JHEP03(2021)243 TeV. 02 . Springer , diphoton = 5 37 . March 25, 2021 August 13, 2020 2 : NN : February 18, 2021 s December 14, 2020 < : : √ | γ η | Received Published Revised Accepted of Pb+Pb data 1 − nb Published for SISSA by https://doi.org/10.1007/JHEP03(2021)243 2 . GeV, pseudorapidity 5 2 . 2 > γ T E GeV, and with small diphoton transverse momentum and dipho- . 5 3 > of integrated luminosity collected in 2015 and 2018 at 1 2008.05355 γγ − m nb Hadron-Hadron scattering (experiments) This paper describes a measurement of light-by-light scattering based on 2 , Copyright CERN, . 2 [email protected] E-mail: Article funded by SCOAP Open Access for the benefit of the ATLAS Collaboration. ArXiv ePrint: set limits on the productionlimits of to axion-like date particles. on Thissections axion-like result above provides particle 2 the production to most for stringent 70 masses nb in are excluded the at rangeKeywords: the 6–100 GeV. 95% Cross CL in that mass interval. Light-by-light scattering candidates are selectedclusively, each in with events transverse with energy twoinvariant photons mass produced ex- ton acoplanarity. The integratedcompared and with differential theoretical fiducial predictions. cross The sections diphoton invariant are mass measured distribution and is used to Abstract: Pb+Pb collision data recordedstudy by uses the ATLAS experiment during Run 2 of the LHC. The The ATLAS collaboration with the ATLAS detector Measurement of light-by-light scatteringfor and axion-like search particles with JHEP03(2021)243 16 ). LbyL 1 11 bosons (figure ± W 13 production − e 5 + e 9 13 → γγ , is a process in the Standard Model (SM) that – 1 – 18 16 γγ 14 → 19 10 γγ 16 15 11 11 28 7 7 3 6 1 21 8.4 Search for ALP production 8.1 Kinematic distributions 8.2 Integrated fiducial8.3 cross section Differential fiducial cross sections 6.1 Dielectron final6.2 states Central exclusive6.3 diphoton production Other background6.4 sources with prompt Other photons fake-photon background 5.1 Trigger efficiency 5.2 Photon reconstruction5.3 and identification Photon energy5.4 calibration Control distributions for exclusive proceeds at lowest orderagrams in involving quantum charged electrodynamics fermions (QED) (leptonsinteractions via and can virtual quarks) occur one-loop and in boxever, relativistic di- the heavy-ion large collisions impact atmentally parameters any preferred impact i.e. as parameters. larger the than How- strong twice the interaction radius does of not the play ions, a are role experi- in these ultra-peripheral 1 Introduction Light-by-light (LbyL) scattering, 9 Conclusions The ATLAS collaboration 7 Systematic uncertainties 8 Results 6 Background estimation 3 Data and Monte Carlo4 simulation samples Event selection 5 Detector calibration Contents 1 Introduction 2 ATLAS detector JHEP03(2021)243 ]. γγ 11 ) ∗ ( ]. The . Since ) ∗ 16 γ γ ( , +Pb ) ∗ 15 ( Pb → Pb(*) Pb(*) ]. The LbyL cross a 8 ) . ALPs are relatively γγ ( 1 ], denoted by 6 γ γ ], Lorentz-violating operators 9 , the LbyL cross section is strongly ]. The electromagnetic (EM) fields 2 Z Pb Pb 2 , 1 ], as shown in figure ]. 12 14 – 2 – scattering rates can be induced by new exotic , 13 is the radius of the nuclear charge distribution and ) collisions. γγ γ γ R pp → , with a possible EM excitation [ γγ Pb(*) Pb(*) γγ , where 2 → /R collision data [ γ γ 1 ]. The cross section for the reaction Pb+Pb γγ ], and the presence of space-time non-commutativity in QED [ 5 pp < – 10 2 3 [ ] and by the presence of extra spatial dimensions [ Q 7 2 GeV 3 Pb Pb − . Schematic diagrams of (left) SM LbyL scattering and (right) axion-like particle produc- 10 < 2 LbyL scattering via an electron loop has been precisely, albeit indirectly, tested in The LbyL process has been proposed as a sensitive channel to study physics beyond In this measurement, the final-state signature of interest is the exclusive production of Q . ) ∗ neously broken global symmetry.over Their many masses orders and of couplingsphotons magnitude. to are The based SM on previous particles ATLAS may searches range involving ALPmeasurements decays of to the anomalous magnetic moment of the electron and muon [ charged particles [ sections are also sensitive to Born-Infeldin extensions electrodynamics of QED [ [ Additionally, new neutral particles, suchin as the axion-like particles form (ALP), of canlight, narrow also gauge-singlet diphoton contribute (pseudo-)scalar resonances [ particles that appear in many theories with a sponta- one expects that twocentral low-energy detector. photons will In be particular,the detected Pb+Pb no with interaction reconstructed point no charged-particle are further tracks expected. activity originating in from the the SM. Modifications of the the photon flux associated with eachenhanced nucleus relative scales to as proton-proton ( two photons, where thePb+Pb diphoton interaction final region, state and is the measured incoming in Pb the ions detector survive surrounding the the EM interaction. Hence, produced by the colliding Pbsmall nuclei virtuality can of be treatedso as a beam ofcan quasi-real then photons be with calculated a bysection convolving for the the respective process photon flux with the elementary cross ( collision (UPC) events. In general,photoexcitation, UPC events photoproduction allow of studies of hadrons,sive processes reviews and involving nuclear of two-photon UPC interactions. physics can Comprehen- be found in refs. [ Figure 1 tion in Pb+Pb UPC. A potential electromagnetic excitation of the outgoing Pb ions is denoted by JHEP03(2021)243 , ] ] → γγ 25 27 y ) is the GeV). 3 2 γγ ( , and the ,γ (ATLAS) > 1 γ γγ 1 y − m ∆ ] and CMS [ 26 ]. 24 ]. A related process, – 21 22 ]. However, as a result of of the diphoton system, 28 . The remaining ones probe , 1 2 , / 26

) 2  γ T 2 p ,γ 1 + are particle’s energy and the component of 2 γ 1 y GeV) and single-photon transverse en- z γ T p ∆ p 5 centre-of-mass frame, and TeV using a combination of Pb+Pb col- (  > and 02 γγ . E – 3 – tanh

= = 5 | . ) GeV) and single-photon transverse energy ( , over a mass range of 5–90 GeV. Exploiting a data ∗ , where , the ATLAS Collaboration observed LbyL scattering θ γγ 6 z z NN 1 p p γγ TeV with integrated luminosities of 0.48 nb s . This analysis follows the approach proposed in ref. [ − + − > 1 → E E √ cos( − 02 → a . system. These are the rapidity | ]. These two ATLAS measurements used tight requirements ln ] and in the photon splitting process [ a 1 2 28 → ] proposed to measure LbyL scattering by exploiting the large [ γγ 20 ] at the LHC covers nearly the entire solid angle around the = 5 = → – 25 σ γγ 29 2 y . 17 8 γγ NN scattering angle in the s √ γγ production at (CMS). The CMS Collaboration also set upper limits on the cross section 1 , defined as: γγ | − GeV) is covered. This extension results in an increase of about 50% in expected ) ) ∗ ∗ is the 5 ( θ reaction has been measured in photon scattering in the Coulomb field of a nucleus . 2 ∗ θ γγ > cos( +Pb | ) The measured diphoton invariant mass distribution is used to set limits on ALP pro- The integrated fiducial cross section and four differential distributions involving kine- This paper presents a measurement of the cross sections for Pb+Pb The authors of ref. [ ∗ Rapidity is defined as → ( 1 The ATLAS detectorcollision [ point. It consists of an innermomentum tracking along detector the beam surrounded axis, by respectively. a thin supercon- where difference between the rapidities of the photons. duction via the process 2 ATLAS detector average transverse momentum ofangular two correlations photons, of the and ergy ( signal yield in comparison with the previous tighter requirements. matic variables of theterise final-state the photons energy are of measured. the process: Two of the the invariant distributions mass charac- of the diphoton system, lision data recorded inintegrated luminosity 2015 of and 2.2 nb 2018and the by methodology the used ATLASimprovements in in experiment, the the previous corresponding measurements trigger tokinematic [ efficiency an range and in purity diphoton of invariant the mass photon ( identification, a broader integrated luminosity of 1.73with nb a significance of on the diphoton invariant mass ( Pb LbyL process in Pb+Pb UPC atCollaborations. the The LHC was evidence established was by obtainedof-mass the from ATLAS energy Pb+Pb [ data of recorded inand 2015 0.39 at a nb centre- for ALP production, sample of Pb+Pb collisions collected in 2018 at the same centre-of-mass energy with an (Delbrück scattering) [ in which initial photons fusea to pair form of a photons, pseudoscalar meson has which been subsequently studied decays at into electron-positronphoton fluxes colliders available [ in heavy-ion collisions at the LHC. The first direct evidence of the γγ JHEP03(2021)243 2 . . The transverse , and an inner 3 2 . ) 8 76 φ . 2 > . Within the region | with three layers of 9 < + (∆ η . | 7 2 | 4 . ) η 2 η | < (∆ | < < are used in the transverse plane, η | | p ) η 07 | . ≡ 2 r, φ ( R ∆ -axis points from the IP to the centre of the is its energy. x E . . 0 . ), with an additional thin LAr presampler cov- – 4 – , where 86 ) 5 . . η 3 2 = 2 ] consists of 32 photomultiplier tubes for luminosity | < < η | | ] consists of a Level-1 trigger implemented using a 32 cosh( | -axis. The pseudorapidity is defined in terms of the polar angle η | η z 33 | E/ < = , and two copper/LAr hadronic endcap calorimeters. The 76 T 7 . . E 2 1 < | η -axis along the beam pipe. The | z ], which was installed at a mean distance of 3.3 cm from the beam . Angular distance is measured in units of -axis points upwards. Cylindrical coordinates 2) y 31 , θ/ . to correct for energy loss in material upstream of the calorimeters. Hadronic 5 30 . 8 . 2 m from the nominal IP. 1 ln tan( < , EM calorimetry is provided by barrel and endcap lead/liquid-argon (LAr) EM < axial magnetic field and provides charged-particle tracking in the pseudorapidity 17 | − 2 | . η ± | η 3 = | 2 T The ATLAS LUCID-2 detector [ The ATLAS trigger system [ The ATLAS zero-degree calorimeters (ZDC) consist of four longitudinal compartments The ATLAS minimum-bias trigger scintillators (MBTS) consist of scintillator slats The muon spectrometer (MS) comprises high-precision tracking chambers measuring The calorimeter system covers the pseudorapidity range The high-granularity silicon pixel detector (Pixel) covers the collision region. Typically, η ATLAS uses a right-handed coordinate system with origin at the nominal interaction point in the centre < 2 | being the azimuthal angle around the as η of the detector andLHC the ring, and the φ θ energy of a photon or electron is measurements and luminosity monitoring.about Its two modules are placed symmetricallycombination at of dedicated electronicslevel and trigger programmable (HLT). logic, and a software-based high- ring of eight slats, covering on each sidetungsten of absorber, the with the interaction Cerenkovare light point read located (IP), out 140 by each m 1.5 from mm with quartz the one rods. nominal IP nuclear The in detectors interaction both length directions, covering of monitored drift tubes,where complemented the by background cathode is highest. strip chambers in thepositioned forward between region, the IDring and of the four endcap slats segmented calorimeters, in with azimuthal each angle, side covering having an outer solid angle coverage is completedmodules with (FCal) forward optimised copper/LAr for and EM tungsten/LAr and calorimeter hadronic measurements respectively. the deflection oftoroids. muons in The a precision magnetic chamber system field covers generated the by region the superconducting air-core | calorimeters (high-granularity for ering calorimetry is provided by therel steel/scintillator-tile structures calorimeter, segmented within into three bar- layer (IBL) [ pipe before thewhich start usually of provides Run four two-dimensionaldetectors 2. measurement are points It per complemented track. isextended by track These followed the reconstruction silicon by transition up the to radiation silicon tracker, microstrip which tracker enables (SCT), radially three large superconducting toroidin magnets. a The inner-detector systemrange (ID) is immersed it provides four measurements per track, with the first hit being in the insertable B- ducting solenoid, EM and hadronic calorimeters, and a muon spectrometer incorporating JHEP03(2021)243 ] ) a γγ 40 m GeV, → . Next- 30 are used γγ W − < e m ] based on a 2 + e 41 ) > ∗ < m ( γγ 5 . Only high-quality m 1 , was modelled using +Pb ) − cases. ∗ ( γγ nb pp Pb → bosons, including interference → gg ) ± γγ W interactions turns on smoothly for ( γγ ), and 1 ]. They take into account box diagrams with – 5 – 34 . The background contribution from a related − e process was modelled with the STARlight v2.0 MC + ]. An alternative LbyL signal sample was generated e − ] where the Equivalent Photon Approximation (EPA) e 36 → , + 38 e 35 γγ ]. The difference between the nominal and alternative signal → 37 γγ ++ 2.7.1 [ -lepton decays. τ , was modelled using STARlight v2.0 interfaced with Pythia 8.212 [ − GeV a 10 GeV mass spacing was used. The width of the simulated ALP TeV, recorded in 2015 and 2018 with the ATLAS detector at the LHC. contribution is only important for diphoton masses τ collisions is implemented. The sample was then normalised to cover the + 30 ± 02 τ Herwig . pp ], in which the cross section is computed by combining the Pb+Pb photon ] and are reconstructed with the standard ATLAS reconstruction software. > W → a 39 42 = 5 m γγ NN s All generated events were passed through a detector simulation [ Events for the ALP signal were generated using STARlight v2.0 for ALP masses ( Exclusive dielectron pairs from the reaction Pb+Pb The exclusive diphoton final state can also be produced via the strong interaction Monte Carlo (MC) simulated events for the LbyL signal process were generated at √ ranging between 5 and 100while GeV. for A mass spacingresonance of is 1 GeV well was below used the for detector resolution in all simulated samples. GEANT4 [ generator [ flux with the LOprocess, formula for for the simulation of formalism in differences in equivalent photon fluxes between the Pb+Pb and for various aspects ofscale and the resolution. analysis, This in particular to validate the EM calorimeter energy through a quark looptral in exclusive the production exchange (CEP)SuperChic of background v3.0. two contribution, Background gluons from in two-photontimated production a using of colour-singlet quark-antiquark pairs state. was es- This cen- the alternative prediction fully14 suppresses fm these when interactions two for nuclei overlapsection impact during for parameters the LbyL below collision. scattering Thisin that difference the is leads prediction by to from about a SuperChic 3% fiducial v3.0. larger cross in the alternative calculation than to-leading-order QCD and QED correctionscross are section not by included. ausing few They calculations percent increase from [ the ref. [ prediction is mainly in theions. implementation of In the SuperChic non-hadronic v3.0 overlap thePb+Pb condition probability of impact for the parameters exclusive Pb in the range of 15–20 fm and it is unity for larger values, while leading order (LO) usingleptons SuperChic and v3.0 quarks (such [ as theeffects. diagram in The figure The data used in thisof measurement is from Pb+PbThe collisions with full a data centre-of-mass set energy data corresponds with to all an detectors integrated operating luminosity normally of are 2.2 analysed. 3 Data and Monte Carlo simulation samples JHEP03(2021)243 , , 5 > . 52 2 . T GeV 1 E < 1 | < η > | | η | ]. Selection T registered in E 43 < T MeV, E 37 . ] is applied to the 1 100 , values. At Level-1 T 44 > E T p ]. The PID requirements are 28 collisions with dedicated factors applied pp – 6 – GeV in coincidence with total 1 GeV) to maintain a constant photon PID efficiency > 20 T < with respect to reconstructed photon candidates. They E on each side of the FCal detector to be below 3 GeV was T T E E T E ] is applied to photons in MC samples to account for potential and , excluding the calorimeter transition region η 44 37 registered in the calorimeter after noise suppression was required to . photons ( 2 T T ]. E E < 43 | η registered in the calorimeter below 50 GeV. At the HLT, events in 2015 were | T background, a veto on charged-particle tracks (with E − e + e collisions [ Preselected events are required to have exactly two photons satisfying the above selec- The photon particle identification (photon PID) in this analysis is based on a selection Photons are reconstructed from EM clusters in the calorimeter and tracking informa- GeV and → pp 5 . in tion criteria, with a diphotonγγ invariant mass greater thanat 5 least GeV. one In order hit to in suppress the the Pixel detector and at least six hits in the Pixel and SCT detectors from the decay of neutralon hadrons. background The photons identification extracted isas from based data on already a and used neural photons networkoptimised in from trained for the the low- signal previous MCof ATLAS simulation, 95% measurement as [ aalso function select of a purer sample of photons than obtained with the cut-based photon PID utilised of the shower-shape variables,2 optimised for the signalare events. considered. Only The pseudorapidity photonsthrough requirement with regions ensures that of thestrips, the photon providing EM candidates good pass calorimeter separation where between the genuine prompt first photons layer and is photons segmented coming into narrow leakage. The calibration is derivedto for account nominal for a negligiblecrossing. contribution from A multiple correction Pb+Pb collisions [ mismodelling at of the quantities same which bunch describe shower shapes of the associated EM showers. tion provided by the ID, which allowsrequirements the are identification applied of photon to conversions remove [ EMfunctioning clusters calorimeter with cells, a and large amountdidates. a of timing energy requirement An from is poorly energycandidates made calibration to to reject account specifically out-of-time for optimised can- upstream for energy photons loss and [ both lateral and longitudinal shower 2018, a requirement of total imposed. Additionally, in both datahereafter sets referred a to veto as condition Pixel-veto,be on had activity at to in most be the 10 satisfied. Pixel in detector, The 2015, number and of at hits most was 15 required to in 2018. be between 5 and 200(1) GeV. at In least 2018, onethe a EM logical calorimeter cluster OR between with of 4–200with two GeV, total Level-1 or conditions (2) was required: rejected if at more least than two one EM hit clusters was with found in the inner ring of the MBTS (MBTS veto). In Candidate diphoton events were recorded using aactivity dedicated in trigger for the events calorimeter with moderate butstrategies little for additional the activity 2015 inat and the improving entire 2018 the detector. trigger data efficiency The setsin at trigger 2015, were low the photon different. transverse total energy, In particular, the latter aimed 4 Event selection JHEP03(2021)243 . 52 . 1 in the < T | E η events are | , according 4 ) is required − < e γγ T 10 + p 37 e . GeV. To reduce 1 → 12 γγ > process because gluons events passing one of the γγ γγ − m e ]. The + → e , and at least three hits in the with the calorimeter transition 45 5 . γγ → 2 47 . 2 signal events (93% efficiency for the < γγ | , is used. The CEP process exhibits a < η | γγ | 01 η . | 0 → reactions, an additional requirement on the < ]. The electrons are required to have a trans- MeV, γγ ) – 7 – 45 γγ 50 /π | → > γγ φ T gg due to the presence of low-momentum electron tracks. p ∆ GeV and below 2 GeV for T E − | 12 < , excluding the calorimeter transition region = (1 from the photons are considered. These requirements reduce the excluded. They are also required to meet loose identification candidates, events are required to pass the same trigger as in γγ 47 φ 5 . . − m 1 A 52 GeV and pseudorapidity 0 e . + 1 5 < . e | 2 η < < η | → | ∆ > η | T γγ E < 37 . 1 The Level-1 trigger efficiency was estimated with To select To reduce other sources of fake-photon background (involving mainly calorimeter noise Due to the absence of tracks in the LbyL signal events, no primary vertex is recon- of 1 GeV and T or double dissociationcoincidence of of Pb signals in nuclei onecalorimeter and or to small both be ZDC activity below sidestwo 50 in reconstructed with GeV. tracks the a and Dielectron requirement two ID. event geometrically on matched candidatesE They the EM are clusters, total are each required with to based a have minimum on exactly a 5.1 Trigger efficiency The trigger sequence used in the1, analysis consists MBTS/FCal of veto, three and independent requirements: the requirement Level- on low activityindependent in supporting the triggers. ID. These triggers are designed to select events with single selected by requiring exactly twotracks oppositely coming charged electrons, from no theabove), further and interaction charged-particle dielectron region acoplanarity (with below the 0.01. selection requirements5 as described Detector calibration the diphoton selection. Eachcalorimeter matched electron to is a reconstructed trackverse from in energy an the EM ID energy [ region cluster in the criteria based on shower-shape and track-quality variables [ real-photon background from CEP diphoton acoplanarity, significantly broader acoplanarity distributionrecoil than against the the Pb nucleus, which then dissociates. structed. The photon direction isto estimated the using the origin barycentre of of the the cluster ATLAS with coordinate respect system. and cosmic-ray muons), the transverse momentumto of be the diphoton below system 1 ( GeV for fake-photon background from the dielectronto final simulation. state by They a havetrack factor minor veto of impact and about on 99% forthe the Pixel pixel-track detector veto), is sincebeing relatively the reconstructed small probability at of and very photon the low conversion converted in photons have a low probability of structed tracks, candidate events are requiredphoton to candidate. have Pixel no tracks ‘pixel are tracks’detector, reconstructed in and using the only vicinity are of the required information the Pixel to from detector. the have Pixel In order topixel suppress tracks fake with pixel tracks due to noise in the Pixel detector, only in total) is imposed. In order to reduce the background from electrons with poorly recon- JHEP03(2021)243 ) = GeV 95% ] and ( 26 [ , reaches clusters T = 9 E 2 25% 2)% P ± events recorded clusters T − E e (98 + P e → γγ events that pass the supporting for 2015 trigger settings due − e 0% + e → . Both efficiencies are independent of γγ 6)% . 0 ± events to satisfy the Pixel-veto requirement is 1 GeV this efficiency, shown in figure – 8 – . − e (99 + = 5 of the two EM clusters. Data are shown as points with e T → E γγ clusters T E of the two EM clusters reconstructed offline ( P T E selection criteria. GeV for 2015 (2018) data. The efficiency plateau is reached around 5 − ). For . region, where the efficiencies to reconstruct and identify electrons are e GeV for the 2015 data-taking period and around + T e = 7 E cluster2 T → = 10 E γγ . The Level-1 trigger efficiency extracted from + clusters T E for 2018 trigger settings, while it is consistent with clusters T Due to low conversion probability of signal photons in the Pixel detector, inefficiency The efficiency for selected The MBTS and FCal veto efficiencies are estimated using P E cluster1 T of the Pixel-veto requirementevent candidates. at the trigger level is foundevaluated to using be a dedicated negligible supporting for trigger diphoton accepting events with at most 15 tracks at modified by supporting triggers. Thethe FCal MBTS veto veto efficiency efficiency iskinematics. is found estimated to to be be P for the 2018uncertainties. one. The The efficiencyreweight error is the parameterised bars MC using associated simulation. anparameters with error by The the function their statistical data fit uncertainty uncertainty that points is values. is represent estimated used The statistical by to varying systematic the uncertainty fit is estimated using is required tofunction be of below the 0.01.E sum The of extracted60% Level-1 trigger efficiencyto is higher provided trigger asfor thresholds. a The Level-1 trigger efficiency grows to about The electron identification requirementsthis are very removed low inlow. order Furthermore, dielectron to acoplanarity accept evaluated using more electron events charged-particle tracks in Figure 2 triggers as a functionerror bars of representing the statistical sum uncertainties,squares) separately of and for 2018 two (full data-takingas periods: circles). a The 2015 (open efficiency dashed is (2015)uncertainty. parameterised or using solid the error (2018) function line. fit, shown Shaded bands denote total (statistical and systematic) JHEP03(2021)243 ], and . The ) 46 is used to trk2 T p 3 events, where − − e T e ) with final-state GeV. Reasonable E . The efficiency in + ± ( e GeV and the track 3 , µ ≈ 4 = 6 → ± γ T e γ T GeV. The electron-trk2 > process. The mass of the E E γγ = 5 e T . − ± 1 e E ` + e < GeV are selected in UPC events T → separation between the expected 5 with p . GeV reconstructed at Level-1 and at least 0 − R γγ 4 ` , excluding the calorimeter transition > ∆ + bremsstrahlung photons and is used to > ` 37 T . ) T p 2 p γ . This condition avoids the leakage of the → ( 3 GeV. At Level-1, the same trigger condition . < − . This efficiency correction is applied to the 0 | e is the transverse momentum of the three body 1 γγ 5 η . + γ | – 9 – 2 e > tt T p R > GeV and reaches 90% at T → p ∆ 5 | ≈ triggers. In addition a requirement to reconstruct a . ee 3 γγ y | . The efficiency reaches 80–85% for dielectron rapidity = 2 GeV and ee γ T y 5 . E 2 reaction is found to be very small in Pb+Pb UPC [ > for − , is imposed. A photon candidate is required to be separated e γ T around trk2 direction. Any additional background contribution + E 52 0 e . . 60% 1 → < = 1 | γγ above 1 GeV among up to 15 tracks found at the HLT. GeV requirement, where R η | T 1 ∆ p requirement. The electron is required to have exclusive dilepton production ( GeV requirement ensures a sufficient < MC simulation. < 0 T . 5 γ − p . and drops to 45–50% at 1 37 e tt T 1 . 1 p + 1 e < < High- The data sample contains 2905 R < | The dimuon trigger required a muon candidate with → 3 ∆ ee trk2 T y two tracks with system consisting of two oppositely chargedof tracks 1333 and (212) a photon photon. candidates infrom The the the FSR 2018 hard-bremsstrahlung sample (2015) consists photon data set samplemeasurement. and used is in statistically the independent photon reconstruction efficiency region from each track with thephoton requirement cluster energy to andilepton electron system cluster is from required the tousing a be above 1.5 GeV. The FSR event candidates are identified radiation (FSR) is used foras data-driven measurements the of probability the for photon PIDwith a efficiency, exactly reconstructed defined two photon oppositely to chargedrecorded satisfy tracks by the with the identification diphoton criteria. orphoton dimuon Events candidate with extract the photon reconstruction efficiency, whichdata is presented is in approximately figure agreement between data and simulationobtain is the found. data-to-simulation The scale distribution factors from that figure are used to correct the MC simulation. p photon and the seconda electron. distance A of hard-bremsstrahlung photonto is the expected exclusive totherefore be it within is considered negligible. tracks. The electrona is considered athat tag is if unmatched it with cantransverse the be momentum electron matched difference (trk2) to isthe must one treated additional have of hard-bremsstrahlung as the photon the tracks is transverse with expected energy to of have the probe, since 5.2 Photon reconstructionThe and photon reconstruction identification efficiency is extractedone from of data the using electrons emits aof hard-bremsstrahlung the photon when detector. interacting with A the tag-and-probetrigger material method with is exactly performed one for identified events electron collected and by exactly the two diphoton reconstructed charged-particle was applied as inthe the HLT. diphoton The trigger. Pixel-veto efficiencyfunction The is of FCal parameterised dielectron veto using rapidity, requirement a| second-order was polynomial also as imposedγγ a at the HLT, out of which at least two had JHEP03(2021)243 T − trk T E e T /p GeV, E e T events. 5 E − < e to electron T + e T E E → γγ (approximated with γ events from the formula: T E − -1 e , can be determined from the + , [GeV] e ) trk2 T cluster T → - p E e T = 5.02 TeV E σ cluster2 T NN γγ s E 2 is observed to be 8–10% in data, which − ee MC √ → γ Data 2015+2018, 2.2 nb γ (hard-brem) selection γ ATLAS Pb+Pb cluster1 ee T cluster T E ( – 10 – /E σ reaction exhibit balanced transverse momenta with ≈ − cluster T e distributions in E + e σ cluster T E events with a hard-bremsstrahlung photon. Data (full symbols) → σ 2 4 6 8 10 12 14 16 18 20 MC simulation (open symbols). The error bars denote statistical cluster2 − T 1 e are the transverse energies of the two clusters. At low electron-

