide), electrolyte concentration, temperature and voltage were investigated. The field emission scanning electron microscopes (FESEMs) revealed that zinc oxide nanoparticles with discal morphology were formed. The optimum conditions for fabrication of nano ZnO material with discal shape nanoparticles are 1wt% o NH4F electrolyte in water ethano(1:1) solution at 25 C and 40v with 0.2M citric acid as pH buffer. This ZnO material shows rather high photocatalytic reduction activity of CO2 and the yield of CH4 reaches 2.48 umol/g catalyst. Keywords: Zinc oxide nanoparticles, discal morphology, preparation conditions, photocatalytic reduction 1Introduction Zinc oxide has drawn considerable attention because of its attractive optical-electrical characteristics[1,2] that make it potentially applicable in a lot of fields such as ultraviolet lasing[3], photocatalysts[4]and so on[5,6]. In addition, 1D nanoscale ZnO is preferred in photoanode applications due to its larger surface area[7]. Anodic oxidation has been employed in synthesis of many kinds of metal oxides with 1D nanostructure[8~10].
    [Show full text]
  • Electropolishing Valve Metals with a Sulfuric Acid-Methanol Electrolyte at Low Temperature T
    Surface & Coatings Technology 347 (2018) 150–156 Contents lists available at ScienceDirect Surface & Coatings Technology journal homepage: www.elsevier.com/locate/surfcoat Electropolishing valve metals with a sulfuric acid-methanol electrolyte at low temperature T Pete Barnes1, Andreas Savva1, Kiev Dixon, Hailey Bull, Laura Rill, Devan Karsann, Sterling Croft, ⁎ Jesse Schimpf, Hui Xiong Micron School of Material Science and Engineering, Boise State University, 1910 University Drive, Boise, ID 83725, United States ARTICLE INFO ABSTRACT Keywords: This study reports the electropolishing of Ti and Nb metals using a fluoride-free electrolyte of sulfuric acid and Electropolishing methanol at low temperature (−70 °C) without prior treatment. A fluoride-free electrolyte provides a less ha- Niobium zardous and more environmentally friendly option for electropolishing procedure. Experimental studies are Titanium presented on electropolishing with sulfuric acid electrolyte, which provides high quality macro- and micro- HF-free electrolyte smoothing of the metal surfaces. Optimal conditions yielded leveling and brightening of the surface of Ti and Nb Cold temperature electropolishing metals beyond that by the currently utilized electropolishing procedures with fluoride-containing electrolytes. The root mean square roughness (Rq) from atomic force microscopy analysis was 1.64 and 0.49 nm for Ti and Nb, respectively. Lower temperature experiments led to noticeable kinetic effects, indicated by a dramatic drop in current densities and the expansion of the steady-state current density plateau in anodic polarization curves. In addition, the voltage range of the current plateau expanded with increasing acid concentration. Surface char- acterization of Ti and Nb metals after polishing provided evidence of salt film formation.
    [Show full text]
  • &STUK the Properties of and Transport Phenomena in Oxide Films
    FI9900006 &STUK STU K-YTO-TR 1 50 January 1999 The properties of and transport phenomena in oxide films on iron, nickel, chromium and their alloys in aqueous environments 30-12 T. Laitinen, M. Bojinov, I. Betova, K. Makela, T. Saario VTT Manufacturing Technology In STUK this study was supervised by Seija Suksi STUK • SATEILYTURVAKESKUS • STR ALS AKE R H ETSC E NTRALE N RADIATION AND NUCLEAR SAFETY AUTHORITY The conclusions presented in the STUK report series are those of the authors and do not necessarily represent the official position of STUK. ISBN 951-712-286-1 ISSN 0785-9325 Oy Edita Ab, Helsinki 1999 STUK-YTO-TR 150 LAITINEN, Timo, BOJINOV, Martin, BETOVA, Iva, MAKELA, Kari, SAARIO, Timo. (VTT Manufactur- ing Technology). The properties of and transport phenomena in oxide films on iron, nickel, chromium and their alloys in aqueous environments. STUK-YTO-TR 150. Helsinki 1999. 75pp. + Appendices 4pp. ISBN 951-712-286-1 ISSN 0785-9325 Keywords: oxide films, iron, nickel, chromium, steels, nickel-based alloys, ambient and high- temperature aqueous environments, transport properties, growth mechanism, localised corrosion, activity incorporation ABSTRACT The construction materials used in coolant systems in nuclear power plants become covered with oxide films as a result of exposure to the aqueous environment. The susceptibility of the materials to different forms of corrosion, as well as the extent of the incorporation of radioactive species on the surfaces of the primary circuit, are greatly influenced by the physical and chemical properties of these oxide films. The composition and characteristics of the oxide films in turn depend on the applied water chemistry.
