CSL to Accelerate Performance with New Parallel Computing Institute

Total Page:16

File Type:pdf, Size:1020Kb

CSL to Accelerate Performance with New Parallel Computing Institute ENGINEERING AT ILLINOIS Coordinated Science Laboratory Non-profit Organization University of Illinois - College of Engineering U.S. Postage 1308 West Main St. PAID Urbana, IL 61801 Permit No. 75 Champaign, IL 61820 Parallel computing institute CONNECTNEWSLETTER OF THE COORDINATED SCIENCE LABORATORY VOL. TWO, NO. 2 | 2 0 1 1 continued from front page Center and the Institute for Advanced Computation and Applications Technology. Illinois is also an impor- tant participant in projects such as the DOE’s Exascale CSL to accelerate performance with Software Stack and the DARPA Ubiquitous High- Performance Computing program. new parallel computing institute Today’s programmers often lack the skills necessary to write code for many-core systems. One of PCI’s early thrusts will be research and education that make it easier to program on parallel platforms. PCI will also focus on extreme scale, high-end com- puting for compute-heavy applications, such as those that will utilize resources like Blue Waters, which will boast a peak performance of 10 quadrillion calculations per second when it goes online. Research areas include building compilers for single-chip parallelism, design- Save the Date! October 28, 2011 ing new architectures for massively parallel systems and creating new algorithms to solve complex problems. 60th Anniversary Symposium: “The Parallel Computing Institute provides the Building Interdisciplinary strong base of infrastructure and expertise needed Excellence with Societal Impact to transform the way we design and interact with massively parallel computing systems,” said Ilesanmi The event will celebrate CSL’s Adesida, dean of Illinois’ College of Engineering. impact on technology— The institute intends to capitalize on growing past, present and future. industry interest in parallelism, says Wen-mei Hwu, The Coordinated Science Laboratory has launched a new Parallel computing provides the most powerful and effi- PCI Chief Scientist, CSL Researcher and AMD-Jerry interdisciplinary institute that will provide the resources to cient infrastructure for computation-heavy applications. It Sanders Chair of Electrical and Computer Engineering. October 28, 2011 enable breakthroughs in parallel computing. is a key element of modern computing, ranging from multi- “Many commercial developers and software vendors B02 Coordinated Science The Parallel Computing Institute will arm researchers core processors in commodity electronics to supercomputers are beginning to tackle parallel programming issues,” Laboratory and educators with the support they need to address major with nearly a million processing elements. Hwu said. “We want to be the place where they come computational challenges in science, engineering, health and “Illinois is already a leader in parallel computing, with tre- for help.” www.csl.illinois.edu/60 business, among other areas. PCI will serve as an incubator mendous depth and breadth in this area,” said PCI Director “In the tradition of CSL initiatives, the Parallel for parallel initiatives by: Bill Gropp, CSL researcher and the Paul and Cynthia Saylor Computing Institute will look at how parallel comput- • expanding access to resources and infrastructure, Professor of Computer Science. “What PCI aims to do is to ing innovations can be created for platforms ranging • teaching critical skills to graduate and undergraduate provide researchers in different disciplines the opportunity from embedded devices to the largest supercomputers, students, to collaborate in an innovative, resource-rich environment. and for a diverse set of applications,” said William • creating more opportunities for funding and estab- By approaching problems in a strategic, interdisciplinary H. Sanders, director of the Coordinated Science lishing key external partnerships, way, we can develop solutions with greater impact.” Laboratory. “With a comprehensive, multi-faceted • sharing center creation expertise with research The center will leverage Illinois’ strength in parallel com- approach, we will develop software and hardware solu- www.csl.illinois.edu teams who want to do high-impact work in parallel puting. Illinois is already the home to the NSF Blue Waters tions needed to advance technology for the future.” computing. Petascale Computer, the CUDA Center of Excellence, the Intel/Microsoft Universal Parallel Computing Research continued on back mail page COORDINATED SCIENCE LABORATORY F r o m t h e D i r e c t o r In recent years, parallel computing has opened up possibilities previously unimagined – and we’ve only scratched the surface. Over the next decades, parallel computing will provide the backbone for breakthroughs in critical Image courtesy of NOAA areas such as medicine (reading MRIs in real time), bioengineering (DNA sequencing) and astronomy (understanding how the cosmos formed), among others. It will also transform the way we work and play by enabling interactive, immersive virtual realities. CONNECT Illinois researchers capture images of first With its strong roots in high-performance computing, the University of Illinois is well poised to lead this technology revolution. That’s why the Coordinated Science Laboratory, with the participation of Illinois faculty from many academic departments, has launched the Parallel Computing Institute, an interdisciplinary center that will provide support to researchers who are tackling these complex tsunami-related airglow signature VOLUME TWO, NUMBER 2 | 2011 problems. Researchers at the University of Illinois As a tsunami moves across the