1.1 γγ E 0.9 0.8 0.7 0.6 0.5 −

+ Photon reconstruction efficiency reconstruction Photon e e − + e → cluster2 → T γγ E cluster1 T γγ -dependent data-to-simulation scale factors separately for the 2015 and E T and E shows the photon PID efficiency as a function of the reconstructed photon 4 , expected to be below 30 MeV, which is much smaller than the EM calorimeter | . Photon reconstruction efficiency as a function of photon . It is observed that the simulation provides a good description of the − cluster1 T e T T p E p − The EM energy scale is cross-checked using the ratio of electron cluster Figure ) extracted from (below 10 GeV) the value of + e T T trk2 T p E agrees well with the resolution obtained from simulation. track distribution. energy resolution. Therefore, themeasurement energy of resolution, where 5.3 Photon energyThe calibration EM energy scale andThe energy two resolution electrons from are the validated in| data using 100% in the 2015 set.the This difference 2015 is and due to 2018 slightlybe data-taking different narrower detector periods, in conditions causing between the the 2015using photon data. photon shower-shape Based distributions on to 2018 these data studies, sets. MC simulated events are corrected for 2015 and 2018from data. the signal The MC efficiency sample.data-taking in Photon conditions data PID are efficiencies is in in comparedthe good MC photon with agreement. simulation PID the with efficiency In is 2015 efficiency in the and extracted the data 2018 range for of 91-93% photons in with the 2018 set, while it is found to be 97- Figure 3 p are compared with uncertainties. JHEP03(2021)243 selection distribu- event can- [GeV] T − T p e − + e e + e → Photon E FSR photons → -1 γγ γγ =5.02 TeV is estimated using a fully NN 4 s production − e extracted from FSR event candidates Pb+Pb Data 2018, 1.7 nb LbyL MC simulation + T e ATLAS E 0 5 10 15 20 25 1

→ 1.1 0.9 0.8 0.7 0.6 0.5 0.4 0.3 Photon PID efficiency PID Photon γγ – 11 – [GeV] T events collected by a control trigger in the 2015 Pb+Pb − e + e Photon E FSR photons -1 → γγ ]. =5.02 TeV ) in the 2018 Pb+Pb data. In total, 28 045 26 yield in the signal region defined in section NN s 4 − e process has a relatively high cross section and can be a source of fake + e events, could only be extracted with 20% precision. Nevertheless, overall − e Pb+Pb Data 2015, 0.5 nb LbyL MC simulation − + → e e ATLAS + e γγ . Photon PID efficiency as a function of photon 0 5 10 15 20 25 presents detector-level distributions for events passing the 1 →

1.1 0.9 0.8 0.7 0.6 0.5 0.4 0.3

5 → Photon PID efficiency PID Photon γγ The The low number of γγ The diphoton events. Thetrack electron-to-photon is not misidentification reconstructed can or the occur electron when emits the adata-driven hard electron method. bremsstrahlung photon. A control region is defined requiring exactly two photon candidates ATLAS publication [ 6 Background estimation 6.1 Dielectron final states data precludes precision comparisons betweenparticular, data the and tighter Pixel-veto MC requirement simulationpseudorapidity-dependent imposed in at trigger that the sample. efficiency HLT necessitates In correctionof a which, dedicated due toreasonable the agreement was limited found number within large uncertainties as demonstrated in the previous ciency. In general,distributions the well. STARlight Small prediction systematicdielectron differences describes between data the the and normalisation central the values andtion, of MC likely shapes the prediction due exclusive of are to asimulated seen by missing in the contribution the MC from tail generator. the of QED the final-state dielectron radiation which is not 5.4 Control distributionsFigure for exclusive (outlined in section didates are observed.energy The scale shaded bands and reflect resolution, systematic electron uncertainties reconstruction due and to electron identification, and trigger effi- Figure 4 in 2015 (left) and 2018bars (right) denote data (full statistical symbols) uncertainties. and signal MC sample (open symbols). The error JHEP03(2021)243 = ). − e e mistag = 2 + ee p ee e y y , where → N [GeV] [GeV] e T e T E E γγ 9)% or (bottom-left) selection selection N - - e e = 5.02 TeV = 5.02 TeV ± + + T NN NN e e yield is instead p s s = 1 → →

γ γ − γ γ e N + = (47 ATLAS Pb+Pb ATLAS Pb+Pb e event candidates in the 0 1 2 3 0 1 2 3 -1 -1 → − e e mistag + p 1 1 γγ e − − ) ∗ ee MC ee MC ( → →

γ γ 2 2 Data 2018, 1.7 nb Data 2018, 1.7 nb Data 2018, 1.7 Syst. uncertainty Syst. uncertainty γ γ − − +Pb ) uncertainty and limited event yield ∗ ( 3 3 0 2 4 60 8 2 10 12 4 14 6 16 18 8 20 10 22 12 24 14 16 18 20 22 24 − 1 1 − Pb 1.2 1.2 1.4 1.4 0.8 0.6 0.8 0.6

500

5000 2500 2000 1500 1000 Data / MC / Data Data / MC / Data is extrapolated to the signal region using

. Events / GeV / Events Events / 0.1 / Events 25000 20000 15000 10000 requirement. It is also found that mistag e → η 2 p ) φ , A γγ =1 ( and N PixTrk – 12 – T . It is measured to be E CR 01 [GeV] [GeV] [GeV] . [GeV] ee ee T ee 0 p m ee T m p selection selection - - < e e = 5.02 TeV = 5.02 TeV + + NN NN e e φ s s events in the signal region is estimated to be → →

A γ γ − γ γ e ATLAS Pb+Pb ATLAS Pb+Pb + e -1 -1 → γγ ee MC ee MC → →

value is measured in data using events with exactly one standard track and γ γ Data 2018, 1.7 nb Data 2018, 1.7 Data 2018, 1.7 nb Syst. uncertainty Syst. uncertainty γ γ . This uncertainty also covers the differences if the 2 e mistag , . The event yield observed in 0 0.5 1 1.5 2 2.5 0 10 200 30 10 40 20 50 30 60 40 70 50 80 60 70 80 0 0.5 1 1.5 2 2.5 1 1 1 6 5 4 3 2 . Kinematic distributions for Pb+Pb p 2 10 1.2 1.2 1.4 1.4 0.8 0.6 0.8 0.6

10 10 10 10 10 =1 500

). ,

5000 4500 4000 3500 3000 2500 2000 1500 1000 Data / MC / Data

Data / MC / Data , where the uncertainty accounts for the Events / 0.1 GeV 0.1 / Events Events / 2 GeV 2 / Events N PixTrk 7 =1 The number of The PixTrk N ± CR e mistag p does not depend on the probed photon 15 in extrapolated from event yields for individual pixel-track multiplicities ( the probability of missing the electron( pixel track if the standard track is not reconstructed two photon candidates having the uncertainty is estimated by relaxing the and identification, and trigger efficiency,ratio are of shown data as to shaded MC bands. predictions. The Some lower values panels are display outside the thepassing plotting the range. signal selection, andCR one or two pixel tracks. This control region is denoted by Figure 5 2018 data set: dielectron massand (top-left), electron dielectron transverse rapidity (top-right), energy dielectron (histograms). (bottom-right). Data The (points) are simulationdata. compared prediction Systematic with is uncertainties MC due normalised expectations to to electron the energy same scale and integrated resolution, luminosity electron as reconstruction the JHEP03(2021)243 . ee 6 γγ → , → γγ Mad- N gg 01) . events. In 0 3 > ± background in φ A − 12 ( e ee + e → γγ → N γγ with the distributions from ), as well as experimental and is the expected CEP 01) + . requirement is imposed. Good γγ requirement is shown in figure 0 =1 11% N PixTrk → 01 > 01 . gg . 0 φ 0 CR N A ( < < . The shape uncertainty is constructed ] and the Pb+Pb photon flux from process is evaluated using the φ sig φ 50 A A N =1 background process takes into account the N PixTrk γγ ), approximately 70% of observed events have control region between the data-driven CEP − is estimated using the same data-driven method e γγ – 13 – 01 control region ( CR . + 01) + ee 01 ] PDF sets have negligible impact on the shape of . 0 e . 0 01 → → 0 . 49 < 0 > γγ φ > → gg φ N > A A φ φ ( background estimate. The impact of the MC modelling A A γγ γγ control region in the data. The normalisation is constrained → γγ φ gg . The diphoton acoplanarity distribution for events satisfying the A → N 6.1 gg ] and NNPDF3.1 [ background is estimated from MC simulation with the overall rate of this 01) = . 48 NLO v2.4.3 MC generator [ . is the expected number of signal events (from MC simulation) and 0 change in the CEP background yield in the signal region, which is taken γγ @ > sig =2 → denotes the number of observed events, φ N background yield. The N PixTrk 21% A ( gg − _aMC e data ], CT14 [ CR + N data 47 e N The background due to CEP in the signal region is estimated to be In addition, the energy deposition in the ZDC, which is sensitive to the dissociation The uncertainty in the CEP The distribution shapes of various kinematic variables of alternative SuperChic v2.0 MC sample. 6.3 Other background sourcesThe with contribution prompt photons Graph5 from the in the ZDC. In thea signal signal corresponding region to ( nobackground neutrons hypothesis. in the ZDC, which is consistent with the signal-plus- the differential cross-section measurements, the shape uncertainty is evaluated using the 2014 [ the diphoton acoplanarity distribution. of Pb nuclei, isagreement studied is for observed eventsestimate in before and the the the observed events with a signal corresponding to at least one neutron uncertainty on the shape ofSuperChic the v2.0 acoplanarity distribution MC isleads sample estimated using to with an a extra alternative as gluon interactions a (no systematic absorptivedistribution uncertainty. function effects). (PDF) An of This additional the check gluon. is The performed differences between by leading-order varying MMHT the parton The predictions provide a fair description of the shapelimited number of of the events in data the distribution. modelling uncertainties. Itimpact is found on that the all CEP experimental uncertainties have a negligible where event yield, is the as described in section signal region selection, but before applying the The CEP process evaluated in the using the condition: the signal region areby taken comparing from kinematic data distributions in data from in data in 6.2 Central exclusive diphoton production JHEP03(2021)243 → γγ → ] and Pb γ gg 52 , process is or 51 − γγ τ + τ → b η → → γγ γγ φ A ) γ γ

γ -1 γ →

) or by mis-reconstructed charged- = 5.02 TeV γ 0 → γ NN η s ee , →

η γ Data, 2.2 nb Syst. uncertainty γ CEP gg Signal ( , 0 π ATLAS Pb+Pb production is estimated using MC simulation ]. The cross section for single-bremsstrahlung ¯ q – 14 – q 53 control region. The signal prediction is normalised to → 01 . 0 γγ states). Estimates for such contributions are reported in > requirement. Data are shown as points with statistical error − φ 01 , π A . + 0 0 0.02 0.04 0.06 0.08 0.1 0.12 π 0

80 70 60 50 40 30 20 10 < Events / 0.005 / Events φ A , so the coincidence of two such occurrences is negligible. ++ and it contributes less than 1 event to the total number of events pb ) is calculated using relevant branching fractions from refs. [ 4 γ ] and these contributions are considered to be negligible in the signal region. − 3 57 10 – → Herwig . The diphoton acoplanarity distribution for events satisfying the signal region selection, b 54 , γη 25 The background from fake diphoton events induced by cosmic-ray muons is estimated Exclusive two-meson production can be a potential source of background for LbyL The contribution from UPC events where both nuclei emit a bremsstrahlung photon The contribution from bottomonia production (for example, → particle tracks (for example refs. [ using a controland region further with studied at using least the one reconstructed track photon-cluster time reconstructed distribution. in the The latter muon spectrometer in the signal region.estimated The using expected MC yield simulationthan for based 0.5 the on events. background STARlight Both from + of these Pythia background 8 sources and arescattering is considered events, found negligible. mainly tophotons due be either less to by their their similar decay back-to-back into topology. photons ( Mesons can fake to be below 6.4 Other fake-photonThe background background contribution from based on Υ found to be negligible. is estimated using calculationsphoton from production ref. from [ a Pb ion in the fiducial region of the measurement is calculated and background predictions, excluding the uncertainty in the luminosity. STARlight. This contributionis is consequently ignored estimated in to the be analysis. below 1% of the expected signal and Figure 6 but before applying the bars, while the histograms representbackground the is expected normalised signal and inthe background the levels. same integrated The luminosity CEP as the data. The shaded band represents the uncertainties in signal JHEP03(2021)243 . − 6 e + e → γγ event selection − e + e resolution is applied as an extra φ beam-separation scans, following a . This affects the signal yield by 1% y – 3 x ], and using the LUCID-2 detector for the 58 – 15 – cross-section measurements arise from the recon- γγ → γγ requirements, these background contributions are below 1 event and are γγ T p Systematic uncertainties associated with the background estimate, the photon PID and The uncertainties in the background estimationThe are uncertainty evaluated in as described the in integrated section luminosity of the data sample is 3.2%. It is derived The uncertainty due to the choice of signal MC generator is estimated by using an The uncertainties related to the photon energy scale and resolution affect the expected The uncertainty in the photon reconstruction and PID efficiencies is estimated by The precision of the Level-1 trigger efficiency estimation is limited by the number of reconstruction efficiency, photon energy scale, and photonfully angular correlated and energy between resolution the are in 2015 and the 2018 trigger data-taking efficiencydominated periods. are by Systematic the computed uncertainties statistical separately uncertainty of for each each data data-taking set period. and are thus They uncorrelated. are sample size is 1%. from the calibration ofmethodology the similar luminosity to scale that using baseline detailed luminosity in measurements. ref. [ smearing to photons fromyield, the which signal is MC taken sample. as a This systematic results uncertainty. inalternative a signal 2% MC shift sample, of aswhich the detailed is in taken signal as section a systematic uncertainty. The uncertainty due to the limited signal MC deviation of the correction factor. This has negligiblesignal impact on yield the by expected 1%the signal. and photon 2%, angular respectively. resolutionprocess. The uncertainty is The due data-MC estimated difference to using in imperfect the electron knowledge electron clusters of cluster from the reconstruction efficiency) and 2%criteria (photon used PID in efficiency). data-drivenThe efficiency The statistical measurements variation of has uncertainty the negligibleis of selection impact propagated the on using photon the results. randomly the reconstruction shifted in pseudo-experiment and an ensemble method PID of pseudo-experiments efficiency in according to corrections which the mean the and standard correction factors are signal yield is 5%. Theon uncertainty in the the results. MBTS/FCal veto efficiency has negligible impact parameterising the scalethe factors photon as transverse a momentum. function This of affects the the photon expected signal pseudorapidity, yield instead by of 4% (photon struction of photons, the background determination,as and well integrated luminosity as uncertainty, the procedures used to correct forevents recorded detector by effects. the supportingis trigger. varied. As In a total, systematic the check, the impact of the Level-1 trigger efficiency uncertainty on the expected imposing the considered negligible. 7 Systematic uncertainties Systematic uncertainties in the method is also used to estimate the background originating from calorimeter noise. After JHEP03(2021)243 ] ± 37 (8.1) back- − (syst.) e GeV with + 5 e 13 > ± → γγ nb from ref. [ is the number of γγ 5 8 m within the fiducial ± ± (stat.) 10% 80 17 = 27 ± factor is defined as the ratio with a transverse momentum bkg 4 C N . ]. The data-to-theory ratios are 2 = 120 34 < fid , | σ η | t bkg d N L . R − ]. 1 × process is measured in a fiducial phase space, is the integrated luminosity of the data sample 36 , data 1 C , in particular for the photon reconstruction and – 16 – − N γγ 35 7 nb = → 07 fid . γγ σ 0 GeV. In addition, the photons must fulfil an acoplanarity ± 1 is given in table is dominated by the uncertainty in the 22 . < C , respectively. is estimated by varying the data/MC correction factors within bkg T γγ = 2 . p 32 N t . C 01 0 d is the overall correction factor that accounts for detector efficiencies . L 0 ± R < 021 is the number of selected events in data, . 54 ] and the relevant uncertainty is estimated to be . φ 0 1 A 59 ± = 97 GeV. The invariant mass of the diphoton system has to be and nb from the SuperChic v3.0 MC generator [ 263 . 5 8 . 32 data 2 . . . In total, 97 events are observed in data where 45 signal events and 27 background ± 0 = 0 N > 7 7 ± 78 C The measured integrated fiducial cross section is The theoretical uncertainty in the cross section is primarily due to limited knowledge The uncertainty in The uncertainty in The integrated fiducial cross section is obtained as follows: T p (lumi.) nb, which can be compared with the predicted values of 50 . studied in ref. [ phase space of theexhibit measurement. a dependence For on masses thecalculations) diphoton below are mass. also 100 Higher-order part GeV,the corrections this of (not corresponding the uncertainty included invariant mass theoretical does in range the uncertainty not [ and are of the order of 1–3% in 4 and 1 of the nuclear (EM) form-factors and the related initial photon fluxes. This is extensively their uncertainties as described in section PID efficiencies, photon energy scalethe various and uncertainties resolution in and trigger efficiency. An overview of ground. This has a 6% impact on the estimated integrated fiducial cross section. and resolution effects, and foroutside signal events the passing fiducial the phase event selection spaceof but (fiducial the originating corrections). from number The ofgenerated reconstructed MC MC signal signal events satisfying events the passing fiducial the requirements. selection to the number of where background events, and reconstruction level: both photons haveof to be within transverse momentum of requirement of figure 8.2 Integrated fiducialThe cross inclusive section cross section fordefined by the the following requirements on the diphoton final state, reflecting the selection at 8.1 Kinematic distributions Photon kinematic distributions comparing the selectedyields data with from the simulated sum of signalfigure expected and event background processesevents in are the expected. signal This region excess are of shown observed in events is visible in all distributions shown in 8 Results JHEP03(2021)243 | ) ∗ θ cos( | γγ η *)| y θ ) |cos( γ γ

γ -1 γ →

γ → γ = 5.02 TeV = 5.02 TeV = 5.02 TeV NN NN NN ee Leading photon s s s → γ Data, 2.2 nb Syst. uncertainty CEP gg γ Signal ( ATLAS ATLAS Signal region Signal region Pb+Pb ATLAS Pb+Pb Pb+Pb 0 1 2 3 0 1 2 3 ) ) γ γ γ γ

γ γ -1 -1 γ γ → →

1 1 γ γ → → − − γ γ ee ee → → γ γ 2 2 Data, 2.2 nb Syst. uncertainty Data, 2.2 nb Syst. uncertainty CEP gg CEP gg γ γ Signal ( Signal ( − − Signal region 3 3 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

− − 5 0 5 0 5 0

40 35 30 25 20 15 10 50 45 40 35 30 25 20 15 10 30 25 20 15 10

Photons / 0.6 / Photons Events / 0.6 / Events 0.1 / Events event candidates: diphoton invariant mass (top- γγ – 17 – → [GeV] [GeV] [GeV] γγ γγ ) T ) ) T γ γ γ γγ p γ γ γ m