    [Show full text]
  • Corrosion Resistant Steel Sheet with a Chemically Modified Zinc Coating
    Europäisches Patentamt *EP001205580A1* (19) European Patent Office Office européen des brevets (11) EP 1 205 580 A1 (12) EUROPEAN PATENT APPLICATION (43) Date of publication: (51) Int Cl.7: C23C 22/36, C23C 22/44 15.05.2002 Bulletin 2002/20 (21) Application number: 01125365.5 (22) Date of filing: 29.10.2001 (84) Designated Contracting States: • Nakano, Tadashi, Steel & Technology Dev. Labs. AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU Sakai-shi, Osaka 592-8332 (JP) MC NL PT SE TR • Ariyoshi, Yasumi, Steel & Technology Dev. Labs. Designated Extension States: Sakai-shi, Osaka 592-8332 (JP) AL LT LV MK RO SI • Izumi, Keiji, Steel & Technology Dev. Labs. Sakai-shi, Osaka 592-8332 (JP) (30) Priority: 10.11.2000 JP 2000342938 • Matsuno, Masanori, 18.06.2001 JP 2001183044 Steel & Technology Dev. Labs. Sakai-shi, Osaka 592-8332 (JP) (71) Applicant: NISSHIN STEEL CO., LTD. • Taketsu, Hirofumi, Chiyoda-ku Tokyo 100-8366 (JP) Steel & Technology Dev. Labs. Sakai-shi, Osaka 592-8332 (JP) (72) Inventors: • Ueda, Kouichiro, Steel & Technology Dev. Labs. (74) Representative: Müller-Boré & Partner Sakai-shi, Osaka 592-8332 (JP) Patentanwälte • Morikawa, Shigeyasu, Grafinger Strasse 2 Steel & Technology Dev. Labs. 81671 München (DE) Sakai-shi, Osaka 592-8332 (JP) (54) Corrosion resistant steel sheet with a chemically modified zinc coating (57) A new processed steel sheet comprises a steel uble compound acts as a barrier for insulation of a steel base coated with a Zn or its alloy plating layer and a base from an atmosphere, while the soluble compound converted layer, which contains both of at least an in- exhibits a self-repairing faculty to repair defective parts soluble or scarcely-soluble metal compound and at least of the converted layer.
    [Show full text]
  • On Coating Techniques for Surface Protection: a Review
    Journal of Manufacturing and Materials Processing Review On Coating Techniques for Surface Protection: A Review Behzad Fotovvati 1,* , Navid Namdari 2 and Amir Dehghanghadikolaei 3 1 Department of Mechanical Engineering, The University of Memphis, Memphis, TN 38152, USA 2 Mechanical, Industrial and Manufacturing Engineering Department, The University of Toledo, Toledo, OH 43606, USA; [email protected] 3 School of Mechanical, Industrial and Manufacturing Engineering, Oregon State University, Corvallis, OR 97331, USA; [email protected] * Correspondence: [email protected] Received: 21 February 2019; Accepted: 18 March 2019; Published: 25 March 2019 Abstract: A wide variety of coating methods and materials are available for different coating applications with a common purpose of protecting a part or structure exposed to mechanical or chemical damage. A benefit of this protective function is to decrease manufacturing cost since fabrication of new parts is not needed. Available coating materials include hard and stiff metallic alloys, ceramics, bio-glasses, polymers, and engineered plastic materials, giving designers a variety freedom of choices for durable protection. To date, numerous processes such as physical/chemical vapor deposition, micro-arc oxidation, sol–gel, thermal spraying, and electrodeposition processes have been introduced and investigated. Although each of these processes provides advantages, there are always drawbacks limiting their application. However, there are many solutions to overcome deficiencies of coating techniques by using the benefits of each process in a multi-method coating. In this article, these coating methods are categorized, and compared. By developing more advanced coating techniques and materials it is possible to enhance the qualities of protection in the future.