ocean, tsunamis. Currently, scientists rely on have become the first to record an air- it produces atmospheric gravity waves ocean-based buoys and models to track Why is CSL leading this endeavor? From our historical contributions to our present-day strengths, we have the experience and tools necessary to help glow signature in the upper atmosphere forced by centimeter-level surface undu- and predict the path of a tsunami. Previ- guide the effort. produced by a tsunami. The activity was lations. The amplitude of the waves can ous upper atmospheric measurements CSL researchers have been involved in high-performance computing since the days of the ILLIAC machines. For example, CSL research engineer observed using a camera system based reach several kilometers where the neu- of the tsunami signature relied on GPS W.J. Bouknight helped develop the ILLIAC IV array-based supercomputer, one of the earliest massively parallel systems, in the 1960s and ‘70s. in Maui, Hawaii. tral atmosphere coexists with the plasma measurements, which are limited by The signa- in the ionosphere, the number of data points that can be Since then, CSL researchers have: ture, caused by causing perturba- obtained, making it difficult to create an • Invented cube-connected cycles, an architecture for massively parallel processing. the March 11 tions that can be image. It would take more than 1,000 earthquake that imaged. GPS receivers to capture comparable • Built the first multiprocessor using microprocessors, AMP-1. devastated Japan, On the night data to that of one camera system. In ad- • Developed the Illinois Protocol, used today by most cache coherent multi-core processors. was observed in of the tsunami, dition, some areas, such as Hawaii, don’t • Invented optimal pipeline scheduling with delay insertions, which led to the development of software pipelining in compilers. an airglow layer conditions above have enough landmass to accumulate 250 kilometers Hawaii for viewing the number of GPS units it would take to • Created Superblocks, a compiler innovation that extended the applicability of software pipelining from Fortran loops to general above the the airglow signa- image horizon to horizon. C programs, leading to the HP-Intel Itanium platform that now plays an important role in the server market. earth’s surface. ture were optimal. In contrast, one camera can image • Contributed to the development of the Cedar machine and helped pioneer parallelizing FORTRAN Compilers. It preceded the It was approaching the entire sky. However, the sun, moon • Used predicated or guarded instructions to improve instruction-level parallelism. tsunami by one dawn (nearly 2 am and clouds can limit the utility of camera hour, suggesting local time) with measurements from the ground. By fly- • Created influential tools such the IMPACT compiler, which has contributed to the foundation of compilers for Intel’s line of IA-64 that the technology could be used as an no sun, moon or clouds obstructing the ing a camera system on a geo-stationary microchips as well as VLIW processors, used in many DSP and GPU chips today. early-warning system in the future. view of the night sky. satellite in space, scientists would be More recently, CSL has been involved in the development of the National Center for Supercomputing Applications’ Blue Waters, a petascale computer; The observation confirms a theory Along with graduate student Thom- able to avoid these limitations while the CUDA Center for Excellence, which pursues advances in many-core computing research; the EcoG Supercomputer that earned Illinois the #3 spot on developed in the 1970s that the signa- as Gehrels, Makela analyzed the images simultaneously imaging a much larger the November 2010 Green 500 most energy-efficient computers in the world; and the Institute for Advanced Computing Applications and Technologies, ture of tsunamis could be observed in and was able to isolate specific wave region of the earth. the upper atmosphere, specifically
Recommended publications
  • NCSA Access Magazine
    Access I 2 I Spr1ng 2008 I An Expert Opinion I BtU[ WATfRS CHANGING THE WAY SCIENCE IS DONE U ntil about the middle of the Last century, science was really and engineers will have sustained petascale performance-the founded on two major premises. One was work in the Laboratory, capability to process one quadrillion calculations per second­ referred to as experiment, the other was work on discovering affording them additional accuracy to describe the phenomena the underlying principles, theory. With the development of in which they're interested. Thus Blue Waters is going to make it electronic computers in the 1950s, scientists began to realize possible to do science on scales not seen before as researchers solve there was actually a third mode of investigating the world around problems that couldn't be solved previously. us: computational modeling. What type of problems? Computational modeling means taking the mathematical equations that describe the phenomena we're interested in and then Blue Waters ultimately is going to Lead to far more accurate using the computer to solve those mathematical equations because predictions in severe weather events such as tornadoes and hurricanes. there is no other way to solve them. But as models became more Other uses for Blue Waters could be designing new materials with accurate they became more sophisticated and more computationally specific properties, plastics for example. Pharmaceutical design is intense. To address this problem, some University of ILlinois professors another use, as are better predictions with many other aspects of sent an unsolicited proposal to the National Science Foundation health and medicine.