γ γ γ -1 -1 -1 γ γ γ → → →

γ γ γ → → → γ γ γ = 5.02 TeV = 5.02 TeV = 5.02 TeV NN NN NN ee ee ee s s s → → → γ γ γ Data, 2.2 nb Syst. uncertainty Data, 2.2 nb Syst. uncertainty Data, 2.2 nb Syst. uncertainty CEP gg CEP gg CEP gg γ γ γ Signal ( Signal ( Signal ( Leading photon E ATLAS Pb+Pb ATLAS Pb+Pb ATLAS Pb+Pb Signal region Signal region Signal region 5 10 15 20 25 30 0 2 4 6 8 10 12 14 0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2 2.2

0 5 0 5 0

. Kinematic distributions for 60 50 40 30 20 10 50 45 40 35 30 25 20 15 10 30 25 20 15 10

Photons / GeV / Photons Events / 0.2 GeV 0.2 / Events Events / GeV / Events (mid-right), leading photon(bottom-right). transverse Data energy (points) (bottom-left) are(histograms). and compared The with leading signal theSystematic photon prediction sum uncertainties is pseudorapidity of in normalised signal the to andare signal the background shown and as expectations background same shaded processes, integrated bands. excluding luminosity that as in the the data. luminosity, Figure 7 left), diphoton rapidity (top-right), diphoton transverse momentum (mid-left), diphoton JHEP03(2021)243 are unfolded | ∗ θ cos | ) C ]. The distributions are 61 together with the total uncer- 021 . C 0 ± 8% 5% 4% 2% 1% 2% 2% 1% 1% 263 . 0 is considered. In addition, uncertainties Detector correction ( 7 – 18 – , and its uncertainties for the integrated fiducial cross- C is a quadratic sum of systematic and statistical components. C Total Trigger efficiency Photon PID efficiency Photon energy scale Photon energy resolution Photon angular resolution Alternative signal MC Signal MC statistics Photon reco. efficiency Source of uncertainty ] with one iteration for all distributions. The unfolding procedure cor- 60 . The detector correction factor, In the measurement of differential fiducial cross sections, the full set of experimental The statistical uncertainty of the data is estimated using 1000 Poisson-distributed The differential fiducial cross sections are determined using an iterative Bayesian un- simulation is estimated using pseudo-data and is found to be 1–3%. reweighted at generatorafter level event to reconstruction. obtain The obtainedto better prediction data, at agreement detector is between level, unfoldedreweighted which data with prediction is and then at the similar simulation generator inputuncertainty level of is is the typically considered default as below unfolding an 1%. and uncertainty. the The The difference size impact from of of the this statistical uncertainties in the signal each bin. systematic uncertainties described indue section to theby unfolding repeating procedure the and cross-section extraction the with modelling modified of inputs [ the signal process are considered fiducial region. The background contributions are subtracted from data priorpseudo-data to sets, constructed unfolding. by smearing thedetector-level observed distribution. number of The events root inunfolded each mean bin distributions square of of the and the the differences between unfolded the data resulting is taken as the statistical uncertainty in rects for bin migrationsresolution between effects, particle- and and applies detector-level reconstructionreconstruction distributions efficiency efficiency due as to corrects well detector for asstructed events fiducial in inside the corrections. signal the The region fiducialaccount due events region to that detector that are inefficiencies; are the reconstructed not fiducial in corrections recon- the take signal into region, but originate from outside the Differential fiducial cross sectionssolute as rapidity, a average function photon of transverseto diphoton momentum particle invariant and level mass, in diphoton diphoton the ab- fiducial phase space describedfolding in method the [ previous section. Table 1 section measurement. The secondtainty. row The lists the total numerical uncertainty value on of 8.3 Differential fiducial cross sections JHEP03(2021)243 , ) 7 4 ) due | γγ y | GeV to 1.5 GeV comparisons are . They are com- 2 8 differential fiducial GeV. An efficiency -channel process in χ = 6 s a γγ m m = 12 a per degree of freedom being GeV, no events are observed m GeV. The diphoton invariant ]. 2 denotes the ALP. The LbyL, χ 30 62 40 a > γγ m ], which implements the ALP couplings as distribution. The | 39 ) ∗ θ – 19 – GeV. For process, where cos( | γγ processes is estimated using data-driven techniques as = 30 → γγ γγ contributions and excluding the mass search region. To processes are considered as background. The contribution m a → γγ γγ gg → GeV and increases up to 45% for → → γγ gg gg . The LbyL background is estimated using simulated events gener- = 6 ], for various ALP masses between 5 GeV and 100 GeV are used to 6 a 12 m and CEP − GeV and is dominated by the photon energy resolution. The impact of e ]. The measured diphoton invariant mass spectrum, as shown in figure + and CEP and CEP 12 e − − e e → = 100 + + e e γγ a In every analysis bin a cut-and-count analysis is performed to estimate the expected Events simulated with STARlight v2.0 [ The cross sections for all distributions shown in this paper, including normalised dif- The unfolded differential fiducial cross sections are shown in figure → → m invariant mass resolution over the full mass range. numbers of background and signalof events. a The reconstructed bin-width ALP is signalTo chosen cover peak to the include within entire at a mass least given range, 80% bin the and analysis ranges bins from overlap and 2 have GeV to an equidistant 20 distance GeV. points. The efficiency ofis ALP events about to 20% satisfy for theplateau selection of criteria about (outlined 80% in ismass section reached resolution for for an simulated ALP ALPat mass signal around ranges from 0.5the GeV uncertainty at on the primary-vertex position has a subdominant effect on the diphoton tion is fitted toas the additional sum systematic of uncertainty. all background contributions, while assigningdescribed the in fit ref. residuals [ build an analytical model of the ALP signal, interpolating between the simulated mass from described in section ated with SuperChic v3.0. Theseγγ events are normalised tosmooth the data statistical yield, fluctuations after in subtracting the background shape at high mass, a Crystal Ball func- photon-photon collisions, leadingOne to popular a candidate resonance forcle producing peak (ALP) a in [ narrow diphoton theis resonance invariant used is mass an to spectrum. axion-likeγγ search parti- for ferential fiducial cross sections, are available in HepData8.4 [ Search forAny ALP particle production coupling directly to photons could be produced in an to the limited numbercarried of out events for the in shapesdifferences the of between data differential predictions control distributions. and regions. They data,4.3/3 do with when Global not the comparing display largest any thedistribution significant shape is measured of up to in data versus a total expectation of 0.8 events. pared with the predictionsdata, from except for SuperChic the v3.0, overalltotal normalisation which uncertainties differences. provide in For a the nearlytainties, fair all cross-section ranging variables description measurements from and of 25% are bins to the dominated the comparable 75%. by to The statistical statistical background uncertainties uncer- systematic in uncertainties are some large bins and (up to 40%, mainly at high JHEP03(2021)243 . | ) ∗ θ ] which cos( | | γγ ) at 95% *)| 65 θ |y – CLs -1 63 µ |cos( Stat. = 5.02 TeV ⊕ NN s SuperChic 3.0 Data, 2.2 nb Syst. ATLAS Pb+Pb -1 production in Pb+Pb collisions Stat. = 5.02 TeV ]. ⊕ γγ NN s 68 → Data, 2.2 nb Syst. SuperChic 3.0 ATLAS Pb+Pb γγ . The theoretical uncertainty in the 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 0 0.6 1.2 1.8 2.4 0 0 7 50 80 60 40 20

300 250 200 150 100 160 140 120 100

γ fid γ

fid

*)| [nb] *)| /d|cos( d σ | [nb] | /d|y d θ σ – 20 – ] and RooStats [ [GeV] -1 -1 67 γγ m Stat. Stat. = 5.02 TeV = 5.02 TeV ) / 2 [GeV] 2 ⊕ ⊕ NN NN γ T s s SuperChic 3.0 SuperChic 3.0 Data, 2.2 nb Data, 2.2 nb Syst. Syst. + p 1 γ T ATLAS Pb+Pb ATLAS Pb+Pb (p ], RooFit [ 66 TeV for four observables (from left to right and top to bottom): diphoton invariant 5 10 15 20 25 30 02 5 10 15 20 25 30 1 1 . 2 1 1 − −

10 10

10

T

T 10 10 fid

fid . Measured differential fiducial cross sections of

γγ σ + p + /d((p d ) / 2) [nb/GeV] 2) / )

σ /dm d

[nb/GeV] = 5

γ 2 γ 1 NN Experimental systematic uncertainties affecting the ALP signal model originate from Since no significant deviation from the background-only hypothesis is observed, the s √ the trigger, photon PIDolution. and reconstruction The efficiencies, and systematiccross-section photon uncertainties measurements, energy are scale described evaluated andcalculated in identically ALP res- section signal to cross the section is treatment 10% in in the the full mass range, due to the limited knowl- bin using a maximum-likelihoodis fit based implemented on in HistFactory the [ HistFitter software [ result is then usedconfidence to estimate level the (CL). upper Thepseudo-experiments. limit corresponding on the test-statistic ALP distributions signal are strength evaluated ( using certainty and grey bandswith indicating the the prediction size fromtheoretical of the uncertainty. the SuperChic total v3.0 uncertainty. MC generator The (solid results line) are withof compared bands 1 denoting GeV between the the bin centres. The signal contribution is fitted individually for every Figure 8 at mass, diphoton absolute rapidity,The average measured photon cross-section transverse values momentum are and shown diphoton as points with error bars giving the statistical un- JHEP03(2021)243 to 1 2 − 10 [GeV] a -1 m 70 60 TeV by the 50 are the cross 02 . 40 gen a = 5.02 TeV, 2.2 nb = 5.02 TeV, 2.2 Λ 30 GeV is caused by the = 5 NN Internal with those obtained s . The observed upper expected background unc. a unc. σ σ (left) and ALP coupling Expected Limit Observed 1 2 0 NN 10 m and 20 range from 0.3 TeV s = 70 γγ ATLAS Pb+Pb a √ a → Λ gen a m N > / MC a, 1 → σ for an ALP with a mass of 6– γγ 10 σ 9 . γγ 8 . After the selection criteria, 97 1 7 gen a → − a Λ 6 GeV. / → nb 4 − 1 γγ · 10

are transformed into limits on the cross

σ 100 a

] [GeV 1/ on limit CLs 95% Λ -1 < CLs CLs a µ µ √ – 21 – 2 10 < m -1 = [GeV] 6 a ]. The exclusion limits from this analysis are the ]. This uncertainty is considered uncorrelated with m 70 72 CLs a 59 60 – . Additionally, limits on the ALP coupling to photons process as a function of ALP mass Λ 50 / 1 gen 69 γγ , 40 MC a, = 5.02 TeV, 2.2 nb = 5.02 TeV, 2.2 σ 27 NN → s · unc. unc. 30 σ σ a 2 1 Expected Limit Observed CLs → ATLAS Pb+Pb µ 20 γγ = standard deviation bands. The discontinuity at 2 γγ ± → 10 a 9 8 → and . The widths of the one- and two-standard-deviation bands of the expected limit . The limits set on the cross section 1 7 1 GeV is caused by the increase of the mass-bin width which brings an increase in CLs γγ . The 95% CL upper limit on the ALP cross section − 9 ) are calculated from 6 σ ± 2 1 (right) for the 10 10 CLs a

Assuming a 100% ALP decay branching fraction into photons, the derived constraints The limits set on the signal strength

= 70

a γγ ) [nb] ) → → γγ σ 95% CLs limit on on limit CLs 95% ( Λ a Λ / a / 1 9 Conclusions This paper presents aphoton measurement interactions of from the ultra-peripheralATLAS light-by-light Pb+Pb experiment scattering collisions at process at thecorresponding in LHC. to quasi-real The an measurement integrated is luminosity based of on 2.2 the full Run 2 data set on the ALP mass and itsfrom coupling to various photons experiments are comparedstrongest [ in so figure far for the mass range of in the background rate, whichmasses has the a background low rate Poisson is sufficiently meanoutcomes high for and to high populate raise ALP the masses. them +1 For low and ALP +2-standard-deviationsignal boundaries. acceptance. The discontinuity at limits on the ALPin production figure cross section100 and GeV range ALP from 70 coupling nb to0.06 to 2 TeV nb. photons The are derived constraints presented distribution on decrease for ALP masses above 30 GeV. This behaviour is driven by the change other sources of uncertainty. section ( section and coupling used in the MC generator. The observed and expected 95% CL limit is shown as awith solid its black line andincrease the of expected the upper mass-bin limit width is which brings shown by an the increase dashed in black signaledge line acceptance. of the initial photon fluxes [ Figure 9 1 JHEP03(2021)243 , ± 32 γγ 27 . ) 0 ∗ ( ± 120 ) ) versus p [GeV] a p 54 LHC ( CDF a = 120 . Λ m +Pb 1 / ) 1 ∗ 100 fid ( σ and Pb LEP LEP S 80 32 A . → L 0 T ] ) A 6 2 ± 8 4 γγ 3 60 1 (

50 ) ) . 9 r 1 e 1 0 p 2 a (

p

7 s i 9 h 7 t

40 (

B L P [

S A 20 Existing constraints from JHEP 12 (2017) 044 Existing constraints

L T S A M C Belle II 1 1 0 0 0 0

process is measured to be 1 1

1

a − ] [TeV Λ 1/ 1 γγ background events are expected. The dominant → – 22 – 5 ] ) 3 ± γγ 6 p 0 2 p 1 8 [GeV] LHC ( 4 ) a 3 27 r 1 e m

) p 9 a 1 p

2 CDF 0 s i 0 2 ( h

1 t ( 7

9 7 LEP LEP

B L P 1 [

0

] and from the SuperChic v3.0 MC generator, respectively. Dif- 1 S A collision data from ATLAS and CMS. All measurements assume a 100% L 37 T A (lumi.) nb. The data-to-theory ratios are

S pp 0 GeV. 4 M 0 C 1 ± Belle II S A 120 L 1 T < 0 A 1 PrimEx a (syst.) ) plane obtained by different experiments. The existing limits, derived from refs. [ . v a n 2 i . + 13 v < m 0 m Existing constraints from JHEP 12 (2017) 044 Existing constraints n i 1 . Compilation of exclusion limits at 95% CL in the ALP-photon coupling ( + 1 ± )” are based on e Beam-dump + Y 3 pp e 0 ] are compared with the limits extracted from this measurement. The exclusion limits labelled 0 1 1 1 0 0 We acknowledge the support of ANPCyT, ; YerPhI, Armenia; ARC, Aus- The measured diphoton invariant mass distribution is used to search for axion-like par- After background subtraction and corrections for detector effects are applied, the in- 0 1 1