    [Show full text]
  • United States Patent (19) (11) 4,111,765 De Nora Et Al
    United States Patent (19) (11) 4,111,765 De Nora et al. 45) Sep. 5, 1978 (54) SLCON CARBDE-VALVE METAL (56) References Cited BORIDES-CARBON ELECTRODES U.S. PATENT DOCUMENTS 75 Inventors: Vittorio De Nora, Nassau, The 3,330,756 7/1967 Ransley ................................ 204/279 Bahamas; Antonio Nidola; Placido 3,632,498 1/1972 Beer ............... 204/290 F Maria Spaziante, both of Lugano, 3,645,862 2/1972 Cotton et al... ... 204/56 R Switzerland 3,661,736 5/1972 Holliday ................................ 204/67 73 Assignee: Diamond Shamrock Technologies 3,687,724 8/1972 Keith et al..... 204/290 FX S.A., Geneva, Switzerland 3,788,968 1/1974 Miller et al. ...... - O - O - 204/290 R Primary Examiner-F.C. Edmundson (21) Appl. No.: 820,834 Attorney, Agent, or Firm-Hammond & Littell 22 Filed: Aug. 1, 1977 57 ABSTRACT Related U.S. Application Data Novel sintered electrodes consisting essentially of 40 to 90% by weight of at least one valve metal boride, 5 to 63 Continuation-in-part of Ser. No. 754,025, Dec. 23, 40% by weight of silicon carbide and 5 to 40% by 1976, abandoned. weight of carbon useful for electrolysis reactions, par (51) int. Cl. ........................ C25B 1/34; C25B 11/00; ticularly electrolysis of halide ions to the corresponding C25B3/06; C25B 7/02 halogen and to a novel electrolytic cell, a novel bipolar 52 U.S. C. ........................................ 204/67; 204/98; electrode and to a novel process for effecting the elec 204/243 R; 204/252; 204/254; 204/290 R; trochemical processes, particularly electrolysis of mol 204/290 F; 204/291 ten metal halides.
    [Show full text]
  • ANODIC OXIDES on Al-Nb ALLOYS and NIOBIUM
    ANODIC OXIDES ON Al-Nb ALLOYS AND NIOBIUM A thesis submitted to The University of Manchester for the degree of Doctor of Philosophy in the Faculty of Engineering and Physical Sciences 2007 ANA ISABEL T S CORREIA DE SÁ SCHOOL OF MATERIALS CORROSION AND PROTECTION CENTRE CONTENTS CONTENTS ………………………………………………………….………... 2 LIST OF FIGURES ……….…………………………………………………… 8 LIST OF TABLES …………………………………………………………….. 17 ABSTRACT ……………………………………………………………………. 20 DECLARATION .……………………………………………………………… 21 COPYRIGHT STATEMENT ………………………………………………… 21 ACKNOWLEGEMENTS ……………………………………..………………. 22 DEDICATION …………………………………………………………………. 23 CHAPTER 1 INTRODUCTION AND LITERATURE REVIEW OF ANODIC FILMS ON VALVE-METALS ……………………………………………………….... 24 1.1 Introduction ………………………………………………………….…….. 24 1.2 Anodic oxidation of valve-metals ……………………………………….… 25 1.2.1 The fundamental equation of the high-field model ………...……… 25 1.2.2 The rate-determining step and anomalous behaviour ........…......… 28 1.2.3 Anodising techniques ……………………...……………..………….. 30 1.2.4 Structure and composition of anodic oxide films ...........….….…… 33 1.2.5 Flaws in anodic oxide films ………………………………………….. 34 1.2.6 Ionic migration and transport numbers ….........…..………………. 34 1.2.7 Incorporation of foreign species into anodic oxide films …..…...…. 36 1.3 Electric behaviour of anodic oxide films ……………………………....…. 40 1.3.1 Fundamentals of the electrical properties of solid materials …...…. 40 1.3.2 Dielectric behaviour of anodic oxide films ………………….……… 42 2 1.3.3 Semiconductor behaviour of anodic oxide films …………….…….. 48 1.3.4 The electrical properties of anodic oxide films of aluminium, niobium and tantalum …………………………..………………….... 51 1.4 The electrochromic effect .………………………………………………… 53 CHAPTER 2 LITERATURE REVIEW OF ANODIC OXIDES ON SPUTTERED ALLOYS ……………………………………………………………………….. 55 2.1 Introduction ………………………………..…………………………...….. 55 2.2 Structure of sputtered valve-metal alloys ………..………....……………. 56 2.3 Anodic oxidation of sputtered aluminium alloys ……….…..……………. 57 2.3.1 Formation of enriched alloy layers …………….……………….......