    [Show full text]
  • ACES Legacy Corridor
    THE IMPACT OF PLACE: UNIVERSITY OF ILLINOIS AT URBANA-CHAMPAIGN CAMPUS MASTER PLAN UPDATE EXECUTIVE SUMMARY UPDATED: AUGUST 2018 University of Illinois at Urbana-Champaign Campus Master Plan Update Updated: August 2018 Prepared by SmithGroup With guidance from: Under direction of: • University Office of Capital Programs & Real • Timothy L. Killeen, Ph.D., President of the Estate Services University • University of Illinois at Urbana-Champaign • Robert J. Jones, PH.D., Chancellor of the Urbana Facilities & Services Campus • University of Illinois Core Planning Team, Campus Master Plan For the Board of Trustees of the University of Illinois • Planning input also provided by additional stakeholders and professional services • Governor Bruce Rauner consultants credited in a later section • Ramon Cepeda • Donald J. Edwards • Patrick J. Fitzgerald, J.D. • Stuart C. King, M.D. • Timothy Koritz, M.D., Ph.D. • Edward L. McMillan • James D. Montgomery, Sr., J.D. • Jill B. Smart • Trayshawn M. W. Mitchell, Urbana Campus Student Trustee • Karina Reyes, Chicago Campus Student Trustee • Edwin Robles, Springfield Campus Student Trustee University of Illinois at Urbana-Champaign Campus Master Plan Master Campus of Illinois at Urbana-Champaign University ii FOREWORD Executive Summary Executive iii University of Illinois at Urbana-Champaign Campus Master Plan Update Master Campus of Illinois at Urbana-Champaign University 2 “We need to reinvent or redefine what a public land grant university – an invention of the 19th century – is and should do for the citizens of a 21st century world.” Chancellor Robert J. Jones INTRODUCTION CELEBRATING 150 YEARS The University of Illinois at Urbana-Champaign is the In 2017, The University of Illinois at Urbana-Champaign flagship campus for the University of Illinois System.
    [Show full text]
  • Enabling Transformative Research 2014 Annual Report Sustained Petascale in Action: Enabling Transformative Research 2014 Annual Report
    SUSTAINED PETASCALE IN ACTION: ENABLING TRANSFORMATIVE RESEARCH 2014 ANNUAL REPORT SUSTAINED PETASCALE IN ACTION: ENABLING TRANSFORMATIVE RESEARCH 2014 ANNUAL REPORT Editor Nicole Gaynor Art Director Paula Popowski Designers Alexandra Dye Steve Duensing Editorial Board William Kramer Cristina Beldica The research highlighted in this book is part of the Blue Waters sustained-petascale computing project, which is supported by the National Science Foundation (awards OCI-0725070 and ACI-1238993) and the state of Illinois. Blue Waters is a joint effort of the University of Illinois at Urbana-Champaign and its National Center for Supercomputing Applications. Visit https://bluewaters.ncsa.illinois.edu/science-teams for the latest on Blue Waters- enabled science and to watch the 2014 Blue Waters Symposium presentations. ISBN 978-0-9908385-1-7 A MESSAGE FROM BILL KRAMER TABLE OF CONTENTS Welcome to the Blue Waters Annual Report for how Blue Waters serves as a bridge to even more 3 A MESSAGE FROM BILL KRAMER 2014! powerful computers in the future. This book captures the first year of Blue Waters continues its commitment to 4 WHAT IS BLUE WATERS? full production on Blue Waters since the building the next generation of our workforce by 5 BLUE WATERS SYMPOSIUM 2014 supercomputer started full service on April recruiting dozens of graduate and undergraduate 2, 2013. We’ve had a great year, with many students into our education programs. For many 6 COMMUNITY ENGAGEMENT & EDUCATION researchers transforming knowledge in their of these students this is their first exposure to respective fields. supercomputing, but some, such as our Blue 8 MEASURING BLUE WATERS As of this writing, we have 124 science teams Waters Fellows, have decided to base their entire from well over 50 institutions and organizations careers on advanced modeling and simulation 14 SYMPOSIUM WORKING GROUP REPORTS using NSF’s most powerful system.