72 1

(stat.) a −

] [TeV Λ

1/ – 1 from our institutions without whom ATLAS could not betralia; operated efficiently. BMWFW andFAPESP, Brazil; FWF, NSERC, Austria; NRCand ANAS, NSFC, and China; Azerbaijan; CFI, COLCIENCIAS, Colombia; Canada; SSTC, MSMT CR, CERN; Belarus; MPO ANID, CR CNPq and Chile; VSC and CR, CAS, Czech MOST and within the aforementioned massALP range, signals. the most stringent constraints in the search for Acknowledgments We thank CERN for the very successful operation of the LHC, as well as the support staff statistical uncertainties. ticles and set new exclusion limits onreaction. their production Integrated cross in the sections Pb+Pb aboveon 2 the to diphoton 70 invariant nb mass are in excluded the at range the 6–100 95% GeV. CL, depending These results provide, to this date for predictions from ref. [ ferential fiducial crossfinal-state sections photons are and are measured comparedlight with as Standard scattering. a Model theory All function predictionswith measured for of cross the light-by- several sections predictions. properties are consistent The of within measurement the 2 precision standard is deviations limited in all kinematic regions by events are selected in the databackground while processes are estimated using data-driven methods. tegrated fiducial cross17 section of the ALP mass ( 69 “LHC ( ALP decay branching fraction intothe photons. range The plot on the right is a zoomed-in version covering Figure 10 JHEP03(2021)243 Nuovo , 88 ]. (2008) 1 458 SPIRE Z. Phys. , IN ][ ]. Phys. Rept. SPIRE , IN [ ]. 73 arXiv:2005.01872 [ (1934) 729 ]. 45 – 23 – (2020) 323 SPIRE IN 70 ][ Phys. Rev. , ), which permits any use, distribution and reproduction in ]. Photonuclear and two-photon interactions at high-energy nuclear SPIRE Radiation emitted in collisions of very fast electrons IN ]. hep-th/0205086 ][ [ CC-BY 4.0 Nature of the high-energy particles of penetrating radiation and status of This article is distributed under the terms of the Creative Commons SPIRE IN The physics of ultraperipheral collisions at the LHC [ On the theory of collisions between atoms and electrically charged particles Ann. Rev. Nucl. Part. Sci. , (1925) 143 2 arXiv:0706.3356 Cim. (1934) 612 ionization and radiation formulae [ colliders The crucial computing support from all WLCG partners is acknowledged gratefully, C.F. von Weizsacker, E.J. Williams, A.J. Baltz, S. Klein and P. Steinberg, E. Fermi, [4] [5] [1] [2] [3] any medium, provided the original author(s) and source are credited. References (U.S.A.), the Tier-2jor facilities contributors worldwide of and computing resources large are non-WLCG listed resource in ref. providers. [ Open Ma- Access. Attribution License ( hulme Trust, United Kingdom. in particular from(Denmark, CERN, Norway, Sweden), the CC-IN2P3 (France), KIT/GridKA ATLAS(), (Germany), Tier-1 INFN-CNAF NL-T1 facilities (Netherlands), at TRIUMF PIC (Canada), (), NDGF ASGC (Taiwan), RAL (U.K.) and BNL Labex, Investissements d’Avenir Idex andmany; ANR, Herakleitos, Thales France; and DFG Aristeia and programmesNSRF, AvH co-financed Foundation, Greece; by Ger- EU-ESF BSF-NSF and and thegramme Greek GIF, Generalitat Israel; de Catalunya LaValenciana, and Caixa PROMETEO Spain; Banking and Göran Foundation, GenT CERCA Gustafssons Programmes Pro- Stiftelse, Generalitat Sweden; The Royal Society and Lever- MICINN, Spain; SRC andBern Wallenberg and Foundation, Sweden; Geneva, Switzerland; SERI, MOST, SNSFDOE and Taiwan; and NSF, TAEK, United Cantons Turkey; States STFC, of of Unitedreceived America. support Kingdom; In from addition, BCKDF, individual CANARIE, groupsBeijing Compute and members Canada, Municipal have CRC Science and & IVADO,zon Canada; Technology 2020 Commission, and China; Marie COST, Skłodowska-Curie ERC, Actions, European ERDF, Union; Hori- Investissements d’Avenir SRNSFG, Georgia; BMBF, HGFKong SAR, and China; ISF MPG, and Germany; BenoziyoCNRST, Center, Morocco; GSRT, Israel; Greece; INFN, NWO, Italy; Netherlands; RGC MEXTPortugal; RCN, and and MNE/IFA, JSPS, Norway; Romania; Hong Japan; MNiSW JINR; andMESTD, MES NCN, Serbia; of Poland; MSSR, Russia FCT, ; and ARRS NRC and KI, MIZŠ, Russian ; Federation; DST/NRF, South Africa; Republic; DNRF and DNSRC, Denmark; IN2P3-CNRS and CEA-DRF/IRFU, France; JHEP03(2021)243 ] ] 58 , (2016) MeV 158 (1953) 76 ]. ]. 75 . (2012) 90 2 collisions at (2015) 165 pp 109 02 SPIRE SPIRE IN IN Phys. Rev. C ]. ]. arXiv:1808.10515 , arXiv:1607.06083 ][ ][ [ [ Phys. Lett. B JHEP Phys. Rev. ]. (2019) 095004 , , , SPIRE SPIRE Light-by-light scattering Eur. Phys. J. C γγ IN IN , → 100 η ][ ][ SPIRE Γ (2008) 120801 IN Phys. Rev. Lett. ][ , Delbruck scattering of (2019) 012008 100 (2017) 171801 hep-ex/0602035 TeV 99 ]. [ arXiv:2002.01829 118 [ 76 . Phys. Rev. D , SPIRE Light-by-light scattering and spacetime = 2 radiative width IN [ η arXiv:1703.08450 arXiv:1812.11672 Searching for axionlike particles with NN [ [ New measurement of the electron magnetic s hep-ex/0111084 Phys. Rev. Lett. – 24 – [ Phys. Rev. D √ (2006) 072003 Light-by-light scattering constraint on Born-Infeld , , (2020) 095035 ]. 73 ]. Phys. Rev. Lett. TeV with the ATLAS detector , (1975) 134 ]. 101 Mev gamma-rays by an electric field = 8 SPIRE 59 SPIRE ]. Probe of the Randall-Sundrum-like model with the small s IN (2017) 261802 (2019) 056016 33 ]. ]. . IN SPIRE [ √ Gauge field theories with Lorentz-violating operators of arbitrary 1 (2002) 061802 ][ Final report of the muon E821 anomalous magnetic moment IN 99 Delbruck scattering at energies of 140–450 MeV Experimental investigation of high-energy photon splitting in atomic 118 ][ SPIRE Search for new phenomena in events with at least three photons A search for pairs of highly collimated photon-jets in 89 Measurement of the cross section for electromagnetic dissociation with Phys. Rev. D SPIRE SPIRE A measurement of the IN , ]. IN IN ]. ][ Phys. Rev. D ][ ][ , Phys. Lett. B (1973) 3813 , collisions at SPIRE 8 SPIRE Scattering of IN ]. IN pp collaboration, [ Phys. Rev. D [ , TeV with the ATLAS detector collaboration, collaboration, ]. ]. collaboration, arXiv:1203.2436 collaboration, Phys. Rev. Lett. [ SPIRE Phys. Rev. Lett. , , IN arXiv:1509.05051 = 13 [ [ SPIRE SPIRE s IN arXiv:0801.1134 IN arXiv:1902.08615 arXiv:1411.6629 (1998) 2844 fields JADE (1985) 511 Measurement of delbrueck scattering andPhys. observation Rev. of D photon splitting at high energies photons by lead Muon g-2 measurement at BNL 720 √ [ moment and the fine[ structure constant [ ATLAS collected in 210 ATLAS dimension noncommutativity ultraperipheral heavy-ion collisions curvature via light-by-light scattering[ at the LHC theory neutron emission in Pb-Pb252302 collisions at with intact protons at[ the LHC: from standard model to new physics ALICE R. Horvat, D. Latas, J. Trampetić and J. You, V.A. Kostelecký and Z. Li, S.C. Inan and A.V. Kisselev, J. Ellis, N.E. Mavromatos and T. You, S. Fichet, G. von Gersdorff, B. Lenzi, C. Royon and M. Saimpert, S.Z. Akhmadaliev et al., M. Schumacher, I. Borchert, F. Smend and P. Rullhusen, S.Z. Akhmadaliev et al., R.R. Wilson, G. Jarlskog, L. Joensson, S. Pruenster, H.D. Schulz, H.J. Willutzki and G.G. Winter, D. Hanneke, S. Fogwell and G. Gabrielse, S. Knapen, T. Lin, H.K. Lou and T. Melia, [8] [9] [7] [6] [11] [10] [21] [22] [19] [20] [16] [17] [18] [15] [13] [14] [12] JHEP03(2021)243 ] ] , , ]. 2008 , SPIRE IN ][ ]. in the reaction Eur. Phys. J. C (2019) 134826 Comput. Phys. 0 , ]. , arXiv:1904.03536 η ATLAS-TDR-19 [ , (2008) 639 797 arXiv:1606.01058 SPIRE [ STARlight: a Monte and IN SPIRE 58 η QCD and QED corrections ][ IN (2016) 129901] , 0 ][ π ]. 116 arXiv:1702.01625 (2016) 399 (2019) 052001 [ ]. Phys. Lett. B SPIRE , Light-by-light scattering in ]. IN 761 123 ][ Exclusive LHC physics with heavy ions: Two-gluon exchange contribution to TeV Eur. Phys. J. C SPIRE , hep-ph/0109079 formation in photon-photon collisions at ]. IN SPIRE 02 [ . η (2017) 852 IN ][ Erratum ibid. [ ]. arXiv:1810.06567 ][ = 5 ]. 13 [ SPIRE ]. IN – 25 – NN Phys. Lett. B [ s SPIRE , SPIRE (2001) 031 √ IN Phys. Rev. Lett. Observing light-by-light scattering at the Large Hadron SPIRE A study of IN , ][ IN [ (2019) 39 11 arXiv:1601.07001 [ [ (2013) 080405 Formation of the pseudoscalars 79 ]. Nature Phys. ]. ]. Production and integration of the ATLAS Insertable B-Layer , (1988) 1365 arXiv:1607.03838 JHEP ]. 111 [ , P07017 arXiv:1803.00844 38 [ SPIRE (1986) 844 Performance of the ATLAS trigger system in 2015 The ATLAS experiment at the CERN Large Hadron Collider Observation of light-by-light scattering in ultraperipheral Pb+Pb Evidence for light-by-light scattering in heavy-ion collisions with the ATLAS insertable b-layer technical design report SPIRE SPIRE 13 IN collaboration, IN IN Evidence for light-by-light scattering and searches for axion-like particles 33 SPIRE ][ ][ ][ IN (2016) 044907 [ scattering and production of two-photons in ultraperipheral ultrarelativistic T05008 collaboration, The new LUCID-2 detector for luminosity measurement and monitoring in HERWIG++ physics and manual arXiv:1611.09661 (2017) 258 JINST collaboration, 93 [ Eur. Phys. J. C γγ 13 , 212 → Phys. Rev. D S08003 Phys. Rev. Lett. collaboration, collaboration, collaboration, collaboration, ]. ]. , 2018 , 3 , γγ collaboration, γγ Phys. Rev. D JINST , (2017) 317 → SPIRE SPIRE arXiv:0803.0883 IN arXiv:1810.04602 IN arXiv:1305.7142 [ Carlo simulation program for ultra-peripheralCommun. collisions of relativistic ions heavy ion and proton-proton collisions [ ultraperipheral Pb-Pb collisions at energiesPhys. available Rev. at C the CERN Large Hadron Collider SuperChic 3 to light by light scattering elastic ATLAS ATLAS 77 JINST (2010). ATLAS IBL 2018 [ ATLAS collisions with the ATLAS[ detector ATLAS [ ATLAS ATLAS detector at the LHC CMS in ultraperipheral PbPb collisions at PEP Crystal Ball γγ Collider TPC/Two Gamma M. Bahr et al., S.R. Klein, J. Nystrand, J. Seger, Y. Gorbunov and J. Butterworth, M. Kłusek-Gawenda, P. Lebiedowicz and A. Szczurek, Z. Bern, A. De Freitas, L.J. Dixon, A. Ghinculov and H.L.M. Wong, Kłusek-Gawenda, W. Schäfer and A. Szczurek, G. Avoni et al., L.A. Harland-Lang, V.A. Khoze and M.G. Ryskin, ATLAS collaboration, D. d’Enterria and G.G. da Silveira, [38] [39] [37] [35] [36] [32] [33] [34] [30] [31] [28] [29] [26] [27] [24] [25] [23] JHEP03(2021)243 ]. , , ]. (2014) SPIRE 506 (2015) IN 07 (2011) (2010) 823 SPIRE ][ P12006 mesons in (2019) 205 ]. IN 191 70 71 (2011) 322 c Eur. Phys. J. ][ 14 (2019) 093013 , 79 B Eur. Phys. J. C JHEP (2013) 2617 , , 700 99 SPIRE 73 IN TeV JINST ][ Parton distributions in the Central exclusive meson = 13 Light-by-light scattering in s 2019 arXiv:1412.3989 , Eur. Phys. J. C Eur. Phys. J. C ]. √ [ hep-ph/0210381 , , Eur. Phys. J. C Phys. Lett. B Phys. Rev. D Nucl. Instrum. Meth. A [ , , , , Bottomonium spectrum revisited SPIRE Eur. Phys. J. C IN , Comput. Phys. Commun. , ][ (2015) 204 arXiv:1506.07443 TeV [ 75 ]. pair photoproduction at mid-rapidity in 76 . (2003) 014027 − ]. e = 2 + 67 Properties of heavy quarkonia and e SPIRE – 26 – IN Exclusive production of large invariant mass pion NN SPIRE s ][ ]. IN √ (2016) 033006 ][ ]. ]. ]. arXiv:1601.05093 93 [ Eur. Phys. J. C SPIRE ]. ]. ]. , Electromagnetic processes in relativistic heavy ion collisions IN ]. ]. ]. Phys. Rev. D SPIRE [ , SPIRE SPIRE IN GEANT4 — a simulation toolkit IN IN Parton distributions from high-precision collider data ][ SPIRE SPIRE SPIRE Electron and photon performance measurements with the ATLAS Electron reconstruction and identification in the ATLAS experiment Measurement of the photon identification efficiencies with the ATLAS The ATLAS simulation infrastructure Charmonium and ][ ][ SPIRE SPIRE SPIRE IN IN IN IN IN IN ]. ][ ][ ][ An introduction to PYTHIA 8.2 ][ ][ ][ arXiv:1706.00428 Phys. Rev. D (2016) 074027 (1988) 299 [ , The automated computation of tree-level and next-to-leading order New parton distribution functions from a global analysis of quantum arXiv:1902.04655 93 [ SPIRE 163 IN collaboration, [ collaboration, collaboration, collaboration, collaboration, collaboration, collaboration, (2017) 663 arXiv:1105.1626 arXiv:1410.3012 arXiv:1405.0301 [ [ [ (2019) 639 77 arXiv:1305.1467 arXiv:1810.05087 arXiv:1908.00005 arXiv:1005.4568 arXiv:1904.01243 arXiv:1104.0571 ultraperipheral heavy-ion collisions at low[ diphoton masses pair production in the perturbative1714 regime at hadron colliders Phys. Rept. pairs in ultraperipheral ultrarelativistic heavy[ ion collisions the relativistic quark model Phys. Rev. D NNPDF C differential cross sections, and their079 matching to parton shower simulations [ LHC era: MMHT 2014 PDFs chromodynamics ATLAS using the 2015 and79 2016 LHC proton-proton collision data at ALICE ultra-peripheral Pb-Pb collisions at ATLAS detector using LHC Run[ 2 data collected in 2015 andATLAS 2016 detector using the 2015–2017[ LHC proton-proton collision data 159 ATLAS [ GEANT4 (2003) 250 M. Kłusek-Gawenda, R. McNulty, R. Schicker and A. Szczurek, L.A. Harland-Lang, V.A. Khoze, M.G. Ryskin and W.J. Stirling, C.A. Bertulani and G. Baur, M. Klusek-Gawenda and A. Szczurek, D. Ebert, R.N. Faustov and V.O. Galkin, J. Segovia, P.G. Ortega, D.R. Entem and F. Fernández, J. Alwall et al., L.A. Harland-Lang, A.D. Martin, P. Motylinski and R.S. Thorne, S. Dulat et al., T. Sjöstrand et al., [55] [56] [53] [54] [51] [52] [49] [50] [47] [48] [45] [46] [43] [44] [41] [42] [40] JHEP03(2021)243 ] 73 ]. , Phys. , 12 . SPIRE IN Nucl. (2002) 2693 ][ JHEP TeV using the , , 28 collisions at Belle , − = 13 (2013) 2501] Eur. Phys. J. C arXiv:1410.1280 e HistFitter software , s [ + ]. e √ 73 physics/0306116 ]. Central exclusive , (2019) 432 J. Phys. G mesons SPIRE , ATL-SOFT-PUB-2020-001 η IN , 79 arXiv:1009.1003 [ ]. SPIRE (2015) 153 . ][ IN and 75 collisions at ][ 0 Erratum ibid. η (2019). SPIRE [ pp IN ][ Asymptotic formulae for likelihood-based Photoproduction of axionlike particles Exclusive dilepton production in Eur. Phys. J. C ]. , (2011) 1554 ]. ]. – 27 – PoS(ACAT2010)057 Collider probes of axion-like particles arXiv:2007.13071 Eur. Phys. J. C , [ https://hepdata.net 71 (2012). , SPIRE arXiv:2005.02710 [ IN SPIRE SPIRE [ IN IN ][ ][ arXiv:1903.03586 ]. [ ATLAS-CONF-2019-021 The RooFit toolkit for data modeling ]. , ]. (2020) 161806 Search for Axion-Like Particles produced in SPIRE Luminosity determination in ATLAS computing acknowledgements (1995) 487 HistFactory: a tool for creating statistical models for use with RooFit SPIRE IN (2020) 081801 Search for axionlike and scalar particles with the NA64 experiment SPIRE Eur. Phys. J. C IN 125 ][ , IN [ ][ 362 The RooStats Project 125 A multidimensional unfolding method based on Bayes’ theorem (2019) 071801 CERN-OPEN-2012-016 An iterative, dynamically stabilized method of data unfolding , arXiv:1302.2004 arXiv:1708.00443 Presentation of search results: the CL(s) technique [ [ 123 collaboration, collaboration, collaboration, ]. ]. collaboration, collaboration, Phys. Rev. Lett. SPIRE SPIRE , IN arXiv:1007.1727 IN arXiv:1902.00268 Belle-II II ATLAS (2020). (2017) 044 Rev. Lett. NA64 Phys. Rev. Lett. and RooStats framework for statistical data[ analysis tests of new physics [ ROOT [ [ Instrum. Meth. A arXiv:0907.3791 production as a probe of(2013) the 2429 gluonic component of the ATLAS ATLAS detector at the LHC ultraperipheral PbPb collisions at the LHC D. Aloni, C. Fanelli, Y. Soreq and M. Williams, W. Verkerke and D. Kirkby, L. Moneta et al., M. Bauer, M. Neubert and A. Thamm, G. Cowan, K. Cranmer, E. Gross and O. Vitells, High Energy Physics Data Repository, A.L. Read, M. Baak, G.J. Besjes, D. Côte, A. Koutsman, J. Lorenz and D. Short, G. D’Agostini, B. Malaescu, C. Azevedo, V.P. Gonçalves and B.D. Moreira, L.A. Harland-Lang, V.A. Khoze, M.G. Ryskin and W.J. Stirling, [72] [73] [70] [71] [67] [68] [69] [65] [66] [62] [63] [64] [60] [61] [58] [59] [57] JHEP03(2021)243 , , , , , 6 , , , 135 166 94 , 51 45b , , 156 , 99 , , , , , , , 153 , , 155 , 45a 10 , 114 8 143 153 , 153 , 60a 182 27b 97 145 aj , 178 , , , , 26 T. Beau , 65 24 59 , M. Aliev 84a , , 28a , , Y. Abulaiti , 24 , 49 , , , , , 158 120 173 C.P. Bee , 45b 129 , 79 T. Adye , 80 , , 160 M.A. Aparo , 39 , 5 55a , , 9 , , 144 21 C. Alexa N. Benekos 54 C. Bernius , 46 C. Arcangeletti 45a , 120 , R. Bartoldus 119 T. Barklow , K. Becker , F. Backman 174 , 176 , 55b , 80 p S. Ali N. Asbah , 35a A. Baroncelli , , 135 , D.K. Abhayasinghe F. An 81b , 162 V.A. Austrup 61a , M. Battaglia 131 , , C. Amelung , , R. Astalos A. Bassalat F. Beisiegel 90 20 M. Alvarez Estevez , , , , D. Bakshi Gupta T.P.A. Åkesson 141 53 165 54 , , 60a L. Adamczyk 151 F. Balli 134 141 29 46 H. Abreu , , P. Bellos , 100 N. Berger , 16 5 E. Antipov 74b V.R. Bailey , J.B. Beacham , 100 , , , , S. Adorni 34 S. Bentvelsen 180 F. Ahmadov , 161 J. Albert , , A. Angerami 99 , P.P. Allport 172 , 74a 149 174 , ae 12c J.