    [Show full text]
  • Corrosion of Metallic Biomaterials: a Review
    Review Corrosion of Metallic Biomaterials: A Review Noam Eliaz Department of Materials Science and Engineering, Tel-Aviv University, Ramat Aviv 6997801, Israel; [email protected]; Tel.: +972-3-6407384 Received: 17 December 2018; Accepted: 26 January 2019; Published: 28 January 2019 Abstract: Metallic biomaterials are used in medical devices in humans more than any other family of materials. The corrosion resistance of an implant material affects its functionality and durability and is a prime factor governing biocompatibility. The fundamental paradigm of metallic biomaterials, except biodegradable metals, has been “the more corrosion resistant, the more biocompatible.” The body environment is harsh and raises several challenges with respect to corrosion control. In this invited review paper, the body environment is analysed in detail and the possible effects of the corrosion of different biomaterials on biocompatibility are discussed. Then, the kinetics of corrosion, passivity, its breakdown and regeneration in vivo are conferred. Next, the mostly used metallic biomaterials and their corrosion performance are reviewed. These biomaterials include stainless steels, cobalt-chromium alloys, titanium and its alloys, Nitinol shape memory alloy, dental amalgams, gold, metallic glasses and biodegradable metals. Then, the principles of implant failure, retrieval and failure analysis are highlighted, followed by description of the most common corrosion processes in vivo. Finally, approaches to control the corrosion of metallic biomaterials are highlighted. Keywords: biomaterials; biocompatibility; corrosion; failure; titanium alloys; stainless steels; shape memory alloys; biodegradable metals; metallic glasses; body environment 1. Introduction Biomaterials are commonly defined as nonviable materials intended to interface with biological systems to evaluate, treat, augment or replace any tissue, organ or function of the body [1].
    [Show full text]
  • Electropolishing Valve Metals with a Sulfuric Acid-Methanol Electrolyte at Low Temperature"
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Boise State University - ScholarWorks Boise State University ScholarWorks Materials Science and Engineering Faculty Department of Materials Science and Engineering Publications and Presentations 8-15-2018 Electropolishing Valve Metals with a Sulfuric Acid- Methanol Electrolyte at Low Temperature Pete Barnes Boise State University Andreas Savva Boise State University Kiev Dixon Boise State University Hailey Bull Boise State University Laura Rill Boise State University See next page for additional authors Publication Information Barnes, Pete; Savva, Andreas; Dixon, Kiev; Bull, Hailey; Rill, Laura; Karsann, Devan; Croft, Sterling; Schimpf, Jesse; and Xiong, Hui. (2018). "Electropolishing Valve Metals with a Sulfuric Acid-methanol Electrolyte at Low Temperature". Surface and Coatings Technology, 347, 150-156. http://dx.doi.org/10.1016/j.surfcoat.2018.04.082 This is an author-produced, peer-reviewed version of this article. © 2018, Elsevier. Licensed under the Creative Commons Attribution- NonCommercial-NoDerivatives 4.0. The final, definitive version of this document can be found online at Surface and Coatings Technology, doi: 10.1016/j.surfcoat.2018.04.082 Authors Pete Barnes, Andreas Savva, Kiev Dixon, Hailey Bull, Laura Rill, Devan Karsann, Sterling Croft, Jesse Schimpf, and Hui Xiong This article is available at ScholarWorks: https://scholarworks.boisestate.edu/mse_facpubs/364 Electropolishing Valve Metals with a Sulfuric Acid-Methanol Electrolyte at Low Temperature Pete Barnes,a,+ Andreas Savva,a,+ Kiev Dixon,a Hailey Bull,a Laura Rill,a Devan Karsann,a Sterling Croft,a Jesse Schimpf,a and Hui Xionga,* aMicron School of Material Science and Engineering, Boise State University, 1910 University Drive, Boise, Idaho 83725, United States.
    [Show full text]