    [Show full text]
  • Map Galleries, Theaters, Attractions and More in Our Walkable Districts, As Well As All of Our 91 Hotels and Attractions County-Wide
    See reverse side Welcome to Champaign County! for Downtown Champaign County offers an Outside of Ordinary experience, with the amenities of a Champaign and big city with the charm of a small town. Discover the many bars and restaurants, shops, an area map galleries, theaters, attractions and more in our walkable districts, as well as all of our 91 hotels and attractions county-wide. of Champaign County. For more information on all there is to experience in Champaign County: visitchampaigncounty.org :: 800.369.6151 For more information on promoting your business with the 89 96 Champaign Center Partnership: champaigncenter.com :: 217.352.2400 88 92 93 90 95 39. Kung Fu BBQ 80. Illini Union Bookstore 86 CAMPUSTOWN 40. Kung Fu Tea 81. Neutral Cycle Accommodations 41. Lai Lai Wok 82. TeShurt 1. Illini Union Hotel 42. Legends Bar & Grill 94 84 2. TownePlace Suites by 43. Mandarin Wok MIDTOWN Marriott 44. McDonald’s Panera Bread Food & Drink 97 Food & Drink Spoon House 83. Fiesta Café 83 3. A-Ri-Rang Korean Kitchen 84. Flying Machine Avionics & 4. Ambar India Subway Page Roasting Co. 5. Asian Taste Mia Za’s 85. Maize Mexican Grill Fat Sandwich Company 45. 73 Mid Summer Lounge 86. Manzella’s Italian Patio Insomnia Cookies 46. 47. Mr Chou and Charles 87. Szechuan China 6. Auntie Lee’s Chinese Murphy’s Pub Kitchen 48. Museums & 49. NangJing Bistro 7. Bangkok Thai & Pho 911 Entertainment 50. Panda Express 8. Bombay Indian Grill 88. Brainstorm Escapes 51. Papa John’s 9. Bo Bo China 89. Champaign County History 52.
    [Show full text]
  • Cultivating Winning Strategies June 7 – 9, 2013 with the Illinois Club
    15th Biennial Conference of Big Ten Women’s Organizations Cultivating Winning Strategies June 7 – 9, 2013 with The Illinois Club Welcome to Illinois! University of Illinois Campus Map I Hotel St. Mary’s Road & First Street I Hotel 1900 South First Street Champaign, Illinois (217) 819-5000 www.StayAtTheI.com We have 25 double Queen bed rooms reserved for you… as well as 10 single King bed rooms. We have arranged a special rate for all rooms of $115.00 each night plus 11% tax. Please reserve by May 13, 2013 to lock in this rate. For comparison, the regular rate for these rooms is $159.00 for 2013. You can reserve your rooms online at: www.StayAtTheI.com and by using the code AIBI. 1. Click on the orange “attendee code” button 2. Enter the attendee code of “AIBI” Or you can call (217) 819-5000. Just mention code “AIBI” or Big Ten Illinois Club. For those flying into Champaign-Urbana, the free I Hotel Shuttle will meet you at the airport if you give them your flight information. You will find us in the I Hotel Lobby when you check in. Hospitality & Help can also be found all weekend in Suite 502 – 504 and Room 506 in the southwest corner of the I Hotel. Afternoon Tea is being served in Suite 502 – 504 from 3 – 4:30 p.m. on Friday. Come in, relax, get acquainted! Or maybe you would like a little adventure on Friday afternoon…. Swedish Massage an appointment at the Deep Tissue Massage I Hotel Spa….