-H. Arling B. Ali , Z.P. Arrubarrena Tame 9 , 26 36 , , D. Barberis A. Aggarwal A. Bandyopadhyay , 23a , S.Y. Andrean F. Bartels , K. Bachas , , 131 , 52 , M. Bedognetti H.P. Beck 12c 120 G. Bernardi , , 128 J. Barkeloo 38 , , 20 105 B. Batool 138 7 23b K. Abeling J.K. Behr 80 , E. Bakos 137 A. Basan 53 144 , I.A. Bertram , L. Ambroz , , 36 , , K. Augsten I.N. Aleksandrov P. Balek D. Benchekroun , 32 , , J.A. Aparisi Pozo , 36 , 46 48 155 M. Akbiyik 120 65 36 82 104 , , C.S. Amrouche A. Bellerive , R. Araujo Pereira A. Bayirli , K. Assamagan F. Barreiro 112 , , , 122a 86 A. Ahmad A.J. Bailey , 46 , , 31 81a 35d 23b H. Arnold 45b ad , H. Abramowicz B.W. Allen M.T. Anthony , , 152 , , S. Angelidakis , A. Adiguzel 122b S. Barsov J.R. Bensinger M. Alhroob , , , T. Asawatavonvanich , , , , H.C. Beck J.K. Anders Z. Barnovska-Blenessy 54 167 M.N. Agaras C. Adam Bourdarios 45a S. Berlendis , , , 156 , 156 , M. Aoki 29 139a 176 , H. Bachacou 114 , 24 E.L. Barberio 163 161 23a J.R. Batley S. Argyropoulos A. Behera , – 28 – , 11 18 G.L. Alberghi 65 , E. Alunno Camelia , M-S. Barisits , M. Aleksa , 18 , , A. Ambler , A. Basalaev , 100 A. Berthold , H. Atmani P.J. Bakker , , 38 , 73a , 29 am V.A. Bednyakov 139f 65 , 36 148 23b 35e , 110 19 E. Bergeaas Kuutmann A. Abed Abud 115 , , 28a 81b M. Bandieramonte S. Akatsuka S. Amoroso N.L. Belyaev 100 183 , H.S. Bawa , , , , 110 19 12a J. Assahsah C. Antel , 24 103 85 S. Asai , , 74b 112 O. Arnaez , E.M. Baldin 139a L. Bellagamba , M. Benoit , 156 , , P. Bechtle 72a U. Barron 126 L. Adam , , V. Araujo Ferraz 6 , 74a T. Andeen F. Anulli , , C.R. Anelli 171 M. Begel , J. Beringer , 120 161 , 52 , H. Bahrasemani , 53 F. Alfonsi 36 15a P. Berta , N.L. Abraham , R.M. Barnett , P. Bartos 61a 85 26 144 N.B. Atlay , W.M. Barbe 171 , , 81b D. Berge , J-F. Arguin T. Barillari C. Alpigiani 40 , M. Adersberger , P. Bauer , 94 , , E. Banas , O.K. Baker 120 90 C. Agapopoulou B.M.M. Allbrooke K. Al Khoury G. Azuelos , , , S. Batlamous 143 , , , , 51 89 95 173 89 161 121 L. Barranco Navarro A.J. Beddall , K. Asai 10 57 , 36 144 S. Alderweireldt , 100 , G. Aielli 160 111 15a , D.C. Abbott L. Asquith , K. Belotskiy A. Annovi G. Bella , , , , 117 134 12d 18 161 128 95 B. Achkar 172 , F. Becherer J.A. Aguilar-Saavedra , N. Andari 122a 122a Y. Amaral Coutinho T. Berry , V. Andrei n , , , , , , , D.P. Benjamin A. Armstrong M. Begalli , , , N. Aranzabal A. Alfonsi M. Bahmani J. Balz L. Barak , 24 170 , , , Y. Afik , 69b 27c F. Alonso L.J. Bergsten 149 36 67b F. Bauer , , 70b X. Ai i , , , , M. Beretta , , 122b 122b , 161 A.E. Barton 182 C. Allaire 46 D.J.A. Antrim 10 , C. Bakalis , , , J. Adelman R.L. Bates , G. Barbour , F.A. Arduh , 134 73b O.S. AbouZeid , , S.P. Amor Dos Santos B.M. Barnett , 69a 145 , M. Atkinson , 141 H. Asada 70b , 67a 70a , 181 A.J. Barr 104 73b , 51 , 49 134 , , R. Balasubramanian 102 69a M.K. Ayoub A.S. Bell 102 , 143 , , 167 167 A.V. Akimov 73a B. Abbott , A. Beddall 33a 167 , 106 29 5 160 , 70a 134 73a 36 46 157 54 102 M. Belfkir K. Beloborodov Y. Benhammou L. Beresford B. Bergmann F.U. Bernlochner G. Bartolini M.J. Basso M. Bauce P.H. Beauchemin C. Becot T.A. Beermann W.K. Balunas Sw. Banerjee M. Barbero R. Barnea G. Barone J. Barreiro Guimarães da Costa E.M. Asimakopoulou R.J. Atkin G. Avolio P. Bagnaia J.T. Baines S. Balaji A.V. Anisenkov M. Antonelli L. Aperio Bella A.T.H. Arce A.J. Armbruster G. Artoni A. Aloisio M.G. Alviggi D. Amidei C. Anastopoulos A. Andreazza C. Agheorghiesei W.S. Ahmed E. Akilli M.J. Alconada Verzini T. Alexopoulos G. Alimonti G. Aad S.H. Abidi B.S. Acharya L. Adamek A.A. Affolder The ATLAS collaboration JHEP03(2021)243 , , , , , , , , , , , 21 38 , , 35e 133 , , , , 93 15d 27b 75a , , , , , 101 121 , 74b , 23a 93 36 , , , 60d , , 14 138 72a 168a 15a 100 17 , , , , 57 129 168a , , , , 74a 45b 23b 60a , , , 95 91 , 52 92 161 80 176 , , 28b 36 , 156 , 45a 174 , M. Bona 103 , K. Bjørke , 46 39 , 120 122a , P. Butti X. Chu , , , 48 167 M. Biglietti 135 95 , 29 A.J. Bevan J. Chen , D.G. Charlton , N. Brahimi , T. Cao , , , T. Buanes M. Bosman D. Boumediene , , 63a , , , , 122b G. Chiarelli G. Cabras 42 72b , 29 , 46 R.M. Bianchi 100 , , 21 F. Bührer V. Cindro 72b A. Cerri , 90 , D.A. Ciubotaru , , A.M. Burger , 129 , 174 D. Chakraborty C.J. Birch-sykes 153 23b , N. Calace 51 159b , , B. Brickwedde , 74b , 72a 85 , D. Bruncko 138 F. Cardillo 69a , A. Caltabiano 72a 133 C. Clement S.V. Chekulaev 122a , 81a E.M. Carlson , 4a , , , 120 M.V. Chizhov M. Campanelli , 35a 23a Y-H. Chen , , , 6 180 , 46 74a 81b 74a 36 C. Bittrich 101 138 , R. Cherkaoui El Moursli 122b 176 23b G.J. Bobbink A. Betti , , A.F. Casha 60a H. Chen M. Bomben , M.C. Chu S. Carrá , G. Brooijmans , f , , , , V. Cavaliere , , R. Bi , 101 93 6 123 H.M. Borecka-Bielska 14 V. Büscher , W.D. Breaden Madden J. Bracinik 115 15c , 33e J. Cantero , 61b 36 , 107 , 146d O. Cakir 57 , 94 V. Chiarella 131 , Z. Chadi 78 J.M. Butterworth , 103 N.V. Biesuz M. Citterio K.M. Ciesla , D. Boscherini M. Calvetti , , B. Brüers , , , M.K. Bugge , j S. Bressler R. Coelho Lopes De Sa 153 , L. Bryngemark , , , 57 P. Camarri Y. Chen 12b , 144 S. Biondi , , B. Chargeishvili S. Chekanov 85 , C.D. Burgard A.G. Bogdanchikov 100 115 , Y.H. Chiu 80 134 , 102 A.S. Cerqueira , 79 , , L.P. Caloba , 180 , 99 172 R. Cardarelli , S. Campana 73b 32 H. Chen S.E. Clawson B.T. Carlson 15b , , 91 14 57 , 73b , , A. Bitadze V. Castillo Gimenez 127 S. Bethke , R. Brock 163 , 36 , A.E. Bolz , 130 , , A. Cattai i , 79 50 , A.R. Buzykaev 73a E.V. Bouhova-Thacker 41a , 14 70a , , 24 73a J.E. Brau M.P. Casado E. Carquin 101 , , , 133 84a 181 A.J. Bozson 158 V.S. Bhopatkar 41b 138 D. Cieri 50 , , A.G. Borbély , U. Blumenschein 103 119 , S.A. Cetin , S. Che M. Cano Bret , 80 26 L.D. Christopher , , X. Chen E. Cheremushkina I. Chiu , C.M. Buttar 94 L. Chevalier , , , 57 130 , , J.C. Burzynski , T.P. Calvet G. Callea S. Burdin , J. Cochran – 29 – V.M.M. Cairo 34 R. Brenner , , , Z.H. Citron 23a , , K. Cerny 80 104 C. Bini , , I.A. Budagov K. Bierwagen 25 11 D. Bortoletto , D. Bogavac 120 , 15c I. Brock , , 27b , , 38 66 144 , P.J. Clark 36 55b T. Bold C.H. Chen , 121 138 , , 57 36 23b G. Carlino 90 70b 97 134 J.D. Chapman , 12d , N. Bruscino , D. Biswas 39 C. Camincher 115 B. Brau , 53 A. Bethani , , , , , S. Caron M. Capua A. Buzatu 60a 36 3 , , 91 , 70a A. Blue 46 , 23b J. Boudreau 172 133 T.M. Carter 36 144 , J.R. Catmore , I.R. Boyko D. Camarero Munoz , 153 , 107 , 26 H. Cai , L. Chytka 36 L. Castillo Garcia , C.C. Chau , C.D. Booth , P. Bhattarai , 36 35a S. Calvet S.J. Chen , 167 F. Celli 33c A. Chitan 85 , , A. Canesse , 56 , , , Y.S. Chow J.M. Butler 20 L. Brenner R. Bielski , 144 P. Calfayan 177 C.D. Burton 38 174 A. Coccaro , , T.J. Burch A. Bingul A. Cheplakov 21 , , T. Carli , A. Cervelli , 136 , , , , 12b , C. Chen 57 P.A. Bruckman de Renstrom G. Borissov 70b 73b 19 , , , , 46 M.R. Clark D. Britzger 59 53 160 , , A.G. Buckley 18 67c 135 79 F. Cirotto F. Braren J.P. Biswal P. Bokan , 15a , 142 , 29 , W.Y. Chan , , 70a N. Besson , 54 123 57 73a , S.S. Bocchetta M. Bruschi , , 18 32 36 94 C. Blocker D. Boye 67a 151 D. Cameron T.J.A. Chevalérias , , , , 120 182 23b 122a 46 36 S. Chen 64 , D. Caforio S. Camarda , D. Calvet , , 75b A. Catinaccio , , R.M.D. Carney K. Bouaouda , E. Celebi , , , I. Carli 26 J.W.S. Carter B. Chen M. Bindi , , 99 , , 174 135 F.L. Castillo E. Brost 122b R. Brener 75a P.J. Bussey , , M. Chatterjee F. Cerutti , , A. Clark 69b , 104 , J.T.P. Burr 72b 139e ah , , , , , 41a , V. Canale , C.J. Buxo Vazquez A.S. Chisholm 23a H.J. Cheng M. Boonekamp J.J. Chwastowski 141 , 46 A. Ciocio , , B.A. Bullard , D. Britton 53 , 8 G. Calderini , , 93 M. Cobal 183 , , , , A. Borisov , O. Brandt , T. Bisanz , 80 36 74b J. Boyd I. Bloch 146d , 69a 167 D. Biedermann 72a 40 , , , V. Boisvert G. Bruni , 41b 21 95 18 139a 23b , 68a , D.S. Bhattacharya 63a P. Buchholz 131 140 W.S. Chan 27b 112 , , 180 , 102 M.D.M. Capeans Garrido A.R. Chomont J. Chen 182 74a , K. Cheung , 127 , 28a 114 , 45a 23b 115 7 155 181 11 39 173 K. Choi J. Chudoba I.A. Cioară B.M. Ciungu Y. Coadou T.P. Charman G.A. Chelkov J. Chen H.C. Cheng E. Cheu G. Chiodini G. Carratta E.G. Castiglia N.F. Castro V. Cavasinni L. Cerrito J. Chan R. Camacho Toro M.T. Camerlingo A. Camplani Y. Cao G. Carducci L. Carminati B. Burghgrave E. Buschmann W. Buttinger S. Cabrera Urbán P. Calafiura S. Calvente Lopez K. Brendlinger D.L. Briglin W.K. Brooks A. Bruni Q. Buat O. Bulekov C. Bohm J.S. Bonilla L.S. Borgna J.D. Bossio Sola A. Boveia G. Brandt J. Beyer O. Biebel T.R.V. Billoud M. Birman T. Blazek V.S. Bobrovnikov O. Bessidskaia Bylund JHEP03(2021)243 , , , , , , , , , 36 , , , 46 , 101 134 , 65 36 , , , 40 151 , 60b 152 , 167 , 161 54 20 , 139h , , 32 73b , , 61a , 91 , , , , , 23a 49 , 114 173 , 102 99 73a 36 139a , 36 171 , , , 74b 101 , , , , 23b , , B. Dutta , 24 , , M. Dam 57 172 C. Feng 67c 69b , , , C. Da Via , , , L. Fayard 120 , 74a 107 , , , 70b 65 70a , 48 36 , , 26 97 E. Etzion 38 103 , 32 D. Ferrere 149 67a 107 69a 110 R. Di Sipio P. Farthouat , 81b P. Dervan 135 , , 70a A. Di Girolamo , S. Falke , A. Ereditato , F. Djama M. Dunford 174 M. Danninger J.W. Cowley 59 50 , C. Diez Pardos , , , 174 , , G. Duckeck 24 135 J. Del Peso , , A. Ferrante 47 36 L. Fabbri 70b , 30 94 , 46 , M. D’uffizi 27b , 46 42 F.A. Di Bello A. Fell A.M. Cooper-Sarkar 57 180 , , , A.T. Doyle 70a 18 M. Elsing P. Czodrowski , M.G. Eggleston , , , , J. Donini M. Faraj 36 , , an P. Conde Muiño 85 , 89 102 , C. Delporte 25 , 29 M. De Santis T.A. du Pree 85 V. Ellajosyula S. D’Auria , , , 5 , H. De la Torre 60c 58 W.C. Fisher 69b F. Crescioli A. Ferrer , E.E. Corrigan 70a D. Dodsworth , D. Duschinger , , , , W.J. Fawcett F. Derue 46 , , , , 35e 74b 60b P.J. Falke F. Dittus R. De Asmundis , F.G. Diaz Capriles , , 58 C. Dallapiccola , G. Cowan , 120 , 69a 100 50 , 8 61b , G. Demontigny 73b 27b M. Della Pietra 159b J. Erdmann 35d , F. Fabbri , 74a , M.F. Daneri 73a , 61b , 80 J. Ferrando 7 106 K.F. Di Petrillo 149 , S.M. Farrington 146a , 49 73a , T. Cuhadar Donszelmann A.M. Deiana E. Duchovni , , 137 A.E. Dumitriu , S. Díez Cornell O. Estrada Pastor 43 136 D. Du B. Dong , 5 , , M.T. Dova J. Collot , C. Di Donato , L. Feligioni , , 75b , 80 107 , E.M. Duffield 54 K. De , , K.D. Finelli J.V. Da Fonseca Pinto 19 , , S. Czekierda , B.S. Dziedzic 180 174 , 170 81c , J. Elmsheuser M. Fanti P.O. Deviveiros 70a 120 136 F. Conventi 100 75a , 173 , , T. Dai M. Delmastro , 149 J. Fischer 119 , 57 , , T. Daubney M. Dobre 60b P. de Jong , , , 101 36 H. El Jarrari 44 30 , 27b 33e S. Falciano 74b 131 114 , , 147 119 M.A. Diaz , 172 A. Cueto J.E. Derkaoui M. Corradi A. Ezhilov , U. De Sanctis D. Costanzo , , A. Durglishvili M. Demichev , , , S.J. Dittmeier 74a , , 123 M.B. Epland , 5 , C.M. Delitzsch 85 95 J.R. Dandoy – 30 – A. Doria S. Crépé-Renaudin , 41a J. Dietrich 139a 56 , , , A. Dubreuil 24 156 , , 73a T. Farooque 183 N. Ellis , C. Escobar , M. Faucci Giannelli S.W. Ferguson , 163 , , , S. Dysch I. Dawson 144 A.S. Drobac , , , A.P. Colijn M. Feickert 100 9 41b 143 136 106 , F. Filthaut M. Dumancic M. Donadelli 93 , , D.V. Dedovich S. Dahbi 65 28a R. Di Nardo , , , D.E. Ferreira de Lima A.C. Dudder 71b , , 36 49 39 , , , 123 53 20 65 F. Fischer 92 T. Ekelof 47 , 36 , 182 142 , M.R. Devesa 75b 71a 71a G. Fanourakis , , N. De Groot 18 24 174 , W.K. Di Clemente A. Dattagupta , M. Düren L. Dell’Asta 75a , , Y. Enari 15a L.D. Corpe W.R. Cunningham 5 , F. Costanza , S. Demers 5 , , , M.A.B. Do Vale 23a F. Deliot , J. Damp , J. Dopke , 4a , B. Cole M.O. Evans , A. De Salvo 36 , S. Constantinescu D. Derendarz , , 39 , A. Fehr , , J. Dingfelder , E.B. Diehl , 167 153 17 65 174 G. Crosetti , 167 A.A. Elliot 57 91 T. Dado 36 66 23b T. Dreyer , M. Escalier , 75b , M. Dyndal , , D.R. Davis , 73a 121 T. Dias Do Vale , , R.A. Creager A. Filipčič 175 , C. Dülsen 15b , Z. Dolezal , 36 166 M. Dubovsky , R. Ferrari D. Fassouliotis , , R.M. Fakhrutdinov 170 , 182 , A.B. Fenyuk , , A. Dudarev 152 75a 182 L. Fiorini 136 , Y. Fang 142 , 36 120 E.M. Farina , 125 100 C. Deutsch , 36 a 142 , 178 111 , 171 120 , O. Dartsi 115 K. Einsweiler 15a , B. Di Micco 75a , 167 L. Di Ciaccio 139c H. Evans 17 55b , , , D. Delgove M.J. Costa W. Ding 72b A. Emerman , , , F. Dachs , V. Croft M.J. Da Cunha Sargedas De Sousa , A. Dell’Acqua , , , 74b , 46 S. De Castro , I.A. Connelly L. D’Eramo 139a ab D. De Pedis 18 M. D’Onofrio J.B. De Vivie De Regie E. Dreyer J.I. Djuvsland W. Fedorko H. Duran Yildiz , 139b , , , , , , , 24 , , , 72a , D.A. DeMarco M. Didenko 143 54 F.A. Dias M. Errenst 84a , , F. Fiedler , 61b o G. Facini J. Dolejsi , K.J.R. Cormier , A.R. Cukierman V. D’Amico T. Davidek , , 74a D. Duda P. Ferrari , G.I. Dyckes , Y. Fang A.E.C. Coimbra , , , , , 120 , , 104 33c F. Ellinghaus 15c 123 15c 58 18 , 156 152 102 F. Dubinin K. Cranmer , 85 M. Dührssen 1 K. Dette , 97 , 139a A. Farilla 159b 102 P. Fassnacht , 175 , 29 36 M.J. Fenton 137 , 106 , 119 G. Eigen , 15d 172 142 , G. Darbo 8 161 , 65 172 , 24 168b 8 101 60d 49 35e 36 15a O.L. Fedin M. Feng A. Ferrari C. Ferretti M.C.N. Fiolhais P.A. Erland G.E. Evans V. Fabiani J. Faltova A. Farbin F. Fassi L. Duflot A. Duperrin D. Duvnjak T. Eifert M. Ellert D. Emeliyanov T. Djobava C. Doglioni A. D’onofrio E. Drechsler Y. Duan O.A. Ducu K. Desch A. Di Ciaccio G. Di Gregorio C. Diaconu J. Dickinson A. Dimitrievska A. De Maria A. De Santo Y. Delabat Diaz D. Della Volpe P.A. Delsart S.P. Denisov M.M. Czurylo W. Dabrowski G. D’amen V. Dao C. David M. De Beurs S.H. Connell F. Cormier F. Corriveau J. Crane M. Cristinziani H. Cui H. Cohen JHEP03(2021)243 , , , , , , , , 50 29 14 97 , 23a 176 , , , 128 , , , 133 , 149 , 46 23b , 60c 108 , , , 119 , , , 84b , b , 106 54 , , , , 40 115 , , 21 52 134 , , , 21 174 24 128 , 73b , 41b , 76b , , , 174 , 145 , , , 134 , 74b 52 23a , 113 44 , , J. Guo 180 55a 73a , , , 76a 100 , 50 V. Hedberg J.J. Hall l 136 143 , , , G.N. Hamity , 74a , H.A. Gordon 15a 36 23b D.T. Gil , , D.C. Frizzell L. Guan 84a 31 , 50 , 55b , , 24 129 G. Gaycken 156 E.S. Haaland M. Guth , P. Gadow , , S. Harkusha am 47 C. Grefe I. Gnesi 124 , , , C.P. Hays 123 145 , , L. Gonella 134 , 3 , 91 J.D. Hansen 54 175 C.A. Gottardo 128 M. Hance 18 , N. Giangiacomi , , 182 , M.G. Foti 131 175 t , 131 , E. Gross , 40 A. Hasib T. Geralis C.M. Hawkes , N.A. Grieser 80 F. Giuli L. Flores , S. Gargiulo , , , M. Geisen , , G. Frattari S. Gonzalez Fernandez 82 73b , 14 , , , 102 100 94 Y.S. Gao J. Haley L.K. Gladilin B.J. Gallop 150 , S. Gonzalez-Sevilla 141 97 , , , 69a 114 153 S. Guindon M. Ghasemi Bostanabad , 59 G.T. Forcolin M. Hamer , , 73a , 174 , M.P. Heath M. Grandi 50 C. Gay 10 M. Franchini 5 , , , , 177 A. Gaudiello 134 172 , M. Gignac 151 , 167 19 35e E. Fullana Torregrosa 165 124 , D. Golubkov 73b H.M. Gray J.C. Grundy 94 , , , , 81b S. Gadatsch J.G.R. Guerrero Rojas , R.L. Hayes S. Groh G. Gonella , , , , D.M. Gingrich 54 C.B. Gwilliam G. Gustavino 57 164 E.M. Freundlich I. Grabowska-Bold , C. Grieco , , 73a T. Harenberg J.A. García Pascual J.B. Hansen 36 , , E. Fortin , G.R. Gledhill S. George 118 , P.A. Gorbounov , , 65 , Y. Gao , 65 , , J. Geisen M.I. Gostkin 5 , , 46 S. Giagu 106 , D. Giugni N. Garelli , 21 K. Hanagaki 46 , 97 12c , 139c 134 Y. He 46 101 , 81b B.M. Flierl , , 169 174 49 , 73b M. Franklin 60a Y. Hasegawa , 143 J.H. Foo 37 , , , 23b 67c , M. Havranek M. Haleem E.J. Gallas 167 , , 60a , 182 20 T. Guillemin 139a S. Ghasemi 17 73a 39 , , 114 P. Gaspar C. Gray 67a , , 60a C. Goy 134 46 H. Hamdaoui 47 , P. Gkountoumis , A. Gavrilyuk T. Golling S.M. Gibson , , , , S. Grancagnolo C. Hayes J. Gao 148 68b , , , , K. Hara 14 33c A. Gabrielli F. He 176 14 , C. Fukunaga , , , 111 S. Gurbuz J.-F. Grivaz E. Hansen 105 A. Grummer A.C. Forti , , A. Glazov , , , , R. Gonzalez Suarez 133 – 31 – 107 68a 180 S. González de la Hoz S. Francescato , K. Grevtsov C. Gwenlan T. Flick w , , 101 , , Y.F. Han , 23a 143 N.A. Gorasia 46 46 , 126 C.N.P. Gee W.S. Freund 14 , , , , , 135 A. Guerguichon 18 N. Fomin 106 39 A.T. Goshaw , S. Gentile , 14 B. Giacobbe , N.E.K. Gillwald , 18 72b 153 144 A. Hadef 36 106 R. Gonçalo , L. Franconi , , A. Guida , 23b , , R.W. Gardner 77 145 , 110 92 , 8 5 78 76b L.B. Havener 106 G. Gessner , 53 , 182 72a , 18 100 G. Giugliarelli G.E. Gallardo 76a , J.E. García Navarro N.M. Hartmann , 107 100 K. Hamano , , , N. Govender S. Goldfarb S. Han , G. Giannini D. Hayden R. Gupta , , , S. Ganguly , , , C. Grud 144 110 , 174 F.G. Gravili 153 E. Gramstad 102 , S.J. Gasiorowski 95 70b , E.C. Hanson , C. Guyot 148 I.L. Gavrilenko 110 , 60a , M. Fujimoto F.A. Förster P. Grenier , 117 102 J.L. Gonski , C.M. Gee , , , 127 S.J. Haywood , E.L. Gkougkousis R. Hankache B. Freund S. Grinstein , , C. Geng L. Franco A. Ghosh 27f , , , 95 , , L. Goossens G. Gilles , , A. Gorišek 40 171 A. Gabrielli , , 70a g 133 46 , J. Guenther R. Gugel k 21 , , 58 P.C.F. Glaysher 73b , , , 134 91 144 37 21 36 , , 65 9 27b 34 P. Fleischmann 31 174 68b , 174 14 R. Hauser , 175 171 , 73a P. Francavilla H.K. Hadavand , L. Han , F.M. Follega Z. Guo , 20 , C. García , 151 68a , 90 18 C. Gonzalez Renteria P.F. Giraud , , D. Godin Z.J. Grout , 15c , K.K. Gan 63a 60a L.G. Gagnon , 91 M. Garcia-Sciveres , R. Goncalves Gama 26 , 146a , 53 67c 93 S. Hayashida , N.M. Hartman G.D. Hallewell A. Ghosh J.A. Frost , I. Gkialas , , 52 , , V. Garonne A.G. Goussiou 55a A. Giannini , P.M. Gravila I.M. Gregor C. Gutschow P.H. Hansen J. Fuster A. Formica P. Gessinger-Befurt F. Gonnella , D. Francis M.D. Hank , J. Gramling , , , , , , , , D. Guest , , , , , K. Grimm D. Gillberg 36 J. Glatzer 67a , M.H. Genest H. Fox 36 139b I. Fleck , , P. Gauzzi S. Haug , , , , 178 107 , 91 151 A.A. Geanta , , 97 24 66 53 162 80 H.S. Hayward , C. Gubbels 61a 55b 167 72a L. Han 137 35b 128 , , 116 39 E. Gorini 114 , P.M. Freeman 99 , 65 C. Haber 21 Y. Guo 115 , 145 , , 10 55b v 71a 144 93 , 93 139a 36 181 125 106 60a M.C. Hansen P.F. Harrison S. Hassani R.J. Hawkings J.M. Hays W. Guo P. Gutierrez A. Haas G. Halladjian K. Han D.M. Handl V. Gratchev K. Gregersen A.A. Grillo J. Grosse-Knetter W. Guan F. Guescini A. Gongadze R. Gonzalez Lopez G.R. Gonzalvo Rodriguez B. Gorini M. Gouighri E.C. Graham B.J. Gilbert M.P. Giordani S. Gkaitatzis C. Glasman M. Goblirsch-Kolb A. Gomes G. Gaudio E.N. Gazis C. Gemme L.O. Gerlach M. Ghneimat P. Giannetti T. Fusayasu G. Gagliardi R. Gamboa Goni F.M. Garay Walls C. Garcia-Argos C.A. Garner L.R. Flores Castillo B.C. Forland D. Fournier S. Franchino A.N. Fray D. Froidevaux T. Fitschen JHEP03(2021)243 , , , , , , , 91 57 82 , 46 33e , 46 , w , , , , , , , 176 , 46 , , 48 54 , 14 36 129 , 140 83 33e , , , , , 60a 140 , 159b , 26 , , 134 13 52 52 , 59 , 156 , 43 36 , 54 , , , , 182 10 M. Klein J. Katzy S. Heim H. Jivan , , 149 36 52 , 46 , 156 , , , , T. Kondo , 100 J. Howarth 64 71b D. Kar E.F. Kay , 34 , H. Hibi , 106 , , , , 60d 165 , T. Iizawa 123 173 130 W. Islam 169 , , , O. Kepka 53 , K.H. Hiller 34 35a 71a , J. Huth 181 J. Hejbal H. Herde 115 A. Knue , , 80 , , Y. Huang , 168a 163 29 S. Jiggins 122a J. Khubua 39 163 , , , J.M. Izen , G. Jäkel , 36 D. Kirchmeier 36 , , S.D. Jones , R. Jansky 107 C. Helsens , 15c A. Juste Rozas , 102 80 2 , 95 , C. Kitsaki 153 , N. Jeong 53 , 151 G. Herten P.J. Hsu T.B. Huffman C. Kahra 90 122b 180 c , , T. Javůrek , , C. Kato , , 84a , , F. Khalil-Zada T. Klioutchnikova 5 45b 46 115 D.M. Koeck , , 48 S. Hirose 24 , 39 52 J. Heilman ac , M.H. Klein , , , 24 173 45b 45a , J.S. Keller 79 80 T. Komarek 142 G. Introzzi O. Jinnouchi R. Iguchi , K.K. Hill 34 132 , , , , , M. Ishino V. Jain M.C. Hodgkinson 5 L.S. Kaplan , , ∗ , 45a , , M. Holzbock N.P. Hessey 32 J. Huston 176 X. Huang , , G. Kawamura y , , Z. Jiang L. Heinrich , 35a 27b A. Ivina , , , 82 Z.M. Karpova , , A. Hoummada 172 152 B.H. Hooberman , 180 37 ac 95 , K.E. Kennedy V. Kitali 95 , E. Khramov , P. Jenni 144 60a , A. Kamenshchikov , 120 , 80 131 , , A. Kahn 158 A. Kirchhoff 76b I. Ibragimov 80 , , , 21 115 K.W. Janas T. Klingl T. Hryn’ova , R.W.L. Jones , 167 , 177 , P. Kodys 95 100 29 153 F. Huegging , C. Klein , M. Khader 159a T. Kharlamova 76a , T. Herrmann 57 29 E.B.F.G. Knoops , M. Hirose S. Hellman , , , , , J.C. Hill 109 , N. Javadov 178 24 , , V. Konstantinides 61a N. Hod H. Imam 163 I. Koletsou R. Keeler 77 24 , , , 167 , A. Jinaru J.J. Junggeburth 114 91 145 , 37 W.D. Heidorn , S. Hou 122a A. Kastanas , , , 126 48 , , Y. Jiang , J. Kanzaki 155 18 144 33a B.P. Jaeger , A.M. Henriques Correia 52 15c 37 , A. Hönle M.F. Isacson 79 D.P. Huang , T.R. Holmes 162 , , 32 117 122b O. Igonkina , 46 G.G. Hesketh , S.N. Karpov R. Iuppa , J. Kendrick 52 J.J. Heinrich T. Kawamoto M. Kagan , ao , , , 24 N. Huseynov N. Kimura , , A. Kaluza , , 73b J. Jejelava E. Jones 40 , , , , , G. Iakovidis , D.P. Kisliuk G. Khoriauli X. Ju 21 – 32 – 136 29 , J. Jamieson , , 162 63a 34 37 S. Jin 136 , 117 15d 127 66 , T. Kono , M. Klassen 73a 131 A. Klimentov 54 M. Huebner , , 77 36 163 M. Kolb , , , T. Kodama J. Hobbs , A. Hrynevich , 180 , E. Kneringer A.E. Jaspan 115 52 15a , F. Iltzsche 36 , , , H. Jiang C.M. Helling 119 36 Y. Kano 102 , 153 65 , E. Kasimi L.A. Horyn ab 140 97 F. Hinterkeuser , , , , K. Hildebrand T. Holm , 15c 115 79 M.G. Herrmann , 133 , J.C. Honig 48 J.M. Keaveney 18 , R.M. Jacobs 167 123 65 , 174 , , R. Ignazzi , K.K. Heidegger , 1 Y.K. Kim 100 H. Kagan L. Henkelmann , , 36 L. Jeanty 138 , , 52 119 T.C. Herwig Y.F. Hu T.J. Khoo A.G. Kharlamov V. Ippolito I. Karkanias 122a , , , Z. Jia , , , , S. Ketabchi Haghighat J.J. Kempster , J. Jovicevic J.G. Heinlein 165 , 73b 181 , , P. Klimek , G. Iacobucci C.A. Johnson , 144 T. Kawaguchi 36 R.F.H. Hunter , , C.W. Kalderon , , S. Kang T. Kishimoto , 60c , 166 S. Kluth F. Hubaut 92 129 T. Jakoubek M. Kocian A.C. König 7 , , ak P. Horn , , 155 , , , J. Hrivnac , O. Hladik , 122b 168a , , 168b 156 61a 88 73a N.M. Köhler 58 1 100 G. Jarlskog 28a , , 52 160 J.M. Iturbe Ponce 48 92 46 145 115 , 120 141 , H. Herr 130 , N. Ilic , D. Hohov 117 34 P. Iengo J. Jimenez Pena S. Hellesund , I. Hinchliffe , , 84a , P. Jackson 82 52 E. Kim 160 , S. Hu 33e , 65 , 38 J. Jia T.M. Hong 48 , , , Y. Heng 125 36 29 140 L. Hervas C. Heidegger A.N. Karyukhin 32 , 90 , , B. Hiti 181 , , M. Kado A. Khanov D. Kelsey F. Jeanneau P. Kluit , 90 K.A. Johns , , 114 S. Hyrych M. Kobel , Y. Horii , 133 , K. Jakobs , R. Hulsken A. Khodinov 85 , E. Higón-Rodriguez 182 , T. Klapdor-Kleingrothaus , S. Istin , T. Koffas N.J. Kang K. Kawagoe 97 , 6 , , , , B.P. Kerševan , M.J. Kareem 144 D. Hohn 103 M. Ikeno 88 , M. Hils 114 , Z. Hubacek Q. Hu A.X.Y. Kong , 149 K. Iordanidou J. Jongmanns , V.F. Kazanin , 36 153 , 82 , , , , , 24 46 , H. Ji 24 A. Held 100 175 P.A. Janus , , , 163 36 150 5 14 82 B. Heinemann E. Kajomovitz 21 P. Jacka A.E. Kiryunin 52 182 , K. Kleinknecht 91 134 , M. Hrabovsky , M. Kiehn , , 19 15a 148 , 75a 46 , 53 91 18 89 83 179 70a 143 U. Klein F.F. Klitzner D. Kobayashi P.T. Koenig K. Köneke S. Kersten M. Khandoga E.E. Khoda S. Kido J. Kirk O. Kivernyk M. Kaneda K. Karava V. Kartvelishvili K. Kawade S. Kazakos E. Kellermann S. Jézéquel F.A. Jimenez Morales P. Johansson T.J. Jones A. Kaczmarska T. Kaji M. Iodice C. Issever V. Izzo K.B. Jakobi M. Janus M. Javurkova S.-C. Hsu Y. Huang M. Huhtinen R. Hyneman L. Iconomidou-Fayard Y. Ikegami S.J. Hillier D. Hirschbuehl A. Hoecker L.B.A.H. Hommels W.H. Hopkins J. Hoya T. Heim L. Helary R.C.W. Henderson Y. Hernández Jiménez R. Hertenberger S. Higashino A.L. Heggelund JHEP03(2021)243 , , , , , , , 46 , , , , 32 46 149 , 102 , , 42 60d , 149 29 , , , 166 , , 15d , , 65 , 60a , , , 47 , 97 162 , 135 92 , 106 95 , , , 176 29 80 52 155 , 15a 114 , , 64 100 , 18 , 115 45b 78 , , K. Liu , , , 10 , , 173 104 , , 112 29 al B. Li 92 7 , 48 45a , F. Lanni , 37 140 , Y. Ma , C.G. Lester 100 , , Q. Li , 46 , Y.W. Liu 173 I. Luise 15b , M. Liberatore 171 80 , 84a K. Kordas C.A. Lee , T. Kupfer K.J.C. Leney , D. Lacour Y.J. Lu 60b N. Makovec , 15d , 107 , , , E. Le Guirriec , , , 66 , T. Maier A. Lopez Solis ∗ 106 , , 85 95 J.C. MacDonald K. Krizka 19 140 15a M. Lefebvre U. Mallik 82 E.M. Lobodzinska , , O. Kuchinskaia U. Landgraf X. Lou 60a , , , , 15a T. Kwan , O. Kortner , , 101 , 81b , B. Li K.H. Mankinen J.D. Long J.A. Kremer 180 101 U. Kruchonak , 94 , , , I. Mandić , , G. Kramberger 149 29 142 A. Kurova 52 R. Lysak 41a , 69a 63b , , 165 , A. Koulouris 130 21 113 48 J.K.K. Liu R. Les , , M. Maerker , 140 51 115 107 113 91 , T.M. Liss L.L. Ma V. Kouskoura 108 , , R.E. Lindley 41b 49 , M. Li , A. Laudrain M. Lu , , W.A. Leight 29 , 60a , B. Le 6 , Y.L. Liu 110 , 17 V. Kukhtin 66 29 , Z. Liang , 48 , K. Korcyl H. Lacker A. Kupco 36 60c , , 63a , F. Luehring 174 69b A.J. Lankford 46 T. Lari I.K. Lakomiec , , 15d , , Y. Makida , A.C.A. Lee , , A. Lösle C.Y. Lo , 104 58 , , J. Kvita 84a 101 58 , M. Krivos 58 E. Lançon 53 D. Lellouch 69a , , 103 131 93 , 144 15a A. Kubota 114 D.J. Lewis H. Ma , L. Li , I. Lopez Paz , H. Lyons D. Krauss , , 148 , , H.P. Lefebvre J.B. Liu D. Malito 61b 162 G. Mancini , , C. Leroy C. Maidantchik 142 A. Kotwal 85 , , 29 Z. Li , T. Maeno , , 80 N. Korotkova , 36 , 127 180 M. Lokajicek , 29 148 58 , T. Kuhl 39 R.A. Linck T.S. Lau 65 C.M. Macdonald , E. Kourlitis S. Lai 83 174 , , , 135 , 168a , 134 149 A. Lipniacka 9 Y. Liu M. Kuna 36 K.S. Krowpman W.F. Mader 149 , , , , Y.A. Kurochkin , 107 140 , 115 V.A. Kramarenko 46 , 146c A. Lucotte 38 S. Koperny J. Manjarres Ramos K. Li 136 , S.L. Lloyd 173 , D.P.J. Lack 136 , , , , , P.J. Lösel D. Lynn Z. Li 168a S. Majewski 123 , 66 , J.F. Laporte M. Lazzaroni , 15c A.K. Kvam R. Leitner , , 162 60c , 152 , 114 F. Malek 73b , H.B. Liu , , A. Krishnan J.J. Lozano Bahilo 161 94 60b J. Maeda – 33 – , K. Lin 28a , G. Lehmann Miotto , , 55a , R.J. Langenberg 165 Y. Liu 114 C. Lampoudis K.A. Looper J.A. Krzysiak , 152 , S. Kuehn , 73a D.J. Mahon , , , A. Leopold F. Ledroit-Guillon 137 90 , J. Mamuzic L.J. Levinson 48 B. Lefebvre , , 32 , 20 114 , 7 , , J. Li J. Kroll 53 q 6 36 49 , , 46 T. Lyubushkina 55b , 60a 50 R. Madar , 80 79 , E. Lipeles T. Lagouri Z. Li V. Latonova K. Lohwasser 106 , , , , , A. Krasznahorkay 80 67c A. Macchiolo 140 60b , , A. Kotsokechagia , , E.V. Korolkova 54 46 , 174 36 19 C. Kourkoumelis 135 , 51 A.S. Kozhin 14 A.M. Lory , Y.P. Kulinich 67a 135 , M. Kuze M.S. Lutz , 166 B.X. Liu , , , 5 , X. Liu S. Lee C.Y. Lin 71b I.M. Maniatis , F. Lacava S.D. Lawlor P.A. Love , , , H. Li 36 R. Kopeliansky , , 101 , , O. Majersky 79 , , L. Longo F. Krieter 146b W. Lampl 154 , Y. Li N. Madysa 149 , , 6 , C.E. Leitgeb , 29 , F.L. Lucio Alves L.L. Kurchaninov V.P. Maleev J.C. Lange 15a , J. Kroll D. Levin 158 , 97 71a , , , 81a 174 N. Lehmann , , 70b M.C. Kruse 60a 66 46 , , 84a , 5 167 73b 129 83 85 J. Llorente Merino 52 , T. LeCompte A. Lapertosa 81c T. Lohse , , 73b , J.T. Kuechler , , S. Malyukov 115 79 , , 70a 152 7 A.L. Lionti J. Magro M. Lassnig B. Laforge 58 , 73a , B. Liu 10 , , 46 , 71a 74b I. Korolkov D. Madaffari 73a 5 P. Liu , 8 , J. Love , V. Lyubushkin 46 H. Li 79 X. Li C. Leonidopoulos , , S. Lim , , , , , 23a , 95 M.W. Krasny S.C. Lee K. Maj 65 74a G. Maccarrone , 136 , , 63c 60a B. Konya , 60c 15a 60c 72a , S. Kuleshov , E.S. Kuwertz 23b , 59 C. Lacasta , W. Kozanecki 60a , P. Krieger 95 , V.S. Lang J. Levêque 176 , af H. Kroha , , 139d , 60d , , S. Lammers , C. Luci A. Lleres Pa. Malecki B. Lund-Jensen 15d , , 91 , 41a , 93 , 176 A. Lanza A. Linss , 47 H. Kurashige M.A.L. Leite V.V. Kostyukhin M. LeBlanc , 137 , 108 , F. Li , R. Lafaye , , K. Lie , 128 K. Lehmann , M. Lavorgna I. Longarini N. Lorenzo Martinez A. Korn , , F. Lyu 148 u J.D. Little , 139b 71b , S. Maltezos 135 , , , , N. Krumnack 15a 73a 24 , N. Magini D. Kuechler 21 , , , , , 52 41b L. Lee 79 , S. Li 80 , 60d 18 115 A. Lounis , 34 32 S. Leone M.Y. Liu , 90 24 52 97 74a , , , 114 S. Loffredo 4b 161 162 71a 17 175 , 139a 24 60c 7 60a 15a 60a V. Magerl A. Maio B. Malaescu C. Malone L. Manhaes de Andrade Filho H.J. Lubatti L. Luminari E. Lytken D.M. Mac Donell J. Machado Miguens M. Madugoda Ralalage Don M. Liu M. Livan P. Loch R.E. Long J. Lorenz X. Lou M. Levchenko C-Q. Li Q.Y. Li B. Liberti J.H. Lindon A. Lister A. Laurier A. Lebedev G.R. Lee C. Leggett A. Leisos T. Lenz F. La Ruffa E. Ladygin J.E. Lambert M.P.J. Landon K. Lantzsch F. Lasagni Manghi K. Kroeninger H. Krüger S. Kuday Y. Kulchitsky O. Kuprash M.G. Kurth G. Koren S. Kortner A. Kourkoumeli-Charalampidi R. Kowalewski D. Krasnopevtsev J. Kretzschmar N. Konstantinidis JHEP03(2021)243 , , , , , , , , , , , , 163 36 53 , 159b 114 , 179 103 114 158 70b , , , 71b , , , , , , 146a , 18 , 163 , , , , 6 , 86 e 180 162 110 70a , , 97 14 71a , 132 75b , 174 41a , 143 , , , , 36 174 29 , 37 178 , 29 , , , 75a , 41b , 74b 92 95 , , , 139e P. Mogg 34 A. Matic 65 21 , , , , 70b 97 T. Nobe T. Mashimo R. Mazini 115 , , , 74a , , 33a , Y. Mino 38 29 , M. Niemeyer , , 110 , A.S. Mete 139a A. Negri 70a M. Morinaga , , H. Nanjo 123 179 100 , G. Mchedlidze 152 , 6 P. Moschovakos M. Nessi E.J.W. Moyse , 28b 122a 33e 163 , , , 21 , 145 A. Marantis 59 , B.P. Nachman J.L. Nagle 18 m , 163 G. Mikenberg , V.A. Mitsou P. Nilsson P. Massarotti J. Novak , , , , , 155 140 , , E. Meoni , E. Nurse D.W. Miller 62 122b 120 31 , M. Naseri 50 21 C.J. McNicol 141 36 , J.U. Mjörnmark J.P. Ochoa-Ricoux L. Martinelli , 114 T. Megy 23a T. Nguyen Manh 115 , , , 171 42 , , , N. Morange S. Marti-Garcia S. Martin-Haugh , , , 82 T. Nitta 137 , C. Mwewa 39 17 36 105 P.R. Newman , G.A. Mullier L. Merola , 23b , 102 , P. Murin C. Moreno Martinez L. Marcoccia 18 69a L. Masetti , 172 , , D. Matakias , 47 M. Morii 103 , J. Nielsen T.J. Neep , 90 J. Metcalfe 54 K. Mochizuki , , T.G. McCarthy , 175 , , J. Moss 101 174 163 , 140 115 40 46 L. Morvaj , Y. Minegishi 152 53 , A.A. Minaenko 151 A. Montalbano , S. Nemecek 106 , L. Mijović M. Myska S. Menke , 80 119 S. Manzoni 95 T. Nakamura , , , , , J.A. Mcfayden K. Ntekas I. Ochoa Y. Nagasaka , , , C.D. Milke 153 , 102 , 82 45b L. Massa , J. Mitrevski 143 131 , M. Nordberg 106 , S. Meehan , 162 D.A. Maximov 83 82 , , E.D. Mendes Gouveia 120 130 , 29 I. Naryshkin B.R. Mellado Garcia 167 , I. Nitsche K. Nikolopoulos A. Mizukami , , 179 S. Monzani 45a 92 , , , D. Mori 24 103 P. Mermod 122a , M. Muškinja 42 , , , 93 115 89 160 S. Mobius 135 P.C. McNamara 48 H.D.N. Nguyen , R. Newhouse , , , D.S. Nielsen 134 128 , M. Mineev 122b T. Masubuchi S.R. Maschek F. Nechansky , , A. Ochi S.P. Mc Kee 45b , , J. Myers A.P. Morris 143 35e , , , , , 182 R.A. Mina M. Marcisovsky B. Martin dit Latour 144 , D. Muenstermann A. Milic M.U.F. Martensson , 36 E. Monnier , , P. Moskvitina 84a , L. Nozka , , X.T. Meng 41a 66 , 36 I. Manthos , 111 – 34 – K. Nagano , , M. Moreno Llácer 45a J.K.R. Meshreki 135 , 104 , , 50 T. Mitani B. Maček , 18 45b 46 K. Nakamura , , 135 A. Melzer , 114 36 , 141 149 F.J. Munoz Sanchez , 144 R. Nisius 41b , 144 , D. Melini 134 22a R.P. Middleton M.E. Nelson 111 , , , , 136 R. Narayan 46 27b 45a , M.A. Nomura 14 117 , V.I. Martinez Outschoorn A.E. McDougall 43 60c 19 , , Z.A. Meadows F. Monticelli B. Ngair J.M. Muse 46 113 , 104 , , , 135 P.S. Miyagawa T. Moa , , 174 95 105 G. Myers C. Merlassino S. Morgenstern A. Marzin 33e I. Nikolic-Audit 171 J. Ocariz , 69b , , , , B. Mindur 20 , , L. Meng , K. Mönig , 121 , M. Neumann , 95 S.J. McMahon ah R. Nicolaidou , 138 138 , 160 K. Nagai V.J. Martin 69a , 115 Z. Marshall 21 , H. Mildner G. Mornacchi 125 , , 24 A.L. Maslennikov R. Novotny , , F. Meloni , P.Y. Nechaeva 100 , D. Moreno J. Maurer G. Marchiori , N. Nishu , , , 48 123 176 , , T. Moskalets 134 J.P. Mc Gowan 92 36 K.P. Mistry 178 48 , , B. Mansoulie 128 B. Meirose , C. Nelson , 24 101 , R.S.P. Mueller , , 28a 22a 134 I. Nomidis M. Michetti 73a , , 139a Y. Nakahama 77 O. Meshkov 145 91 , , D.A. Milstead , 134 138 159b 119 A. Miucci 86 , 36 M. Montella Y.W.Y. Ng 144 , , 180 106 J.E. Mdhluli A. Mastroberardino , , 167 36 19 E.F. McDonald ab , A.A. Myers A. Murrone , A.I. Mincer , , J.L. Munoz Martinez , M. Mikuž 72b , H. Oberlack J. Masik F. Neuhaus , M. Melo , , A.Nag Nag , , ah 18 P. Mättig , , R.F. Naranjo Garcia , S.A.M. Merkt M. Mlynarikova , , P. Martinez Agullo A. Nisati , , A.C. Martyniuk 176 143 , R. Moles-Valls , am , A.K. Morley M. Morgenstern , T.A. Martin 53 , K.D. McLean , 47 A. Mehta 19 72a 69b G. Navarro 140 , , 111 , V. Nikolaenko 173 , 159b , w , , 123 , C. Nellist , 54 163 L. Marchese J. Mueller 61a 61a 34 , 39 R.B. Nickerson , , S.M. Mazza A. Milov M. Marjanovic O. Miu 27b 42 178 , , G. Merz 46 , , , , 14 11 133 A. Manousos Y. Noguchi 55b 127 69a 114 , M. Mosidze O. Novgorodova J-P. Meyer , Y.S. Ng , , A.M. Nairz 30 , , , M. Mironova 38 , 23b 34 97 102 69a 162 60c 32 92 66 14 120 114 138 102 N. Nikiforou H.R. Nindhito D.L. Noel T. Novak F.G. Oakham F. Napolitano T. Naumann M. Negrini M.S. Neubauer C.W. Ng E. Nibigira S. Muanza D.P. Mungo W.J. Murray A.G. Myagkov O. Nackenhorst E. Nagy S. Mohapatra J. Montejo Berlingen A.L. Moreira De Carvalho P. Morettini V. Morisbak B. Moser M. Mikestikova L.S. Miller I.A. Minashvili L.M. Mir M. Mittal T. Mkrtchyan S. Mehlhase J.D. Mellenthin A.M. Mendes Jacques DaS. Costa Mergelmeyer C. Meroni C. Meyer P. Mastrandrea N. Matsuzawa I. Maznas W.P. McCormack M.A. McKay R.A. McPherson G. Marceca C. Marcon C.B. Martin M. Martinez V.S. Martoiu R. Mashinistov A. Mann JHEP03(2021)243 , , , , , , , , 43 1 54 46 , , 36 , 115 , 52 , , , , 134 , 36 i , , 14 , , , , 73a , , 143 , 112 , 68a , , 30 , 102 37 , , 71b , 57 31 181 60a 154 , 12c , 29 36 21 , 146d 10 69b , 119 , 163 71a , , 168a , 60a R. Poggi , , , 3 , K. Reeves 32 69a 29 ab , , J.L. Oliver , , , 46 , S. Perrella 97 , 152 84a , , 29 29 D.M. Rauch E. Petit , 54 , 29 , 29 , 104 5 36 A.P. O’neill , M.B. Rendel 45b , 46 , 103 R. Piegaia , 40 , 15d A. Pathak A. Robson C.C. Ohm , 52 , , , P.W. Phillips 27b A.J. Parker H. Peng 152 M.J. Oreglia R. Ospanov V.E. Ozcan R.A. Rojas 45a , E. Pasqualucci J. Ouellette , , M. Primavera , , , , 101 E. Reynolds , , , , 15a M. Raymond 101 100 101 A. Rimoldi , 57 , P. Palni 105 167 F. Ragusa 121 A. Poley 63b 143 C. Padilla Aranda 115 , Y. Okumura 120 35d 101 , , , C.J. Potter 127 , J.L. Pinfold , , 101 M.-A. Pleier 155 14 , 91 D. Pyatiizbyantseva 84b R. Poettgen 28a 80 71a L. Paolozzi L. Pedraza Diaz , , , , A. Rodriguez Rodriguez L. Portales 67c S. Richter M.E. Pozo Astigarraga G. Redlinger , , , , , , P. Rivadeneira A. Oh C. Paraskevopoulos 65 120 , , , K. Ran H. Pernegger M. Renda 67c , 46 133 6 , , , 122a 67a 174 115 27d 14 , U. Parzefall 71b S.H. Robertson T.C. Petersen C. Peng , , 93 D.C. O’Neil 84a , S. Protopopescu , T. Pham , , 46 D. Price , J.R. Pater , V. O’Shea , 67a 69b V. Polychronakos N.E. Pettersson , T.H. Park R. Röhrig , , 39 , , , R.H. Pickles 80 36 36 , , 71a 24 R.E. Owen 122b 79 140 M. Ouchrif , F. Pasquali 46 , 71b M. Palka , 100 D. Oliveira Damazio , 69a 167 , 183 103 , 180 133 57 , M. Racko , B. Reynolds I. Riu , P. Puzo 18 , I.N. Potrap 36 J.H. Rawling 145 G. Polesello L. Pereira Sanchez 71a , , 36 A. Pizzini 95 , , , 173 146a 154 46 53 , M.W. O’Keefe , M. Rijssenbeek R. Richter 180 M. Robles Manzano , G. Pownall , 74b C. Rizzi , M. Pedersen S. Prell , 139a , 86 46 , , O. Penc A. Pacheco Pages A. Renardi , , , G. Panizzo M. Pinamonti A. Ogrodnik 149 A. Paramonov , 93 76b 44 , R.S. Orr , L. Perini , , 74a , 49 115 , Ö.O. Öncel 36 146d J.A. Parsons M. Owen , M. Pettee G.A. Popeneciu 46 O. Røhne B. Parida F. Prokoshin , , A. Picazio 53 , 42 , R.G. Oreamuno Madriz , S. Pataraia , , 122a , 14 , 19 , C.S. Pollard 101 A. Puri , 76a B.A. Petersen S. Rettie D.M. Rebuzzi 85 , , , , , P. Podberezko G.J. Ottino 18 , S. Palestini 121 15a , S. Rodriguez Bosca 133 L. Pezzotti 27a 75b – 35 – 182 134 63c , , , , 18 45b , 23b 137 101 80 O. Rifki 68b 122b , , 50 , A. Ramirez Morales I. Pokharel 61a J.M.P. Pasner G. Ripellino , 75a , 72b E. Rizvi , 45a , , 29 146d P. Pani Y. Okazaki 68a 24 115 I. Ravinovich , F. Peri , 18 , K. Potamianos , K. Pachal , 173 E. Ricci 72a , 129 T.D. Powell 94 , B. Pearson S. Oerdek , 57 M.M. Prapa , 169 , C. Rembser S. Popa S. Parajuli , 32 , , , S.A. Olivares Pino 141 N. Orlando , 168a L. Pizzimento g 142 J. Roggel 82 , , 174 E. Pianori , , 153 36 A. Polini , H. Oppen M. Queitsch-Maitland , 102 Q. Ouyang 9 , P.S. Ott 151 , J. Olszowska , , , 36 D. Pudzha 11 ∗ 75b S. Palazzo 161 , K. Prokofiev D. Pohl 139a , E.W. Parrish , 53 A.P. Pereira Peixoto , 155 R. Pezoa , , P. Rieck 88 , , A.D. Pilkington 85 142 M. Reale , , , F. Petrucci , , C. Roda 66 R.F.Y. Peters P. Pasuwan E.D. Resseguie 84a 65 144 75a , E. Plotnikova , , , , 112 107 37 55a T.T. Rinn 144 135 , , 149 B. Ravina 46 162 , C.M. Robles Gajardo 94 H. Okawa A. Rej , 142 100 , , 69a S.V. Peleganchuk S.R. Paredes Saenz V.R. Pascuzzi S. Odaka S. Rajagopalan S. Pospisil , 55b 32 , , , S. Roe , , H.A. Pacey , J. Poveda 23b , M. Pitt , J. Pearkes 100 , 167 53 , F. Rizatdinova 100 P. Reznicek 88 54 58 , , 135 97 63b A. Quadt 95 36 130 H. Otono 168b , , P. Pralavorio R. Polifka L. Pontecorvo , , 176 , E. Perez Codina 122a 30 M. Ridel 101 , , P.U.E. Onyisi , A. Ouraou , A. Olszewski , 174 K. Peters A. Peyaud , 73b , G. Palacino G. Piacquadio E. Rocco 112 , , D. Orestano 29 , J.E. Pilcher N. Proklova , K. Papageorgiou , , F. Pastore , M.M. Perego , , S. Oda J.G. Panduro Vazquez S. Rave V. Pleskot , 84b , S. Resconi F. Parodi 18 , , , C. Petridou , 122b 133 , , M. Przybycien I. Pogrebnyak 171 , 139e L. Rinaldi 89 N.P. Readioff , A. Reiss 120 73a , , 142 , 110 173 , T. Peiffer 74b , L.F. Oleiro Seabra 26 54 148 52 27b , 6 , 57 32 , 81a 55b D. Robinson 114 T. Pauly J. Pacalt J.A. Raine , 46 141 , M.L. Ojeda , , Y. Qin 161 135 T. Poulsen , 133 , 8 , 139a 74a 46 27b 91 98 139a 11 165 106 M. Rimoldi J.C. Rivera Vergara M. Robin A. Rocchi A.M. Rodríguez Vera F. Rauscher A.L. Read D. Reikher A.G. Rennie O.L. Rezanova E. Richter-Was H. Potti A. Prades Ibanez M.L. Proffitt J. Proudfoot J. Qian G. Rahal C. Pitman Donaldson V. Plesanovs L. Poggioli A. Policicchio D. Ponomarenko D.M. Portillo Quintero D.V. Perepelitsa A. Perrevoort V. Petousis K. Petukhova M.W. Phipps D. Pietreanu M.A. Parker L. Pascual Dominguez S. Passaggio J. Patton R. Pedro B.S. Peralva F. Ould-Saada N. Ozturk S. Pagan Griso C.E. Pandini C. Papadatos D. Paredes Hernandez H. Oide A. Olariu M.J.R. Olsson A. Onofre G.E. Orellana G. Otero y Garzon K. O’Connor