    [Show full text]
  • MATERIALS in Extreme Environments
    Summer 2016 | College of Engineering | University of Illinois at Urbana-Champaign | College of Engineering | MATERIALS in extreme environments In this STARTUP SCHOLARSHIP wins Cozad honors issue competition Professor Payne MATERIALS SCIENCE AND ENGINEERING SCIENCE MATERIALS Materials Science and Engineering News Summer 2016 Greetings .................................................. 03 04 Faculty ...................................................... 04 Materials Graduate Students .................................... 08 Using extreme environment to Undergraduates......................................... 10 make ceramics resilient Alumni ....................................................... 12 08 Startup MatSE team wins $20k at Cozad 12 Scholarship Alumni establish David Payne Scholarship MATSE ALUMNI NEWS Letters, comments Department of Materials Science and newsletter submissions and Engineering MatSE Alumni News David Cahill Department of Materials Science and Engineering Department Head University of Illinois at Urbana-Champaign 1304 W. Green Street Cindy Brya Urbana, IL 61801 MatSE Alumni News Editor (217) 333-1441 [email protected] matse.illinois.edu 2 Materials Science and Engineering | Summer 2016 This fall, we will begin the somewhat long and drawn-out process of making major changes to the senior year of our undergraduate curriculum. We are in the process of replacing the requirement of a one semester senior laboratory taken in a narrow area of specialization (ceramics, electronic materials, metals, polymer, or biomaterials) with a Greetings requirement that each student enroll in four ½-semester “lab modules” of their choice. We will be doubling the hours of laboratory instruction from Urbana in the senior year from 3 to 6, essentially replacing one lecture course with three hours of laboratory instruction. The new lab modules are intended to be more dynamic than the relatively static topics that we offered in the past; topics covered in the lab modules will be responsive and reflect changes in the field.
    [Show full text]
  • Sustained Petascale in Action: Enabling Transformative Research 2019 Annual Report Sustained Petascale in Action: Enabling Transformative Research 2019 Annual Report
    SUSTAINED PETASCALE IN ACTION: ENABLING TRANSFORMATIVE RESEARCH 2019 ANNUAL REPORT SUSTAINED PETASCALE IN ACTION: ENABLING TRANSFORMATIVE RESEARCH 2019 ANNUAL REPORT Editor Catherine Watkins Creative Director Steve Duensing Graphic Designer Megan Janeski Project Director William Kramer The research highlighted in this book is part of the Blue Waters sustained-petascale computing project, which is supported by the National Science Foundation (awards OCI-0725070 and ACI-1238993) and the state of Illinois. Blue Waters is a joint effort of the University of Illinois at Urbana–Champaign and its National Center for Supercomputing Applications. Visit https://bluewaters.ncsa.illinois.edu/science-teams for the latest on Blue Waters- enabled science and to watch the 2019 Blue Waters Symposium presentations. CLASSIFICATION KEY To provide an overview of how science teams are using Blue Waters, researchers were asked if their work fit any of the following classifications (number responding in parentheses): Data-intensive: Uses large numbers of files, large disk space/ DI bandwidth, or automated workflows/offsite transfers, etc. (83) GPU-accelerated: Written to run faster on XK nodes than on GA XE nodes (55) LEADING BY EXAMPLE Thousand-node: Scales to at least 1,000 nodes for production TN science (74) Memory-intensive: Uses at least 50 percent of available memory MI on 1,000-node run (21) BW Only on Blue Waters: Research only possible on Blue Waters (43) The National Center for Super- Earlier in 2020 I was privileged to be part of a del- computing Applications (NCSA) egation of University of Illinois leaders that partici- Multiphysics/multiscale: Job spans multiple length/time scales or was funded in 1986 to enable dis- pated in discussions on the next frontier of AI, data MP physical/chemical processes (59) coveries not possible anywhere science, and design thinking with Illinois alumnus TABLE OF else.