JHEP03(2021)243 , , , , , , , , , , , 80 , 53 , 65 , , 63a 111 , 91 19 , , 80 153 51 , 100 67c 90 , 75b 33e , , , , , 80 , 75b , 23a , 100 , 65 154 am 41a 67a 75a , , , , 182 , 15a , , 75a , 23b , , 167 41b 100 , 28b , F. Sohns 100 , , , 115 183 , 101 G. Rybkin P. Seema 54 173 , 143 , , , 26 , , X. Ruan , , 50 100 , A. Salvucci , 171 162 97 , 16 A. Sansoni 52 C. Schmitt , 91 L. Serin , 165 128 , , 73b 142 E. Rossi N. Rompotis A. Sapronov A. Sahu , 160 , , , , , 71b U. Schäfer A.A. Snesarev 156 A. Sbrizzi 29 , M. Sioli , 81b , , 117 , N.A. Rusakovich 100 46 , 19 73a L.Y. Shan A. Soloshenko , D.R. Shope 23a 149 115 , 85 , , P. Savard A. Schwartzman 71a 136 , M. Schott , 52 23b 152 , M. Spalla J. Smiesko 5 W. Song A. Schulte I.G. Sanderswood A. Sfyrla 105 , , , , , 180 , 123 23b G. Sciolla S.M. Shaw M. Schioppa G. Salamanna , 144 , , , , 134 14 46 A. Søgaard 143 68b 182 , 55a B. Rottler A.M. Sickles P. Skubic , 54 , , , , S. Shirabe Y. Rozen , Dj. Sijacki 73a C.O. Shimmin 145 156 68b Y. Sano , M. Rybar , , , R. Simoniello , , E. Rossi M. Schernau O. Smirnova C. Serfon , , , 97 , , 48 161 68a 55b C. Scharf 95 r 140 27b , , 149 134 65 102 19 J.M. Seixas 68a S. Singh F. Salvatore 49 L. Sabetta 55a , , , , , 136 C.D. Sebastiani D. Sampsonidou C. Sbarra , , , 113 J. Shojaii 114 L. Schaefer E. Sauvan 46 M. Sahinsoy K. Schmieden , , Z. Rurikova , , , 113 41a 55b 174 , K.A. Saoucha , A. Sonay E. Schopf , 115 , 162 174 37 37 A. Smykiewicz 52 , M. Romano Ph. Schune L. Shi , 36 K. Shaw , 104 , 115 S. Sottocornola , , 41b , 52 S. Sen B.H. Smart 174 C.O. Sander 170 , P. Sicho A. Soffer A.A. Solodkov , , 95 , , , 141 F. Schroeder F. Sforza F. Siegert 112 145 A. Sciandra 124 , , E. Skorda , , , D. Salamani , 28b M. Rotaru ab 23a , S. Simion 180 S. Spagnolo , 133 , , C. Seitz 54 53 180 174 , F. Schenck D. Shaked Renous , A. Rozanov 153 , , 23a 163 107 , , 14 B.J. Rosser F. Safai Tehrani 46 45a , 37 176 E. Schanet , 23b I.P.J. Shipsey S. Saha E.J. Schioppa , , , 142 , H. Son 45b P. Sabatini 33e 23b E.M. Rüttinger , , M. Sannino 80 V. Sinetckii , , , 103 , 94 26 D. Schaefer 155 7 L.N. Smirnova , 121 A. Santra L.M. Scyboz 46 , 45a , 149 , M.J. Shochet A. Rummler 143 167 A. Skaf , , K. Smolek D. Salvatore , P.G. Scholer , 18 , 115 – 36 – , F. Sauerburger 112 D. Sampsonidis 105 , P. Sherwood , F. Sopkova E. Shulga , 90 , , 111 T. Seiss S. Sevova 174 14 , , R. Sobie 45b , I. Sayago Galvan D. South D. Roy , 52 , R. Rosten B.A. Schumm P.B. Shatalov 61b , S. Schramm H. Sandaker , A. Romaniouk 25 95 U. Soldevila , , , 169 , , , , , V. Smakhtin 29 ag 176 A. Sidoti 1 29 , 128 , 11 H. Sakamoto P. Saha 46 52 45a 36 29 , G. Rosin , , 67c 96 122a 112 142 D. Scheirich 36 , R. Sadykov , , , R. Schwienhorst S.B. Silverstein 73a 163 153 36 J.D. Shinner , , P. Sinervo P. Sommer , , , , 137 145 Z.M. Schillaci , F. Scutti P. Schacht 122b 36 N.W. Shaikh , , K. Sato , 144 Y. Smirnov 67a K.R. Schmidt-Sommerfeld , 116 , N. Semprini-Cesari 137 A. Roy , 12b 24 S.N. Santpur , , D.P.C. Sankey 72a , J.P. Rutherfoord , 82 J. Sjölin 148 D. Sammel , 136 36 S. Snyder J. Roloff , , , A. Shmeleva , A.L. Sopio 42 R.D. Schamberger , 112 , , M. Smizanska L. Rossini M.J. Shroff 71b 47 H. Severini , , A. Schoening , 36 , R. Slovak , L. Sawyer 22b , , B.D. Seidlitz 66 T. Saito , 139b , A.S. Sharma 113 180 , 141 , , J.A. Sabater Iglesias 131 S. Rosati , , A.D. Sherman 38 114 , , A. Ruiz-Martinez 134 33e 55b 71a A. Salvador Salas M. Safdari 60a , 144 36 170 , 143 , 145 163 J. Schovancova M. Schumacher 128 123 135 139a , , 52 F. Scuri E.Yu. Soldatov , , S. Simsek 174 O. Sidiropoulou 156 , , O. Sasaki 119 61a 36 , V. Solovyev 21 41a , , 33e S.J. Sekula V.A. Schegelsky M. Shimojima S. Schlenker , , A.M. Soukharev , J. Shlomi , , L.K. Schildgen Ph. Schwemling 123 , 139d 41b , , M. Sessa , K. Sliwa D. Schaile z C. Sandoval L. Rustige , J. Samarati A. Sopczak , J.D. Shahinian 52 , , , M. Saito L. Roos L.P. Rossi G. Rovelli , , J. Salt 70a 101 S.Yu. Smirnov E.M. Shrif , F. Rühr , 179 I.M. Snyder , Y. Shen , H.F-W. Sadrozinski , , M.V. Silva Oliveira , , A. Seiden 67c , , , C. Sawyer A. Sanchez Pineda , , H.A. Smith , , A. Sharma 36 , 55a 106 , 80 J. Schaarschmidt , 85 65 , H. Santos 1 , L. Schoeffel , 53 , C.P.A. Roland 36 , 65 A. Ryzhov , 67b 139a 182 104 , 65 , , 180 125 70b 153 112 127 37 120 18 181 , 67a 168b 95 118 38 163 174 46 S.Yu. Sivoklokov 52 55b , 67a 133 70a 131 H.L. Snoek C.A. Solans Sanchez O.V. Solovyanov W.Y. Song R. Soualah M.Jr. Silva C.J. Simpson-allsop I. Siral M. Slawinska N. Smirnov E.A. Smith M. Shapiro M. Shehade Y. Shimogama M. Shiyakova S. Shrestha E. Sideras Haddad T.A. Schwarz M. Scornajenghi S.C. Seidel G. Sekhniaidze L. Serkin E. Shabalina N. Scharmberg C. Schiavi K.E. Schleicher S. Schmitt J.F.P. Schouwenberg H-C. Schultz-Coulon M. Sandhoff C. Santoni J.G. Saraiva R. Sawada T. Scanlon A.C. Schaffer S. Sacerdoti B. Safarzadeh Samani M. Saimpert A. Salnikov A. Salzburger J. Sánchez M. Ronzani E. Rossi D. Rousseau T.A. Ruggeri H.L. Russell E.B. Rye B. Roland JHEP03(2021)243 , , , , , , , , , 32 , , 21 , , 174 149 , 135 , 106 48 , , 50 156 , , , , , , , 29 , 148 , af , ai 73b , , 100 , 133 36 , 122a , , , 74b 87 124 , , 69a , 100 46 156 79 50 60c 73a , , 140 108 23a 111 73a , , 74a , 122b S. Sun 168a , , 17 56 , , , , , 23b 156 D. Ta R. Tombs 27b 86 , , 46 169 163 H. Torres 157 , 14 , , 168a , I. Vivarelli W. Su , R.J. Turner A.J. Taylor 142 , 127 , , s , 128 131 , 139a , P. Steinberg 153 , F. Trovato 42 , 23a 4b 153 35e , , , P. Staroba 46 K.O.H. Vadla , 46 , , J.A. Valls Ferrer S. Tapprogge 153 K. Uno , A. Traeet H. Stenzel , R. Takashima , I.I. Tsukerman S. Trincaz-Duvoid M. Vanadia S. Veneziano 69a , 23b , M. Spina G.F. Tartarelli 61a 58 , , , , D. Vannicola S. Terzo , , 36 O.E. Vickey Boeriu , , 104 , d 82 , E.M. Villhauer K. Todome T. Sumida 149 123 173 , 36 , , 3 162 99 D. Su A.A. Talyshev 120 E. Tolley F. Ukegawa 168a , P.V. Tsiareshka M. Valente , , 166 139c , 168a M. Swiatlowski , T. Sykora K.E. Varvell , 149 4c , V.O. Tikhomirov , , V. Tudorache , 27b , 102 , 46 M. Strauss 82 , C.M. Vergel Infante T. Vazquez Schroeder 134 , 102 65 M.M. Stanitzki , 163 E. Torrence 53 45b C. Vernieri T. Theveneaux-Pelzer , 140 142 , , , , 139a M. Stolarski 27b Y. Tayalati 14 , J. Stark 72b , , 45b , 50 , M. Stegler , 134 C. Vittori 103 45a 120 Y. Unno , , I. Turk Cakir R. Stamen , , A. Vallier C. Troncon 27b G. Spigo 44 , R. Stroynowski , 145 72a E. Tagiev , B. Vachon 45a , 50 J. Terron , 139a , 21 , D.R. Tovey 180 E.A. Thompson 65 105 , , T. Vickey G. Tarna 121 61a , , 131 141 M. Talby 163 aa 21 168a I.M. Trigger , , S. Sultansoy M. Tsopoulou , N.A. Styles I. Van Vulpen S. Tapia Araya S. Tisserant , F. Veloso , M. Svatos , 60b , K. Uchida , A. Vaniachine , M. Sykora , , , 82 , , 146d 29 102 R. Teixeira De Lima J.C-L. Tseng 54 95 65 , , K. Tokushuku 82 D. Varouchas 128 100 , 183 , 167 159a 129 28a O. Stelzer-Chilton 90 46 A. Tudorache G. Stoicea , , , M. Villaplana Perez G.H. Stark P. Tornambe B. Stanislaus , 28a 158 , , , M. Verducci 36 R.E. Ticse Torres V. Vacek , 138 , 63b , 85 23a J.C. Vermeulen S. Strandberg , 123 153 F.C. Ungaro , A. Trofymov K. Tariq K. Terashi B.L. Stamas , 93 J. Toth R.A. Vallance D. Turgeman , , , , D.M. Strom , , , 71a R. Tafirout D. Vazquez Furelos , G. Stavropoulos , T.M. Spieker , , 12d N. Themistokleous , , – 37 – A. Tricoli E. Valdes Santurio , J.P. Thomas A. Vishwakarma 58 23b F. Tsai , Y. Takubo 120 , 46 80 , 154 S. Suzuki , , 171 , 160 120 38 85 134 , 69b J. Stupak 52 R. Tanaka P. Tipton 177 I. Sykora , 171 , , , A.S. Tee , , 42 21 E. Tzovara Y. Tu 183 85 50 156 S. Tokár 114 , , T. Varol , , A. Tavares Delgado 17 , 156 L.M. Veloce 91 69a , D.M.S. Sultan 163 S. Van Stroud 112 100 , N. Viaux Maira , 88 162 155 , 41a 6 55a , , 91 120 E.R. Vandewall H.J. Stelzer Z. Uysal , am , , E. Stanecka M. Villa , V. Vercesi G. Unel , , 8 , 41b , , E.G. Tskhadadze 55b L. Valéry M.C. Stockton E.J. Thorpe L. Tompkins S. Tarem , J.J. Teoh , , B. Trocmé , , 144 21 , C. Tosciri , 152 29 F. Vazeille , 168a 61b 115 , 155 , 36 A. Taffard D. Sperlich J. Tojo S.J. Thais B. Stugu 36 , 174 , 136 , , 117 , 107 30 E.A. Starchenko F. Tresoldi , S. Turchikhin R. Ströhmer 167 A. Trzupek , G.S. Virdee J. Strandberg , H. Teagle , A. Stabile , , , E.P. Takeva R. Staszewski , J. Tanaka , 152 176 94 , 48 29 ab , , , 82 161 , , J.O. Thomas A.T. Vermeulen 59 85 M.R. Sutton C. Valderanis 34 , 48 120 , , 177 G. Usai 28b M.J. Veen 94 142 E. Tassi , 168b 150 104 , 161 167 , C. Varni , A. Sydorenko 95 , , S. Tzamarias D. Tsybychev 120 157 , 7 , S. Timoshenko M.J. Sullivan 105 101 , 140 39 L. Vigani 177 82 A. Undrus , , A. Valero , , S. Todt 111 122a , F. Spanò P. Van Gemmeren A. Stampekis 11 M.C. Vetterli M. Toscani , 134 B. Stelzer , , , , B. Stapf , E. Thomson G.A. Stewart A. Verbytskyi , H. Ten Kate , 23a 142 , , S. Stärz V. Tsiskaridze S.A. Stucci , , 14 , , J. Taenzer , W. Trischuk M. Tomoto 94 , , A.N. Tuna , 178 120 , 122b 94 x 174 21 u 131 W. Taylor , T. Trefzger G.A. Vasquez , 134 , 156 , A. Vaidya , M. Vandenbroucke P. Strizenec 23b 68b M. Spousta 61a 175 , , , , 45b , M.G. Vincter A. Straessner 46 33e M. Trzebinski , 27a , , T. Takeshita , N.M. Tamir S. Tsuno , P. Urquijo 162 , , P.M. Tuts 36 105 V. Vecchio 36 , 125 57 W. Verkerke , 27b R.J. Teuscher T. Swirski , , 51 68a , D.W. Thomas 102 , , E.W. Varnes M. Unal 45a C.J.E. Suster 83 18 115 , 33c 63b , 2 , M. Tasevsky 53 24 V.V. Sulin , 40 51 28b 69a , 36 73a 101 142 60a A. Ventura C. Vergis P.J. Verschuuren G.H.A. Viehhauser E. Vilucchi S. Valentinetti T.R. Van Daalen W. Vandelli R. Vari M.E. Vasile J. Veatch V. Tsulaia T.T. Tulbure R. Turra G. Unal J. Urban T. Vafeiadis K.G. Tomiwa E. Torró Pastor C.J. Treado D.A. Trischuk L. Truong A. Tsirigotis P. Teixeira-Dias M. Testa F. Thiele P.D. Thompson Yu.A. Tikhonov S. Todorova-Nova K. Tackmann K. Takeda K.C. Tam A. Tarek Abouelfadl Mohamed P. Tas G.N. Taylor S. Stonjek T. Strebler A. Strubig X. Su X. Sun S.P. Swift D.P. Spiteri M. Stamenkovic M. Stankaityte P. Starovoitov A.L. Steinhebel T.J. Stevenson M. Spangenberg JHEP03(2021)243 , , , , , , , 16 , , , 24 , , 60a 15c , 100 , 143 65 95 122a 35e , , 182 60c 94 , , , , , 173 , , , , , 8 , 57 181 5 , 15d 63c 100 122b 178 , , , 94 15c 181 29 182 . , 29 , , 100 15a Y. Wang 36 , B. Zhang L. Živković , 36 , , Z. Zhang 163 , Application 179 N. Wermes , , , ) C. Wang M. Weirich M. Wielers , b 142 , H. Ye , 60a L. Xia , ( , 134 151 , C. Zeitnitz 36 C. Zhou D.P. Yallup M. Zhang L. Xu 63a M. Zaazoua A. Wolf , , , , T. Yang 175 A. White , ah , , 47 48 , 60a , , 40 S.L. Wu , S.D. Walker 60c 47 , C. Zhu 96 N. Warrack , 106 33a 60a 60a , 61a 60a 123 106 57 C. Weber , TOBB University of 114 V. Zhulanov , S. Wahdan ) L.J. Wilkins , 21 , , c 60b ( 11 R.-J. Wang K. Yorita , , 36 111 L. Zwalinski 114 , , S. Wenig C. Wiel I. Wingerter-Seez 39 , , S. Xella V. Vorobel , T. Yamazaki H. Xu M. Zgubič 128 , Z. Zhang 16 , R. Vuillermet , C. Wang , , , 37 X. Yue , , W.X. Wang 36 , , S. Yang 50 , B. Zhou 24 181 65 L. Zhang h 134 , 15d , , 163 60a S. Yacoob , 102 181 , , M. Ziolkowski E. Yatsenko 15c V.W.S. Wong 18 M. Wobisch S.V. Zeißner R. Walker , 173 J. Weingarten , , , A.S. White , K. Wraight , C.G. Zhu 60b 15c R.J. Ward , 15a , , P. Yin , 157 46 , 115 A.M. Zaitsev 7 36 , A.F. Webb 90 85 153 R. Zou 143 134 , 32 139c 25 K. Zhukov , , , , Q. Wang 95 135 , H. Xu N. Vranjes H.G. Wilkens 149 , 42 , 15a N.K. Vu 139a D. Zerwas T. Wengler , 15a , , 52 W. Wang 101 R. Yuan J. Wagner-Kuhr D. Zhong , A.Z. Wang B.M. Wynne , , L. Zhang , H.T. Yang 47 , , 120 Y. Zhang , , 28a D. Zanzi , Y. Zhou Y.C. Yap , , E. Von Toerne 79 , , M. Yamatani 59 60a , B. Yabsley 182 106 J. Walder , Z. Zinonos , 101 15a 36 60d , 18 60c 82 , 60b ∗ C.P. Ward W. Wiedenmann , D. Xu , , 33e , , M. Wittgen P. Wang E. Yigitbasi 153 , P.J. Windischhofer , 52 115 60c 90 , 52 104 – 38 – J. Yu K.W. Woźniak X. Zhuang 156 B.M. Waugh 90 A.R. Weidberg , , A.M. Wharton , , H. Wolters , T.G. Zorbas , 63a , J. Zahreddine , 103 T. Ženiš , M. Vozak , 85 , 85 153 131 60a 53 148 61a 91 54 Z. Zheng Z. Xu N. Zhou , , 123 , K. Zhang B. Wendland , X. Zhang M. Vreeswijk A.M. Wang , W.T. Wang , W. Wagner , W-M. Yao 80 , 6 S. Zambito , , , T.R. Wyatt , 60b , 155 29 24 H.J. Yang 60c 141 34 45b J. Wang , 158 L.A.M. Wiik-Fuchs 60a , A. Yamamoto , , 134 Y. Zhu , , I. Xiotidis 3 , 25 K. Zoch B.T. Winter 40 , S. Willocq , 45a C. Young M.R. Yexley , G. Watts 165 , , , A. Warburton 60a 106 Z. Xu K. Whalen O. Zenin , S. Zimmermann V.M. Walbrecht , 32 , , B.W. Whitmore B.K. Wosiek , 23a , 131 36 , Ankara University, Ankara; Istanbul Aydin University 80 21 , , , S.M. Weber E. Zaffaroni J. Zhang ) 46 , M.W. Wolter , , 20 M. Zhou 80 a , 15b , 46 ( 173 169 34 , V. Vrba 171 23b 10 J.H. Vossebeld Z. Yan , Z. Yang X. Zhang 52 , T. Wenaus S.E. von Buddenbrock , , 15b P. Wagner , , 16 , 15d H. Wang X. Xie , J. Zhu , S.M. Wang , , 163 36 , 174 60c 106 A. Zhemchugov 141 6 18 , 169 15a Y. Xu 106 15a N. Zakharchuk J. Wuerzinger , , , 60a S. Williams , V. Wallangen , 106 J.C. Zeng Y. Yamaguchi C. Wiglesworth 60a I. Yeletskikh , , , N.I. Zimine 159b C.J.S. Young , A. Zoccoli M.F. Watson S.D. Worm R. Wakasa , G. Zhang , M. Vos , , , , J. Yan , 151 , S.A. Weber F. Winklmeier 136 , Y. Yang 88 G. Zacharis , T.D. Weston , , 29 , , 134 66 D. Whiteson 79 , J. Wollrath 100 21 83 89 H. Zhu , P. Vokac S. Wada R. Wang P.S. Wells , S. Zhang H. Wang 181 C. Wanotayaroj 145 , X. Xiao 20 , , , , 58 15b 85 1 , 112 , , 61a , 156 134 M.S. Zhou 37 52 , Z. Zhao W. Xu 181 , Y. Wu 60a 182 , 60a 181 106 63c , 7 60b 49 S. Ye , 54 and Research Center for AdvancedEconomics Studies, and Istanbul; Technology, Ankara; Division Turkey ofLAPP, Physics Université Grenoble Alpes, UniversitéHigh Savoie Energy Physics Mont Division, Blanc,Department Argonne CNRS/IN2P3, National of Annecy; Laboratory, Physics, France Argonne University IL;Department of United of Arizona, States Physics, Tucson of AZ; University America Physics United of Department, States Texas National at of and Arlington, America Arlington Kapodistrian University TX; of United Athens, States Athens; of Greece America Department of Physics, UniversityPhysics of Department, Adelaide, SUNY Adelaide; Albany, Australia AlbanyDepartment NY; of United Physics, States University ofDepartment of of America Alberta, Physics Edmonton AB; Canada 144 42 5 6 7 8 9 1 2 3 4 R. Zhang P. Zhao H. Zhou H.L. Zhu D. Zieminska G. Zobernig J. Ye K. Yoshihara B. Zabinski T. Zakareishvili G. Zemaityte D.F. Zhang X. Wu J. Xiang T. Xu N. Yamaguchi Y. Yamazaki X. Yang M.J. White N. Wieseotte H.H. Williams E. Winkels R. Wölker N.L. Woods R. Wang Z. Wang A.T. Watson M.S. Weber C. Weiser M. Wessels K. Vorobev M. Vranjes Milosavljevic I. Vukotic H. Wahlberg W. Walkowiak F. Wang M. Vogel JHEP03(2021)243 , ; ) ) b b ( ( , ) , c ) ( d ( , Bucharest; ) e ( , University of ) e ( , Université Mohammed ) e ( iThemba Labs, Western Cape; , Gaziantep University, ) ) b d ( ( , Alexandru Ioan Cuza University of ) c ( , Université Ibn-Tofail, Kénitra; Faculté ) b , Nanjing University, Nanjing; University of ( ) c ( , Universidad Antonio Nariño, Bogotá; ) a , University of Johannesburg, Johannesburg; ( ) c ( , Dipartimento di Fisica; INFN Sezione di Bologna ) a – 39 – ( , Beijing; China ) d ( , Brasov; Horia Hulubei National Institute of Physics and ) , Chinese Academy of Sciences, Beijing; Physics Department a ) , Réseau Universitaire de Physique des Hautes Energies — ( ) a ( , Timisoara; Romania a ( ) f ( , Department of Physics, Pretoria; School of Physics ) d ( , Universidad Nacional de Colombia, Bogotá, Colombia; Colombia , Physics and Informatics, Comenius University, Bratislava; Department ) , University of Cape Town, Cape Town; ) b , Faculty of Engineering and Natural Sciences, Istanbul; Istanbul Bilgi ) a , Institute of Experimental Physics of the Slovak Academy of Sciences, , Université Cadi Ayyad, LPHEA-Marrakech; Faculté des Sciences ( ) ( a ) ) , Bucharest; Department of Physics ( a b c ) ( ( ( b ( , Physics Department, Cluj-Napoca; University Politehnica Bucharest ) d , Faculty of Engineering and Natural Sciences, Istanbul; Department of Physics ( ) b ( des Sciences Semlalia Université Mohamed Premier andV, LPTPM, Rabat; Oujda; Morocco Faculté desCERN, sciences Geneva; Switzerland Enrico Fermi Institute, University ofLPC, Chicago, Université Chicago Clermont IL; Auvergne, United CNRS/IN2P3, States Clermont-Ferrand; France of America Department of Mechanical Engineering Science University of South Africa the Witwatersrand, Johannesburg; SouthDepartment Africa of Physics, CarletonFaculté University, des Ottawa Sciences ON; Ain Canada Chock Université Hassan II, Casablanca; Faculté des Sciences Kosice; Slovak Republic Physics Department, Brookhaven National Laboratory,Departamento Upton de NY; Física, United Universidad StatesCalifornia de of State Buenos America University, Aires, Buenos CA;Cavendish Aires; United Argentina Laboratory, States University of of America Cambridge,Department of Cambridge; Physics United Kingdom Transilvania University of Brasov Nuclear Engineering Iasi, Iasi; National InstituteTechnologies for Research and DevelopmentWest of University Isotopic in and Timisoara Molecular Faculty of Mathematics of Subnuclear Physics Departamento de Física INFN Bologna and Universita’Italy di Bologna Physikalisches Institut, Universität Bonn,Department Bonn; of Germany Physics, BostonDepartment University, of Boston Physics, MA; Brandeis United University, States Waltham of MA; America United States of America Physics Division, Lawrence Berkeley NationalCA; Laboratory United and States University of ofInstitut America California, für Berkeley Physik, HumboldtAlbert Universität Einstein zu Center Berlin, for Berlin;University Fundamental Germany Physics of and Bern, Laboratory Bern; forSchool Switzerland High of Energy Physics Physics, andFacultad Astronomy, de University Ciencias of y Birmingham, Centro Birmingham; de United Investigaciónes Kingdom Barcelona; Spain Institute of High EnergyTsinghua Physics University, Beijing; Department ofChinese Physics Academy of Science (UCAS) Institute of Physics, UniversityDepartment of for Belgrade, Physics Belgrade; and Serbia Technology, University of Bergen, Bergen; Norway Department of Physics, UniversityBahcesehir of University Texas at Austin,University Austin TX; United StatesBogazici of University, America Istanbul; DepartmentGaziantep; of Turkey Physics Engineering Institute of Physics, AzerbaijanInstitut Academy of de Sciences, Física Baku; d’Altes Azerbaijan Energies (IFAE), Barcelona Institute of Science and Technology, Physics Department, National Technical University of Athens, Zografou; Greece 36 37 38 34 35 29 30 31 32 33 27 28 23 24 25 26 19 20 21 22 15 16 17 18 12 13 14 10 11 JHEP03(2021)243 , ) , b ) ( a ( ; Italy ) b ( , Shandong ) b ( , Trieste; Dipartimento ) , Stockholm; Sweden , Università Roma Tre, b ) ) ( b b ( ( , Università del Salento, Lecce; ) , Università di Roma Tor Vergata, b , Shanghai; China ) ( ) b ( d ( , Università di Pisa, Pisa; Italy ) b ( , Shanghai Jiao Tong University, ) c ( , Università di Milano, Milano; Italy , Università di Napoli, Napoli; Italy ) , Sapienza Università di Roma, Roma; Italy , Università di Pavia, Pavia; Italy ) b , Trento; Italy ) ) b ( ) b ( b b ( ( ( – 40 – , Università di Udine, Udine; Italy ) c ( ; Dipartimento di Fisica ) a ( , Sezione di Trieste, Udine; ICTP ) a ( , Hong Kong University of Science and Technology, Clear Water , Ruprecht-Karls-Universität Heidelberg, Heidelberg; Physikalisches ; Dipartimento di Matematica e Fisica ) ) ) c a ( ( a ( ; Dipartimento di Fisica ; Dipartimento di Fisica ) ; Dipartimento di Fisica ; Dipartimento di Fisica ) ; Dipartimento di Matematica e Fisica a , Chinese University of Hong Kong, Shatin, N.T., Hong Kong; , Stockholm University; Oskar Klein Centre , Università di Genova, Genova; INFN Sezione di Genova , Università della Calabria, Rende; INFN Gruppo Collegato di Cosenza ) , University of Hong Kong, Hong Kong; Department of Physics and ) a ( ; Dipartimento di Fisica E. Fermi ) ) ) ) ) ) a ( a ) a a b a a a ( ( ( ( ( ( ( a ( ( ; Università degli Studi di Trento ) a ( , Ruprecht-Karls-Universität Heidelberg, Heidelberg; Germany ) b ( INFN Sezione di Roma INFN Sezione di RomaRoma; Tor Italy Vergata INFN Sezione di RomaRoma; Tre Italy INFN-TIFPA INFN Sezione di Lecce Italy INFN Sezione di Milano INFN Sezione di Napoli INFN Sezione di Pavia INFN Sezione di Pisa Bay, Kowloon, Hong Kong;Department China of Physics, NationalIJCLab, Tsing Université Hua Paris-Saclay, University, CNRS/IN2P3, Hsinchu;Department 91405, Taiwan of Orsay; Physics, France IndianaINFN University, Gruppo Bloomington Collegato IN; di UnitedPolitecnico States Udine di of Ingegneria America e Architettura KLPPAC-MoE, SKLPPC, Shanghai; Tsung-Dao LeeKirchhoff-Institut Institute für Physik Institut Faculty of Applied Information Science,Department Hiroshima of Institute Physics of Technology,Department Hiroshima; of Japan Physics Institute for Advanced Study Laboratory for Particle Physics andof Cosmology, America Harvard University, CambridgeDepartment of MA; Modern United Physics States University and of State Science Key and Laboratory ofScience Technology of Particle and China, Detection Key and Hefei; Laboratory ofUniversity, Electronics Institute Particle Qingdao; of Physics School Frontier and and of Particle Interdisciplinary Physics Irradiation and (MOE) Astronomy Physikalisches Institut, Albert-Ludwigs-Universität Freiburg, Freiburg;II. Germany Physikalisches Institut, Georg-August-Universität Göttingen,Département de Göttingen; Physique Germany Nucléaire etDipartimento di Corpusculaire, Université Fisica deII. Genève, Physikalisches Genève; Institut, Switzerland Justus-Liebig-UniversitätSUPA Giessen, — Giessen; School Germany of PhysicsLPSC, and Université Astronomy, Grenoble University Alpes, CNRS/IN2P3, of Grenoble Glasgow, INP, Glasgow; Grenoble; United France Kingdom Deutsches Elektronen-Synchrotron DESY, Hamburg andLehrstuhl Zeuthen; für Germany Experimentelle PhysikInstitut IV, für Technische Universität Kern- und Dortmund,Department Teilchenphysik, Dortmund; of Technische Germany Universität Physics, Dresden, Duke Dresden;SUPA University, Germany — Durham School NC; of United PhysicsINFN States and e of Astronomy, Laboratori America Nazionali University di of Frascati, Edinburgh, Frascati; Edinburgh; Italy United Kingdom Niels Bohr Institute, UniversityDipartimento of di Copenhagen, Fisica Copenhagen; Denmark Laboratori Nazionali di Frascati; Italy Physics Department, Southern MethodistPhysics University, Department, Dallas University TX; of UnitedNational Texas States at Centre of for Dallas, America Scientific RichardsonDepartment Research TX; “Demokritos”, of United Agia Physics States Paraskevi; of Greece America Nevis Laboratory, Columbia University, Irvington NY; United States of America 74 75 76 68 69 70 71 72 73 64 65 66 67 61 62 63 59 60 53 54 55 56 57 58 46 47 48 49 50 51 52 41 42 43 44 45 39 40 JHEP03(2021)243 , Rio de Janeiro; Instituto de ) b ( , Jagiellonian University, Krakow; Poland ) b ( , Faculty of Physics and Applied Computer Science, ) a ( – 41 – , Universidade Federal de Juiz de Fora (UFJF), Juiz de ) a ( , Universidade de São Paulo, São Paulo; Brazil ) c ( Fakultät für Physik, Ludwig-Maximilians-UniversitätMax-Planck-Institut München, für München; Physik Germany (Werner-Heisenberg-Institut), München;Nagasaki Germany Institute of AppliedGraduate Science, School Nagasaki; of Japan Science andDepartment of Kobayashi-Maskawa Institute, Physics Nagoya and University,of Astronomy, University Nagoya; America of Japan New Mexico, Albuquerque NM; United States Research Institute for Nuclear ProblemsGroup of of Byelorussian Particle State Physics, University,P.N. University Minsk; Lebedev of Physical Belarus Montreal, Institute Montreal of QC;National the Canada Research Nuclear Russian University Academy of MEPhI,D.V. Sciences, Moscow; Skobeltsyn Moscow; Russia Institute Russia ofRussia Nuclear Physics, M.V. Lomonosov Moscow State University, Moscow; Department of Physics, McGillSchool University, of Montreal Physics, QC; University Canada Department of of Melbourne, Physics, Victoria; University Australia Department of of Michigan, Physics Ann and Arborof MI; Astronomy, Michigan America United State States University, ofB.I. East America Stepanov Lansing Institute MI; of United Physics, States National Academy of Sciences of Belarus, Minsk; Belarus (IN2P3), Villeurbanne; France Departamento de Física Teorica C-15Spain and CIAFF, Universidad AutónomaInstitut de für Madrid, Physik, Madrid; UniversitätSchool Mainz, of Mainz; Physics Germany andCPPM, Astronomy, University Aix-Marseille of Université, Manchester, CNRS/IN2P3,Department Manchester; Marseille; of United France Physics, Kingdom University of Massachusetts, Amherst MA; United States of America School of Physics andDepartment Astronomy, of Queen Mary Physics, University RoyalDepartment Holloway of of London, University Physics London; of United and London,Louisiana Kingdom Astronomy, Egham; Tech University United University, College Kingdom Ruston London, LA;Fysiska London; United institutionen, United States Kingdom Lunds of universitet, America Centre Lund; de Sweden Calcul de l’Institut National de Physique Nucléaire et de Physique des Particules Research Center for Advanced ParticleFukuoka; Physics Japan and Department ofInstituto Physics, de Kyushu Física University, La Plata,Physics Universidad Department, Nacional Lancaster University, de La Lancaster;Oliver United Plata Lodge Kingdom and Laboratory, University CONICET, of LaDepartment Plata; Liverpool, of Liverpool; Argentina Experimental United Particle Kingdom University Physics, of Jožef Ljubljana, Stefan Ljubljana; Institute Slovenia and Department of Physics, Graduate School of Science, KobeAGH University, University Kobe; of Japan ScienceKrakow; and Marian Technology Smoluchowski InstituteInstitute of of Physics Nuclear PhysicsFaculty Polish of Academy Science, of Kyoto Sciences, University,Kyoto Krakow; Poland Kyoto; University Japan of Education, Kyoto; Japan University of Iowa, IowaDepartment City of IA; Physics United and StatesJoint Astronomy, of Iowa Institute America State for University, NuclearDepartamento Research, Ames Dubna; de IA; Russia Engenharia United Elétrica StatesFora; of Universidade America Federal do RioFísica De Janeiro COPPE/EE/IF KEK, High Energy Accelerator Research Organization, Tsukuba; Japan Institut für Astro- und Teilchenphysik, Leopold-Franzens-Universität, Innsbruck; Austria 99 93 94 95 96 97 98 89 90 91 92 83 84 85 86 87 88 79 80 81 82 77 78 115 116 117 118 109 110 111 112 113 114 104 105 106 107 108 100 101 102 103 JHEP03(2021)243 , Lisboa; ) , Universidad de a ) ( c ( , Universidade Nova de Lisboa, Caparica; ) g ( , SB RAS, Novosibirsk; Novosibirsk State ) a ( , Universidade do Minho, Braga; Departamento de ) – 42 – e ( , Universidad Técnica Federico Santa María, Valparaíso; Chile ) d ( , Universidad de Granada, Granada (Spain); Dep Física and ) f , Universidade de Lisboa, Lisboa; Portugal ( ) h , Pontificia Universidad Católica de Chile, Santiago; Universidad Andres , Faculdade de Ciências, Universidade de Lisboa, Lisboa; Departamento ( ) ) ; Russia a b ) ( ( b ( , Universidade de Coimbra, Coimbra; Centro de Física Nuclear da Universidade de ) c ( , Lisboa; Departamento de Física ) , Department of Physics, Santiago; Instituto de Alta Investigación d ) ( b ( Department of Physics, UniversityDepartment of of Washington, Physics Seattle WA; and UnitedDepartment Astronomy, States of University of Physics, of America Shinshu Sheffield,Department University, Sheffield; Physik, Nagano; United Universität Kingdom Japan Siegen,Department Siegen; of Germany Physics, SimonSLAC Fraser University, National Burnaby Accelerator Laboratory, BC; Stanford CA; Canada United States of America Santa Cruz Institute forUnited Particle States Physics, of University America ofDepartamento California de Santa Física Cruz,Bello Santa Cruz CA; Tarapacá; Departamento de Física Universidade Federal de São João del Rei (UFSJ), São João del Rei; Brazil Instituto Superior Técnico Institute of Physics ofCzech the Technical Czech University Academy in of Prague,Charles Sciences, Prague; University, Prague; Czech Czech Faculty Republic of Republic Particle Mathematics Physics and Department, Physics, Rutherford Prague; AppletonIRFU, Czech Laboratory, CEA, Republic Didcot; Université United Paris-Saclay, Kingdom Gif-sur-Yvette; France America Laboratório de Instrumentação e FísicaDepartamento Experimental de de Física Partículas —de LIP Física Lisboa Física Teórica y del Cosmos CEFITEC of Faculdade de Ciências e Tecnologia Department of Physics, OxfordLPNHE, University, Sorbonne Oxford; Université, United Kingdom UniversitéDepartment de of Paris, Physics, CNRS/IN2P3, University Paris;Konstantinov of France Nuclear Pennsylvania, Physics Philadelphia Institute PA;St. of United National States Petersburg; Research Russia of Centre America “KurchatovDepartment Institute”, of PNPI, Physics and Astronomy, University of Pittsburgh, Pittsburgh PA; United States of Homer L. Dodge DepartmentUnited of States Physics of and America Astronomy,Department University of of Physics, Oklahoma, Oklahoma NormanPalacký State OK; University, University, RCPTM, Stillwater Joint OK;Institute Laboratory United of for States Optics, Fundamental of Science, Olomouc; America UniversityGraduate Czech School of Republic of Oregon, Eugene, Science, OsakaDepartment OR; of University, United Physics, States Osaka; University of Japan of America Oslo, Oslo; Norway Russia Institute for Theoretical and ExperimentalCentre Physics “Kurchatov Institute”, named Moscow; by Russia A.I.Department of Alikhanov Physics, of New NationalOchanomizu York Research University, University, New Otsuka, York Bunkyo-ku,Ohio NY; Tokyo; State United Japan States University, of Columbus America OH; United States of America Nijmegen; Netherlands Nikhef National Institute forNetherlands Subatomic Physics and UniversityDepartment of of Amsterdam, Physics, Amsterdam; NorthernBudker Illinois Institute University, of DeKalb Nuclear IL;University Physics United Novosibirsk and States NSU of America Institute for High Energy Physics of the National Research Centre Kurchatov Institute, Protvino; Institute for Mathematics, Astrophysics and Particle Physics, Radboud University/Nikhef, 149 150 151 152 153 145 146 147 148 140 141 142 143 144 139 134 135 136 137 138 129 130 131 132 133 124 125 126 127 128 120 121 122 123 119 JHEP03(2021)243 , York University, Toronto ) b ( – 43 – , Iv. Javakhishvili Tbilisi State University, Tbilisi; High ) a ( , Tbilisi State University, Tbilisi; Georgia ) b ( , Vancouver BC; Department of Physics and Astronomy ) a ( Switzerland Also at Departament deAlso Fisica at de Department la of UniversitatGreece Financial Autonoma and de Management Barcelona, Barcelona; Engineering, Spain Also University at of Department the of Aegean,United Physics Chios; States and of Astronomy, Michigan America State University, East Lansing MI; Also at Borough ofUnited Manhattan States Community of College, America CityAlso University at of Centro New Studi York,Also e New at Ricerche York Enrico CERN, NY; Fermi; Geneva; Italy Also Switzerland at CPPM, Aix-MarseilleAlso Université, at CNRS/IN2P3, Département Marseille; de France Physique Nucléaire et Corpusculaire, Université de Genève, Genève; Department of Particle PhysicsDepartment and of Astrophysics, Physics, Weizmann Institute UniversityFakultät of of für Science, Wisconsin, Mathematik Rehovot; Madison Israel und WI;Wuppertal, Naturwissenschaften, United Wuppertal; Fachgruppe States Germany Physik, of Bergische America Universität Department of Physics, Yale University, New Haven CT; United States of America Instituto de Física CorpuscularSpain (IFIC), Centro Mixto UniversidadDepartment de of Valencia Physics, — University CSIC,Department of Valencia; of British Physics Columbia, and VancouverFakultät BC; Astronomy, für University Canada Physik of und Victoria, Astronomie,Department Victoria Julius-Maximilians-Universität of BC; Würzburg, Physics, Würzburg; Canada Germany UniversityWaseda of University, Warwick, Tokyo; Coventry; Japan United Kingdom Applied Sciences, University of Tsukuba,Department Tsukuba; of Japan Physics andDepartment Astronomy, of Tufts University, Physics Medford and MA;America Astronomy, United University States of of California America Department Irvine, of Irvine Physics CA; and UnitedDepartment Astronomy, States of University of Physics, of University Uppsala, of Uppsala; Illinois, Sweden Urbana IL; United States of America Graduate School of Science andDepartment of Technology, Tokyo Physics, Metropolitan Tokyo University, InstituteTomsk Tokyo; State of Japan University, Technology, Tokyo; Tomsk; Japan Russia Department of Physics, UniversityTRIUMF of Toronto, Toronto ON; Canada ON; Canada Division of Physics and Tomonaga Center for the History of the Universe, Faculty of Pure and Department of Physics, Technion, IsraelRaymond Institute and of Beverly Technology, Sackler Haifa;Israel School Israel of Physics andDepartment Astronomy, of Tel Physics, Aviv University, AristotleInternational University Tel Aviv; Center of for Thessaloniki, Elementary Thessaloniki;Tokyo, Particle Greece Tokyo; Physics Japan and Department of Physics, University of Departments of Physics andAmerica Astronomy, Stony Brook University, StonyDepartment of Brook NY; Physics United and StatesSchool Astronomy, of of University Physics, of University Sussex,Institute of Brighton; of Sydney, United Physics, Kingdom Sydney; Academia Australia E. Sinica, Taipei; Andronikashvili Taiwan Institute ofEnergy Physics Physics Institute Physics Department, Royal Institute of Technology, Stockholm; Sweden b c e d g a f h 180 181 182 183 174 175 176 177 178 179 170 171 172 173 165 166 167 168 169 160 161 162 163 164 156 157 158 159 154 155 JHEP03(2021)243 – 44 – Also at The CityAlso College at of TRIUMF, New Vancouver York, BC;Also New Canada at York Universita NY; di UnitedAlso Napoli States at Parthenope, of University Napoli; America Italy ofDeceased Chinese Academy of Sciences (UCAS), Beijing; China Also at Istanbul University,Also Dept. at of Joint Physics, Institute Istanbul;Also for Turkey at Nuclear Louisiana Research, Dubna; Tech University,Also Russia Ruston at LA; Moscow United Institute StatesAlso of of at Physics America National and Research Technology Nuclear StateAlso University at University, MEPhI, Physics Dolgoprudny; Moscow; Department, Russia Russia Also An-Najah at National Physikalisches University, Institut, Nablus; Albert-Ludwigs-Universität Palestine Freiburg, Freiburg; Germany Sciences, Sofia; Bulgaria Also at Institute forHungary Particle and Nuclear Physics,Also Wigner at Research Institute Centre for ofAlso Physics, Particle at Budapest; Physics Institute (IPP); of Canada Also Physics, at Azerbaijan Instituto Academy of de Sciences, Fisica Baku; Teorica, IFT-UAM/CSIC, Azerbaijan Madrid; Spain Also at Hellenic OpenAlso University, at Patras; IJCLab, Greece UniversitéAlso Paris-Saclay, at CNRS/IN2P3, Institucio 91405, Catalana Orsay;Also de France at Recerca i Institut Estudis für Avancats,Also Experimentalphysik, ICREA, at Universität Barcelona; Institute Hamburg, Spain for Hamburg;Nijmegen; Germany Mathematics, Netherlands Astrophysics and ParticleAlso Physics, at Radboud Institute University/Nikhef, for Nuclear Research and Nuclear Energy (INRNE) of the Bulgarian Academy of Russia Also at Department ofAlso Physics, at University Dipartimento of di Fribourg, Fribourg;Also Matematica, Switzerland at Informatica e Faculty of Fisica,Also Università Physics, at di M.V. Giresun Udine, Lomonosov University, Udine; MoscowAlso Italy State Faculty of at University, Engineering, Graduate Moscow; Giresun; School Russia Turkey of Science, Osaka University, Osaka; Japan States of America Also at Department ofAlso Physics, at Ben Department Gurion of UniversityAlso Physics, of at California the Department State Negev, of University, BeerAlso Physics, East Sheva; at California Bay; Israel Department State United of University, StatesAlso Physics, Fresno; of at United California America Department States State of of University,Also Physics, America Sacramento; at King’s United Department College States of London, of Physics, London; America United St. Kingdom Petersburg State Polytechnical University, St. Petersburg; Also at Department of Physics and Astronomy, University of Louisville, Louisville, KY; United l i t j s q r o z ∗ p v y k x u n w al m ai ab ac aj ae ao ad ag aa ak af ah an am