    [Show full text]
  • 2019 Illinois Track & Field Table of Contents Fighting
    2019 ILLINOIS TRACK & FIELD 2019 FIGHTING ILLINI QUICK FACTS TABLE OF CONTENTS Location � � � � � � � � � Urbana-Champaign, Ill� Assistant Coach � � � � � � � � � � � Sarah Haveman 2019 PREVIEW University of Illinois �� � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � �2 Enrollment �� � � � � � � � � � � � � � � � � � � � 44,520 Office Phone �� � � � � � � � � � � � � �217-300-5890 Track & Field Facilities � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � �3 Nickname � � � � � � � � � � � � � � � � Fighting Illini Assistant Coach � � � � � � � � � � � � � � Jacob Cohen 2019 Qualifying Standards� � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � �4 Colors� � � � � � � � � � � � � � � � �Orange and Blue Office Phone �� � � � � � � � � � � � � �217-300-5530 THE COACHING STAFF Conference� � � � � � � � � � � � � � � � � � � � Big Ten Head Coach Mike Turk �� � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � �6 Assistant Coach � � � � � � � � � � � � � �Jebreh Harris Associate Head Coach Adrian Wheatley �� � � � � � � � � � � � � � � � � � � � � � � � � � � � � � �7 President �� � � � � � � � � � � � � � � Timothy Killeen Office Phone � � � � � � � � � � � � � �217-300-8274 Assistant Coach Sarah Haveman �� � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � �8 Chancellor �� � � � � � � � � � � � � � � � Robert Jones Assistant Coach Jacob Cohen � � � � � � � � � � � � � � � � � � � � � � � �
    [Show full text]
  • Programming Models for Parallel Heterogeneous Computing
    Programming Models for Parallel Heterogeneous Computing Frank Feinbube [email protected] This paper describes my work with the Operating Systems and Middleware group for the HPI Research School on "Service-Oriented Systems Engineering". 1 Motivation Many of the computational problems we are facing today are complex and need huge computational power to be solved. It is well-known that processors will not continue to get faster, but will get more cores instead. More cores are not only harder to utilize by an application programmer, but also challenge hardware designers. Thus various new hardware architectures are designed and evaluated in order to find the ones that will fulfill the needs of future computer systems. Prototypic configuration boards like Intels Single Chip Cloud Computer (SCC) are an attempt to deal with the ever-increasing number of cores by removing essential features of current processors like hardware cache coherency. Another approach is to accompany common general purpose CPUs with sophisticated special purpose processing units. These so called Accelerators are easier to build and very fast for specific application purposes. They are the foundation for the new trend of hybrid computer systems. 2 Domains of Hybrid Systems 2.1 High Performance Computing The High Performance Computing (HPC) community has a steady need for an increase of floating point operations per second (FLOPS) in order to simulate natural processes with a higher accuracy. Therefore enormous computer clusters are used. These su- percomputers are not only very expensive to build, but do also need a huge amount of energy, both for processing and for cooling.
    [Show full text]
  • Blue Waters and Petascale Science
    Blue Waters and Petascale Science William Kramer, Brett Bode, Mike Showerman, Celso Mendes, Torsten Hoefler, Joshi Fullop National Center for Supercomputing Applications, University of Illinois at Urbana-Champaign National Center for Supercomputing Applications - NCSA • Established in 1986 as one of the original sites of the National Science Foundation's Supercomputer Centers Program • Supported by the state of Illinois, University of Illinois, the National Science Foundation, and grants from others. • A leader in deploying robust high-performance computing resources and in working with research communities to develop new computing and software technologies. • Fielded 30 major HPC computational systems for the national science and engineering community • Two major projects (Blue Waters and XSEDE) and many other activities • Currently evolving a large strategic focus on Data Driven Science • NCSA focuses on: • Developing and supporting powerful, reliable computing, data, and networking resources that enable researchers to solve demanding science and engineering problems. • Develop and explore innovative architectures and techniques to accelerate scientific computing. • Working with research communities to help them fully exploit the extraordinary resources available on the Internet (computing systems, data sources and stores, and tools) with cyber environments. • Developing software, techniques, and tools to improve national cyber-protection and to help law enforcement better respond to cyberattacks. • Providing insights into complex systems and sharing the thrill of scientific discovery with the broadest possible audience through artful visualizations of scientific phenomena. • Preparing the next generation of scientists and engineers to effectively use computational tools and techniques. • PCI – Parallel Computing Institute • CEC – Center for Extreme Scale Computing CUG - May 2, 2012 2 Science & Engineering on Blue Waters Blue Waters will enable advances in a broad range of science and engineering disciplines.
    [Show full text]
  • S P R I N G 2 0 0 9 Alumni Newsletter
    DEPARTMENT OF COMPUTER SCIENCE — UNIVERSITY OF ILLINOIS URBANA-CHAMPAIGN alumni newsletter SPRING2009 Parallel Computing from Supercomputers to PDAs Sustainable Petaflop Computing and Beyond Managing a Data-Intensive Cloud EXECUTIVE ADVISORY COUNCIL Mukul Chawla / New York, NY Advancement Staff Tiffany Xanos Ira Cohen / Wheeling, IL Associate Director of Advancement James Commons / Glenview, IL [email protected] (217) 265-6823 Bill Dunn / Chicago, IL Cynthia Coleman John Entenmann / San Mateo, CA Associate Director for External Relations Ross Erlebacher / Highland Park, IL [email protected] (217) 244-4496 Jerry Fiddler / Berkeley, CA Jennifer LaMontagne John Fox / Naperville, IL Associate Director for Communications Kumar Goswami / Sunnyvale, CA [email protected] (217) 333-4049 Howie Hollander / Syracuse, NY Noreen Iles / Algonquin, IL Editor Jennifer LaMontagne Nayeem Islam / Palo Alto, CA Todd Kimble / Western Springs, IL Designer Kurt Bielema / singlestereo.com Tim Krauskopf / Downers Grove, IL Marc Martinez / Oak Park, IL Contributors Jennifer LaMontagne / Computer Science Mary McDowell / Greenwich, CT Jenny Applequist / Zach Mided / San Francisco, CA Information Trust Institute Eisuke Muroga / San Francisco, CA Tricia Barker / National Center for Supercomputing Applications Dan Petersen / Mountain View, CA Kim Gudeman / Coordinated Science Laboratory Ed Reingold / Evanston, IL Cheri Helregel / Universal Parallel Computing Research Center, Craig Rowe / New York, NY Computer Science Thomas M. Siebel / Woodside, CA Barbara
    [Show full text]
  • Sustained Petascale in Action: Enabling Transformative Research 2018 Annual Report Sustained Petascale in Action: Enabling Transformative Research 2018 Annual Report
    SUSTAINED PETASCALE IN ACTION: ENABLING TRANSFORMATIVE RESEARCH 2018 ANNUAL REPORT SUSTAINED PETASCALE IN ACTION: ENABLING TRANSFORMATIVE RESEARCH 2018 ANNUAL REPORT Editors Barbara Jewett Catherine Watkins Creative Director Steve Duensing Graphic Designer Megan Janeski Project Director William Kramer The research highlighted in this book is part of the Blue Waters sustained-petascale computing project, which is supported by the National Science Foundation (awards OCI-0725070 and ACI-1238993) and the state of Illinois. Blue Waters is a joint effort of the University of Illinois at Urbana-Champaign and its National Center for Supercomputing Applications. Visit https://bluewaters.ncsa.illinois.edu/science-teams for the latest on Blue Waters- enabled science and to watch the 2018 Blue Waters Symposium presentations. CLASSIFICATION KEY To provide an overview of how science teams are using Blue Waters, researchers were asked if their work fit any of the following classifications (number responding in parentheses): Data-intensive: uses large numbers of files, e.g. large disk space/ DI bandwidth, or automated workflows/off-site transfers (69) TABLE OF BLUE WATERS CHANGED GPU-accelerated: written to run faster on XK nodes than on XE GA nodes (40) THE WORLD AND ILLINOIS Thousand node: scales to at least 1,000 nodes for production CONTENTS TN science (72) 3 NCSA DIRECTOR BILL GROPP – BLUE WATERS Memory intensive: uses at least 50 percent of available memory MI on 1,000-node runs (22) CHANGED THE WORLD AND ILLINOIS Blue Waters: research only possible
    [Show full text]